Condition périodique aux limites 1832581 28266708 2008-04-04T08:56:06Z Badmood 4507 nouveau style de bandeau de portail, voir [[Wikipédia:Prise de décision/Bandeaux de portail]] {{voir homonymes|CPL|PBC}} En [[simulation numérique]], et plus particulièrement en [[chimie numérique|chimie]], les '''conditions périodiques aux limites''' (CPL, en anglais ''periodic boundary conditions'' - PBC) constituent un ensemble de [[conditions aux limites]] utilisées afin de simuler un système pavé effectivement infini, appliquées de manière usuelle dans l'étude de systèmes chimiques tels que des [[macromolécule]]s dans un bain de [[modèle d'eau|solvant explicite]], ou autres. Ainsi, si un système microscopique est simulé dans le [[vide]], les molécules du système s'[[évaporation|évaporeront]], s'éloignant les unes des autres à moins d'être maintenues ensemble par une force restrictive externe. De manière alternative, le système peut être simulé en utilisant des murs réflecteurs aux limites. Cependant, ces deux techniques introduisent des forces parasites dans la simulation, pouvant donc introduire un écart supplémentaire (en plus des approximations de simulation utilisées) par rapport au système réel.<br> [[Image:Limiteperiodicite.svg|thumb|200px|Comportement par périodicité (2D) : la particule vert foncé (coin supérieur gauche de la boîte en traits pleins) possède une quantité de mouvement l'amenant à sortir de la boîte (flèche). Une fois sortie, la périodicité du système ramène une particule identique dans la boîte, avec la même quantité de mouvement. La particule subit l'influence de '''toutes''' les particules environnantes, y compris ses propres images.]] Les conditions périodiques aux limites sont très semblables aux [[topologie]]s présentes dans certains [[jeu vidéo|jeux vidéos]]; une ''maille unitaire'' ou ''boîte de simulation'' de géométrie adéquate pour un pavage tridimensionnel parfait, et lorsqu'un objet présent passe, par exemple, au travers d'une des faces de la boîte de simulation, il réapparait - ou plus justement, un objet identique par [[Fonction périodique|périodicité]] - par la face opposée avec la même [[quantité de mouvement]] (voir schéma). En effet, la simulation porte dans les faits sur un [[cristal]] infini parfait<ref>Et si l'on se tient à un système tridimensionnel {{guil|classique}}, [[cristal incommensurable|commensurable]], donc parfaitement périodique dans les trois dimensions de l'espace.</ref>, ou en termes topologiques, l'espace peut être pensé comme pouvant être décrit par un [[tore]] tétradimensionnel. Les répliques par périodicité de la boîte de simulation sont appelées ''images'', et sont virtuellement en nombre infini. Durant la simulation, seules les propriétés de la maille unitaire seront traitées et propagées. La ''convention d'image minimale'' est une forme commune de stockage pour la CPL dans laquelle chaque particule individuelle de la simulation interagit avec l'image la plus proche des particules réelles du système. == Condition périodique aux limites : requis et artéfacts == Les conditions périodiques aux limites sont particulièrement utiles en conjonction avec les méthodes de [[sommation d'Ewald]] (habituellement en maillage particulaire d'Ewald) pour prendre en compte les forces [[loi de Coulomb (électrostatique)|électrostatiques]] du système. Cependant, les conditions périodiques aux limites introduisent des artéfacts de corrélation qui ne respectent pas l'invariance de translation du système<ref name="Cheatham">Cheatham TE, Miller JH, Fox T, Darden PA, Kollman PA. (1995). Molecular Dynamics Simulations on Solvated Biomolecular Systems: The Particle Mesh Ewald Method Leads to Stable Trajectories of DNA, RNA, and Proteins. ''J Am Chem Soc'' 117:4193.</ref>, et nécessite des contraintes de composition et de taille de la boîte de simulation. La [[charge électrostatique]] du système doit être nulle afin d'éviter une somme infinie lorsque la condition périodique aux limites lui est appliquée; cela est aisément assuré par l'addition d'[[ion]]s ([[sodium|Na<sup>+</sup>]], [[chlore|Cl<sup>-</sup>]], etc.) en quantités appropriés si les molécules étudiées sont chargées. Comme dans les [[solution (chimie)|solution]]s réelles, de tels ions sont appelés ''contre-ions''. Des ions sont parfois ajoutés à un système dans lequel les molécules étudiées sont neutres, afin d'approximer la [[force ionique]] d'une solution dans laquelle les molécules apparaissent naturellement. Le maintien de la convention d'image minimale requiert généralement qu'un rayon de coupure sphérique pour les forces non liantes soit d'au moins la moitié de la longueur d'un côté d'une boîte cubique. Même dans les systèmes électrostatiquement neutres, un [[moment dipolaire]] net de la maille unitaire peut introduire une fausse surface d'énergie volumique, équivalente à la [[pyroélectricité]] dans les [[ferroélectricité|cristaux polaires]].<br> La taille de la boîte de simulation doit aussi être assez importante afin d'éviter que les artéfacts de périodicité créent des topologies non-physiques dans la simulation. Dans une boîte trop petite, un objet comme une macromolécule peut interagir de manière immédiate avec sa propre image dans une boîte voisine, ce qui est fonctionnellement équivalent à l'interaction, pour une molécule de sa {{guil|tête}} avec sa {{guil|queue}}<ref>Dans le cas d'une molécule suffisamment longue ou mobile, comme un alcane linéaire (le [[pentane]] par exemple).