Macle (cristallographie)
74978
30432512
2008-06-08T17:10:00Z
86.74.8.104
/* Cristallographie des macles */
{{Voir homonymes|Macle}}
Une '''macle''' est une association orientée de deux ou plusieurs [[cristal|cristaux]] identiques, dits '''individus''', reliés par une opération de [[groupe ponctuel de symétrie]].
==Cristallographie des macles==
L'opération qui transforme l'orientation d'un individu d'une macle en celle d'un autre individu est dite '''opération de macle'''. Celle-ci est effectuée autour d'un élément géométrique du [[Réseau de Bravais|réseau]] de la macle, qui est dit '''élément de macle''' : les individus de la macle sont alors symétriques par rapport à l'élément de macle. Les macles sont ainsi classées en trois catégories :
* '''macle par réflexion''', lorsque l'élément de macle est un plan réticulaire (plan de macle)
* '''macle par rotation''', lorsque l'élément de macle est une rangée (axe de macle)
* '''macle par inversion''', l'élément de macle est le centre.
La surface d'accolement des individus peut être un plan ou une surface quelconque.
Les cristaux formant une macle ont en commun un [[Réseau de Bravais|réseau]] qui s'appelle '''réseau de la macle'''. Ce réseau est formé par les nœuds des réseaux des individus maclés qui sont superposés par l'opération de macle. Selon que ce réseau existe en une, deux ou trois dimensions, les macles sont dites ''monopériodiques'', ''dipériodiques'' et ''tripériodiques'' respectivement. La plupart des macles sont tripériodiques.
Le rapport entre le volume de la [[Maille (cristallographie)|maille primitive]] de la macle et celui de la [[Maille (cristallographie)|maille primitive]] de l'individu constitue l''''indice de la macle''' ''n'' et correspond à l'inverse de la fraction de nœuds superposés par l'opération de macle. Soit (''hkl'') le plan de macle et [''uvw''] la direction réticulaire (quasi)-perpendiculaire à (''hkl''). Ou encore, soit [''uvw''] l'axe de macle et (''hkl'') le plan réticulaire (quasi)-perpendiculaire à [''uvw'']. Pour une macle binaire (où l'opération de macle est d'ordre 2, c'est-à-dire une rotation de 180´ autour d'une direction réticulaire ou une réflexion par rapport à un plan réticulaire), l'indice de macle est calculé d'après la formule suivante :
<div align="center">
''n'' = ''X''/f, ''X'' = |''uh''+''vk''+''wl'' |
</div>
où f dépend du type de [[Réseau de Bravais|réseau]] et de la parité de ''X'', ''h'', ''k'', ''l'', ''u'', ''v'' et ''w'', comme dans le tableau suivant.
<div align="center">
{| border="1" cellspacing="2" cellpadding="2"
|-----
! Type de réseau
! conditions sur ''hkl''
! conditions sur ''uvw''
! conditions sur ''X''
! ''n''
|-----
| rowspan="2" align="center" | ''P'' || rowspan="2" | aucune
| rowspan="2" | aucune || X impair || ''n'' = ''X''
|-----
| X pair || ''n'' = ''X''/2
|-----
| rowspan="5" align="center" | ''C'' || ''h+k'' impair
| aucune || aucune || ''n'' = ''X''
|-----
| rowspan="4" | ''h+k'' pair
| rowspan="2" | ''u+v'' et ''w'' pas tout pair
| ''X'' impair || ''n'' = ''X''
|-----
| ''X'' pair || ''n'' = ''X''/2
|-----
| rowspan="2" | ''u+v'' et ''w'' tout pair
| ''X''/2 impair || ''n'' = ''X''/2
|-----
| ''X''/2 pair || ''n'' = ''X''/4
|-----
| rowspan="5" align="center" | ''B'' || ''h+l'' impair
