Grandeurs caractéristiques des polymères
440335
28900195
2008-04-22T20:21:27Z
90.34.87.114
===Les différentes masses molaires moyennes===
La synthèse des [[polymère | polymères]] aboutit le plus souvent à une [[distribution]] de chaînes de longueurs différentes, on ne peut parler de [[masse molaire]] mais bien de masses molaires moyennes. Elles s'expriment en g.mol<sup>-1</sup>.
Soit i le [[degré de polymérisation]]<br />
Soit M<sub>i</sub> la masse molaire et m<sub>i</sub> la masse d'une chaîne de degré de polymérisation i.<br />
Soit N<sub>i</sub>, le nombre de chaînes de masse molaire M<sub>i</sub>.<br />
On distingue
*La masse molaire moyenne en nombre :
:<math>\bar {M_n} = \frac {\sum_i N_i \times M_i} {\sum_i N_i}</math>
:On l'obtient généralement par [[osmométrie]], [[cryoscopie]] ou [[ebulliométrie]].
*La masse molaire moyenne en masse:
:<math>\bar {M_w} = \frac {\sum_i m_i \times M_i} {\sum_i m_i} =\frac {\sum_i N_i \times M_i^2} {\sum_i N_i \times M_i}</math>
:Elle est le plus souvent obtenue par diffusion de la lumière mais on peut également la mesurer par ultracentrifugation ou par [[spectrométrie de masse|spectroscopie de masse]] de type MALDI (acronyme anglais signifiant Matrix-Assisted Laser Desorption/Ionization) ou par diffusion des neutrons aux petits angles (en français, DNPA).
<math>\bar {M_n}</math> et <math>\bar {M_w}</math> peuvent également être déterminées par [[chromatographie d'exclusion stérique]] ([[chromatographie d'exclusion stérique|SEC]]) aussi appelée [[chromatographie sur gel perméable]] ([[chromatographie sur gel perméable|GPC]]).
*La masse molaire moyenne en Z :
:<math>\bar {M_z} = \frac {\sum_i N_i \times M_i^3} {\sum_i N_i \times M_i^2}</math>
: La masse molaire moyenne en Z est de moins en moins utilisée. Elle n'est plus mentionnée dans les articles récents. On la déterminait auparavant par ultracentrifugation.
*On parle également de [[viscosité des solutions polymères|masse molaire moyenne viscosimétrique]] <math> \bar{M_v}</math>. On notera cependant que <math> \bar{M_v} </math> n'est pas une valeur absolue car sa mesure dépend du [[solvant]] utilisé. Tout comme <math> \bar{M_z}</math>, cette grandeur n'est pas largement utilisée. Son usage peut cependant s'avérer pratique à titre de comparaisons entre plusieurs échantillons (dans le même solvant).
Considérant les définitions précédentes, il est évident que, pour la même distribution de macromolécules, la relation <math> \bar {M_z} > \bar {M_w} > \bar {M_n}</math> est toujours vérifiée.
===Les différents degrés moyens de polymérisation===
* Le degré moyen de polymérisation en nombre
:Il est égal au nombre moyen de motifs monomères dans les chaînes polymères.
:<math>\bar {DP_n} = \frac {\sum_i i \times N_i } { \sum_i N_i} </math>
:Si M<sub>0</sub> est la masse molaire d'un motif monomère, on a également :
:<math>\bar {DP_n}= \frac {\bar M_n } { M_0} </math>
* Le degré moyen de polymérisation en masse
:<math>\bar {DP_w} = \frac {\sum_i i \times N_i^2 } { \sum_i i \times N_i} </math>
===L'indice de polymolécularité ===
On définit également l'indice de polymolécularité I : il donne une première idée
de la distribution des masses molaires des différentes macromolécules au sein
du polymère. Pour un polymère parfait, où toutes les macromolécules auraient
même longueur (et donc même masse molaire), I serait égal à 1.
On calcule l'indice de polymolécularité I de la manière suivante :
<math> I = \frac{M_w}{M_n} </math>
Dans la littérature anglophone, l'indice de polymolécularité est parfois
noté par la lettre Q au lieu de I.
Le terme indice de polydispersité que l'on rencontre fréquemment est impropre et doit être remplacé par le terme indice de polymolécularité. L'indice de polydispersité représente la distribution de taille d'une population de particules, par exemple celle que l'on rencontre en polymérisation en émulsion.
==Méthodes de détermination graphique==
Du fait des progrès constants des [[ordinateur|ordinateurs]] au cours des dernières décennies, la détermination des masses molaires moyennes est de plus en plus souvent effectuée directement par des logiciels intégrés à l'appareillage utilisé.
Il existe cependant des méthodes de détermination graphique de ces grandeurs. Chaque méthode graphique est bien sûr spécifique à une technique de mesure. De manière non exhaustive, on peut citer :
* [[Graphique de Zimm]] (Zimm Plot) : permet de déterminer la masse molaire moyenne en poids <math>\bar {M_w}</math> à partir de résultats d'expériences de diffusion de la lumière ;
* Détermination graphique de la [[viscosité des solutions polymères|masse molaire moyenne viscosimétrique]] <math> \bar{M_v} </math> par le graphique d'Huggins (Huggins Plot) ou de Kraemer (Kraemer Plot);
Aujourd'hui, ces méthodes graphiques sont souvent prétextes à des exercices universitaires.
==Remarques sur les notations==
* Le degré moyen de polymérisation en nombre <math>\bar {DP_n}</math> est aussi noté <math>\bar {X_n}</math>.
* Le degré moyen de polymérisation en poids <math>\bar {DP_w}</math> est aussi noté <math>\bar {X_w}</math>.
* Dans certains documents francophones, la masse molaire moyenne en poids <math>\bar {M_w}</math> est parfois noté <math>\bar {M_n}</math>.
* Dans la littérature anglophone, l'indice de polymolécularité est parfois noté par la lettre Q ou l'acronyme PDI (pour PolyDispersity Index) au lieu de I.
* En ce qui concerne les noms des techniques de mesure de ces grandeurs caractéristiques, on emploie de manière générale plus facilement les termes anglais que leur traduction française. On parle par exemple de 'Small Angle Neutron Scattering' plutôt que de diffusion des neutrons aux petits angles.
{{portail chimie}}
[[catégorie:polymère]]