</ref>. Cela entraîne des dynamiques non-physiques de la plupart des objets comme les macromolécules, bien que l'intensité des conséquences et, par la suite, la taille appropriée pour la boîte par rapport à la taille des objets dépend de la durée - en temps virtuel - prévue de simulation, la précision voulue, et les comportements anticipés. Par exemple, les simulations du [[repliement de protéine]] qui commencent à partir d'un [[état natif (biochimie)|état natif]] peuvent produire des fluctuations plus faibles et donc peuvent ne pas nécessiter de boîtes de simulation aussi grandes que de partir d'une [[pelote aléatoire]]. Cependant, les effets des [[couche de solvatation|couches de solvatation]] sur les dynamiques observées - en simulation ou expérimentalement - ne sont pas bien compris, de manière générale. Une recommandation classique, issue des simulations sur l'[[Acide désoxyribonucléique|ADN]], est de prendre au moins 1 nm (10 Å) autour des molécules étudiées dans chaque dimension<ref name="de Souza">de Souza ON, Ornstein RL. (1997). Effect of periodic box size on aqueous molecular dynamics simulation of a DNA dodecamer with particle-mesh Ewald method. ''Biophys. J.'' 72(6):2395-7. PMID 9168016</ref>. ==Géométrie des boîtes de simulation== L'application de conditions périodiques aux limites impose à la boîte de simulation de posséder une forme compatible avec ces conditions, c'est-à-dire qui permet un pavage parfait d'un espace tridimensionnel. Par conséquent, une forme [[sphérique]] ou [[ellipsoïdale]] est à écarter. Une forme [[cubique]] ou de [[prisme rectangulaire]] est le choix le plus intuitif et le plus commun, mais peut s'avérer coûteux numériquement en raison de la présence d'objets dans les coins de boîte (comme par exemple des molécules de solvant), objets distants de l'objet d'étude (une macromolécule, par exemple). Une alternative commune qui nécessite un volume inférieur est l'utilisation d'un [[octaèdre tronqué]].<br> L'étude d'un [[cristal]] parfait - d'un composé existant ou théorique<ref>D'un point de vue formulaire. Par définition, un cristal parfait est infini dans les trois directions de l'espace, et ses composantes périodiquement identiques subissent donc les mêmes interactions.</ref> - présente l'avantage de pouvoir utiliser les conditions périodiques aux limites comme propriétés intrinsèques du système étudié, les symétries ([[groupe d'espace|groupes d'espaces]]) permettant de définir la boîte de simulation de manière non équivoque. L'introduction de défauts nécessite par conséquent l'augmentation de la taille de simulation. == Propriétés conservées == Dans le cadre des conditions périodiques aux limites, le [[moment]] linéaire du système sera conservé, mais le moment angulaire ne pourra l'être en raison de l'absence de symétrie de rotation - a priori - dans un système soumis à ces conditions. Lorsque l'on effectue une simulation dans l'[[ensemble microcanonique]] (nombre de particules, volume et énergie constante, noté sous forme abrégée en ''NVE'') en appliquant les CPL, plutôt que des murs de réflections qui modifient légèrement l'échantillonnage de simulation en raison de la conservation du [[moment linéaire]] total et de la position du centre de masse; cet ensemble est parfois appelé {{guil|ensemble de dynamique moléculaire}}<ref name="Erpenbeck">Erpenbeck JJ, Wood WW. (1977). ''Statistical Mechanics, Part B: Time-dependent Processes'', Modern Theoretical Chemistry Vol 6. ed. Berne BJ. Plenum, New York, USA. Voir pp1-40.</ref> ou ensemble NVEPG<ref name="Shirts">Shirts RB, Burt SR, Johnson AM. (2006). Periodic boundary condition induced breakdown of the equipartition principle and other kinetic effects of finite sample size in classical hard-sphere molecular dynamics simulation. ''J Chem Phys'' 125(16):164102. PMID 17092058 </ref>, bien que le terme de dynamique moléculaire puisse être - et est - appliqué à des simulations effectuées dans d'autres ensembles thermodynamiques. Ces conservations de quantités additionnelles introduisent des artéfacts mineurs liés à la définition de la [[température]] dans la [[mécanique statistique]], à partir d'une distribution de vitesses basée sur une [[distribution de Boltzmann]], et sur les violations de l'équipartition pour des systèmes contenant des particules à [[masse]]s hétérogènes. Le plus simple de ces effets est qu'un système de ''N'' particules se comportera, dans l'ensemble NVE, comme un système de ''N-1'' particules. Ces artéfacts ont des conséquences quantifiables pour des petits systèmes d'essai contenant uniquement des particules parfaitement dures; elles n'ont pas été jusqu'à présent étudiées en profondeur pour des systèmes plus complexes, comme des simulations de biomolécules standard, mais étant donnée la taille de tels systèmes, on peut raisonnablement penser que ces effets seront fortement négligeables<ref name="Shirts" />. == Notes et références citées == <references /> == Autres références == * Schlick T. (2002). ''Molecular Modeling and Simulation: An Interdisciplinary Guide.'' Interdisciplinary Applied Mathematics series, vol. 21. Springer: New York, NY, USA. ISBN 0-387-95404-X. Voir esp. pp272-6. * Rapaport DC. (2004). ''The Art of Molecular Dynamics Simulation.'' 2nd ed. Cambridge University Press. ISBN 0521825687. Voir esp. pp15-20. {{Traduction/Référence|en|Periodic boundary conditions|150840279}} {{Portail|chimie|mathématiques|physique}} [[Catégorie:chimie numérique]] [[Catégorie:conditions aux limites]] [[en:Periodic boundary conditions]] [[ja:周期的境界条件]]