| aucune || aucune || ''n'' = ''X''
|-----
| rowspan="4" | ''h+l'' pair
| rowspan="2" | ''u+w'' et ''v'' pas tout pair
| ''X'' impair || ''n'' = ''X''
|-----
| ''X'' pair || ''n'' = ''X''/2
|-----
| rowspan="2" | ''u+w'' et ''v'' pair || ''X''/2 impair
| ''n'' = ''X''/2
|-----
| ''X''/2 pair || ''n'' = ''X''/4
|-----
| rowspan="5" align="center" | ''A'' || ''k+l'' impair
| aucune || aucune || ''n'' = ''X''
|-----
| rowspan="4" | ''k+l'' pair
| rowspan="2" | ''v+w'' et ''u'' pas tout pair
| ''X'' impair || ''n'' = ''X''
|-----
| ''X'' pair || ''n'' = ''X''/2
|-----
| rowspan="2" | ''v+w'' et ''u'' pas tout pair
| ''X''/2 impair || ''n'' = ''X''/2
|-----
| ''X''/2 pair || ''n'' = ''X''/4
|-----
| rowspan="5" align="center" | ''I'' || ''h+k+l'' impair
| aucune || aucune || ''n'' = ''X''
|-----
| rowspan="4" | ''h+k+l'' pair
| rowspan="2" | ''u'', ''v'' et ''w'' pas tout impair
| ''X'' impair || ''n'' = ''X''
|-----
| ''X'' pair || ''n'' = ''X''/2
|-----
| rowspan="2" | ''u'', ''v'' et ''w'' tout impair
| ''X''/2 impairs || ''n'' = ''X''/2
|-----
| ''X''/2 pair || ''n'' = ''X''/4
|-----
| rowspan="5" align="center" | ''F'' || aucune
| ''u''+''v''+''w'' impair || aucune || ''n'' = ''X''
|-----
| rowspan="2" | ''h'', ''k'', ''l'' par tout impair
| rowspan="2" | ''u''+''v''+''w'' pair
| ''X'' impair || ''n'' = ''X''
|-----
| ''X'' pair || ''n'' = ''X''/2
|-----
| rowspan="2" | ''h'', ''k'', ''l'' tout impair
| rowspan="2" | u+v+w pair || ''X''/2 impair
| ''n'' = ''X''/2
|-----
| ''X''/2 pair || ''n'' = ''X''/4
|}
</div>
Dans les macles par réflexion, le plan de macle est perpendiculaire à une rangée du réseau de la macle. Dans les macles par rotation, l'axe de macle est perpendiculaire à un plan du réseau de la macle. Toutefois, cette perpendicularité peut être seulement approximative, la déviation de la perpendicularité exacte étant mesurée par un angle ω dit '''obliquité'''. Le concept d'obliquité fut introduit par [[Georges Friedel]] en 1920 comme mesure de la superposition des [[Réseau de Bravais|réseaux]] des individus formant une macle.
Soit [''u'' ' ''v'' ' ''w'' '] la direction exactement perpendiculaire au plane de macle (''hkl'' ), et sit (''h'' ' ''k'' ' ''l'' ') le plan exactement perpendiculaire à l'axe de macle [''uvw'' ]. [''u'' ' ''v'' ' ''w'' '] est parallèle au vecteur du [[réseau réciproque]] [''hkl'' ]* et (''h'' ' ''k'' ' ''l'' ') est parallèle au plan du réseau reciproque (''uvw'' )*. L'angle entre [''uvw'' ] et [''u'' ' ''v'' ' ''w'' '] or, qui est le même, entre (''hkl'' ) et (''h'' ' ''k'' ' ''l'' '), est l''''obliquité ω'''.
Le vecteur de l'espace direct [''uvw''] a norme L(''uvw'' ); le vecteur du [[réseau réciproque]] [''hkl'' ]* a norme L*(''hkl'' ). L'obliquité ω est l'angle entre les deux vecteurs [''uvw'' ] and [''hkl'' ]*; le produit scalaire de ces deux vecteurs est :
:::L(''uvw'' ) L*(''hkl'' ) cosω = <''uvw''|''hkl'' > = ''uh'' + ''vk'' + ''wl''
où <| signifie matrice ligne 1x3 et |> signifie matrice colonne 3x1. Par conséquent:
:::cosω = (''uh'' + ''vk'' + ''wl'' )/L(''uvw'' )L*(''hkl'' )
ou L(''uvw'' ) = <''uvw''|'''G'''|''uvw'' ><sup>1/2</sup> et L*(''hkl'' ) = <''hkl''|'''G'''*|''hkl'' ><sup>1/2</sup>, '''G''' et '''G'''* étant les tenseurs métriques dans l'espace direct et réciproque respectivement.
Sur la base des valeurs de l'indice de macle et de l'obliquité, les macles sont classées en quatre catégories principales.
<div align="center">
{| border="1" cellpadding="5" cellspacing="5"
|+ '''Classification des macles selon les valeurs de l'indice et de l'obliquité'''
|-
| || align="center" | '''''n'' = 1''' || align="center" | '''''n''' > 1
|-
| align="center" | '''ω = 0''' || align="center" | macle par mériédrie || align="center" | macle par mériédrie réticulaire
|-
| align="center" | '''ω > 0''' || align="center" | macle par pseudo-mériédrie || align="center" | macle par pseudo-mériédrie réticulaire
|}
</div>
==Classification des macles==
Les macles sont classées selon plusieurs critères.
===Classification d'après l'origine===
Selon leur origine, les macles sont classées en trois catégories :
* '''macles de croissance''', qui se forment pendant la croissance cristalline, soit dans les premières étapes, soit par accolement tardif de cristaux ayant déjà atteinte une taille considérable
* '''macles de transformation''', qui se forment suite à une [[Polymorphisme (chimie)|transition de phase]] dans laquelle la symétrie du cristal baisse et dans sa [[structure cristalline|structure]] des domaines à différente orientation vont de se former
* '''macles mécaniques''', qui se forment suite à une action mécanique, notamment une pression orientée le long d'une direction.
===Classification morphologique===
Les individus d'une macle peuvent être séparés par une surface plane ou irrégulière ou avoir un volume en commun. Les deux cas correspondent aux '''macles par contact''' et aux '''macles par pénétration''' respectivement.
Selon la morphologie de l'édifice cristallin, les macles sont classées en :
*'''macles simples''', lorsque à chaque orientation correspond un seul individu
*'''macles répétées''', lorsque à chaque orientation correspondent plusieurs individus; les macles répétées sont à leur tour classées en :
**'''macles polysynthétiques''', lorsque les individus sont côte à côte et donnent à la macle un aspect strié (par exemple la macle de l'albite dans les [[plagioclase]]s)
**'''macles cycliques''', lorsque les individus sont forment un édifice à peu près circulaire (par exemple la macle du [[chrysobéryl]]).
==Exemples==
Parmi les macles les plus connues, on peut citer :
*les macles de Carlsbad, Baveno et Manebach dans les [[feldspath]]s
*les macles de l'albite et du péricline dans les [[feldspath]]s
*les macles du Dauphiné, du Brésil et de la Gardette (dite aussi macle du Japon) dans le [[Quartz (minéral)|quartz]]
*les macles à croix dans la [[staurotide]]
*la macle à fer de lance dans le [[gypse]]
*la macle à croix de fer dans la [[pyrite]].
==Bibliographie==
* [[Georges Friedel]] ''Étude sur les groupements cristallins''. Extrait du Bulletin de la Société de l'Industrie minérale, Quatrième série, Tomes III e IV. Saint-Étienne, Société de l’Imprimerie Théolier J. Thomas et C. (1904) 485 pp.
* Georges Friedel ''Contribution à l'étude géométrique des macles''. Bull Soc fr Minér., 43 (1920) 246-295.
* Georges Friedel ''Leçons de Cristallographie'', Berger-Levrault, Nancy, Paris, Strasbourg (1926) XIX+602 pp.
* Georges Friedel ''Sur un nouveau type de macles''. Bulletin de la Société française de Minéralogie, 56 (1933) 262-274.
* J.D.H. Donnay ''Width of Albite-Twinning Lamellae''. Am. Mineral., 25 (1940) 578-586.
[[Catégorie:Cristallographie]]
[[Catégorie:Minéralogie]]
[[ca:Macla]]
[[de:Kristallzwilling]]
[[en:Crystal twinning]]
[[eo:Kristala ĝemelo]]
[[es:Macla]]
[[fi:Kaksoskide]]
[[gl:Macla]]
[[hr:Sraslaci]]
[[nds:Kristalltweeschen]]
[[nl:Tweeling (materiaalkunde)]]
[[no:Tvilling (mineraler)]]
[[pt:Macla]]
[[ro:Cristale gemene]]
[[ru:Двойники]]
[[uk:Закон двійникування]]