Microsonde de Castaing 33382 30695486 2008-06-16T13:03:22Z EdC 28900 erreur [[Image:Microsonde castaing SX100.JPG|thumb|right|200px|Microsonde de Castaing (SX100 de CAMECA). Les spectromètres sont de type [[analyse dispersive en longueur d'onde|WDS]] ]] La '''microsonde de Castaing''' (en anglais ''electron probe microanalyser'', EPMA) est une méthode d'analyse élémentaire inventée en [[1951]] par [[Raimond Castaing]]. Elle consiste à bombarder un échantillon avec des [[électron]]s, et à analyser le spectre des rayons X émis par l'échantillon sous cette sollicitation. == Généralités == En effet, certains électrons cèdent une partie de leur énergie cinétique à l'atome, provoquant l'éjection d'un électron de l'[[atome]] ; l'atome est dit « excité ». Si l'électron éjecté est proche du cœur, un électron périphérique va descendre (l'atome se désexcite), et ce faisant, il va émettre un photon. Du fait de l'énergie de transition, ce photon va appartenir au domaine X. Il existe des microsondes seules (qui ne servent que pour l'analyse élémentaire), mais souvent, les microsondes sont couplées à un [[microscopie électronique à balayage|microscope électronique à balayage]]. L'analyse du spectre X peut se faire * par [[analyse dispersive en longueur d'onde|dispersion de longueur d'onde]] (ou WDS pour ''wavelength dispersive spectroscopy''), c'est-à-dire que les photons X sont séparés par diffraction sur un cristal, * ou bien par [[analyse dispersive en énergie|dispersion de l'énergie]] (ou EDS pour ''energy dispersive spectroscopy''), le détecteur est alors un semi-conducteur qui produit des pics de tension proportionnels à l'énergie du photon. L'énergie ''h''.ν du photon X, généré par la désexcitation de l'atome suite au départ d'un électron secondaire, est caractéristique des transitions électroniques de l'atome, et donc de sa nature chimique. On parle de « raie d'émission caractéristique ». Pour distinguer les diverses raies émises par un atome, on utilise la [[notation de Siegbahn]] ; dans cette notation, la raie Kα<sub>1</sub> désigne une transition du niveau L3 vers le niveau K. Les éléments légers (faible numéro atomique ''Z'') émettent des photons X de faible énergie, ces photons sont facilement absorbés par les autres atomes, et notamment par la fenêtre en [[béryllium]] qui protège le détecteur. De plus, les éléments légers ont tendance à se désexciter en émettant un électron Auger plutôt qu'un photon X. Ces deux faits font que les intensités des raies émises par les éléments légers sont de faible intensité, leur détection et leur quantification sont de fait très difficiles. == Instrumentation == [[Image:Castaing microprobe sketch2.PNG|thumb|right|200px|Schéma de la Microsonde de Castaing]] Une sonde électronique est formée en réduisant une source d'électrons par deux ou trois lentilles magnétiques. Les électrons frappent l'échantillon à analyser avec une énergie d'impact qui peut varier de quelques centaines d'eV jusqu’à 50 keV. Les photons X émis par l'échantillon sous l'impact des électrons sont analysés par les spectromètres à rayons X qui peuvent être de type [[analyse dispersive en longueur d'onde|WDS (dispersion de longueur d'onde)]] ou [[analyse dispersive en énergie|EDS (dispersion de l'énergie)]]. L'échantillon peut être observé grâce à un objectif de type ''Cassegrain'' incorporé à la dernière lentille. == Étalonnage et effets de matrice == On peut procéder à une analyse semi-quantitative en étalonnant le détecteur. On utilise un échantillon témoin dans lequel la concentration de l'élément à analyser est ''C<sub>tem</sub>'' ; on obtient une intensité ''I<sub>tem</sub>''. Dans l'échantillon auquel on s'intéresse, la concentration est ''C<sub>ech</sub>'', et l'intensité récupérée est ''I<sub>ech</sub>''. Alors : :''C<sub>ech</sub>/C<sub>tem</sub> = k.I<sub>ech</sub>/I<sub>tem</sub>'' où ''k'' est un coefficient dépendant de l'environnement de l'élément dans l'échantillon, dit « '''correction ZAF''' ». Le coefficient ''k'' tient compte * de l'interaction des électrons avec la matrice (effet du numéro atomique ''Z''), * de l'absorption des photons par la matrice (correction A, effet du coefficient d'absorption linéaire μ), * et de la fluorescence (correction F : les photons X émis sont absorbés par d'autres atomes, ceux-ci sont sollicités par les photons X et les électrons, cela provoque une surexcitation). On désigne aussi ces effets sous le nom d'« '''[[effets de matrice]]''' » ; ''k'' dépend de la raie, de la composition de l'échantillon et de sa densité. Dans le cas du chrome dans l'acier, on a ''k''=0,85. Le système utilise généralement la raie de transition vers le niveau electronique K, car ce sont les raies qui se séparent le mieux. Le mode d'excitation des atomes permet de dresser une cartographie chimique de l'échantillon (faisceau d'électrons orientable d'un microscope électronique à balayage ou déplacement de l'échantillon sous un faisceau fixe). La première limitation de cette méthode est l'impossibilité de détecter ou de quantifier les éléments légers. Ensuite, si la surface des échantillons n'est pas parfaitement plane, cela introduit des contrastes topographiques, les reliefs empêchant les rayons X d'arriver jusqu'au détecteur &nbsp; ces reliefs peuvent même être le siège de fluorescence induite par les rayons X. Enfin, le faisceau d'électron excite quelques μm³ de matière ; on analyse donc sur une profondeur quelques μm, avec une résolution latérale d'environs 3&nbsp;μm. Les cartographies chimique ont donc une résolution spatiale très inférieure aux images en électrons secondaires. == Analyse quantitative == La méthode de correction ZAF n'est pas suffisamment précise pour que l'analyse correspondante soit qualifiée de "quantitative". Il est possible d'utiliser une autre méthode de correction en utilisant des "standards" calibrés. D'après Castaing, la relation entre l'intensité d'un pic et la concentration massique de l'élément associé est linéaire: Intensité = A * Wt% + B On peut trouver avec précision les coefficients A et B en mesurant l'intensité des raies associées à un échantillon de concentration connue (le coefficient B est obtenu en associant l'intensité du bruit de fond de part et d'autre du pic à la concentration "0%") À partir de ces coefficients uniquement, on peut retrouver la concentration correspondant à une intensité quelconque de pic. Cette mesure est d'autant plus précise que l'acquisition du standard se fait dans les mêmes conditions que l'échantillon à mesurer (tension d'accélération, courant de sonde, etc.) Cette méthode est présentée comme réellement "quantitative" par les microsondes de marque Jeol. == Applications == La microsonde de Castaing est l'un des appareils fondamentaux pour les recherches tribologiques ; voir à ce sujet le [[b:Tribologie|wikilivre de tribologie]] et plus spécialement le chapitre consacré à la [[b:Tribologie - Genèse des frottements|genèse des frottements]]. == Voir aussi == === Articles connexes === * [[Interaction rayonnement-matière]] * [[Microscopie électronique à balayage]] * [[Microscopie électronique en transmission]] * [[Spectrométrie de fluorescence X]] * [[Spectrométrie de masse à ionisation secondaire|SIMS]] * [[Raimond Castaing]] === Liens externes === * [http://www.cmeba.univ-rennes1.fr/niveau2/PagePrincipeMEB.htm Microscopie électronique à balayage et microanalyse] {{portail physique}} [[Catégorie:Spectroscopie]] [[Catégorie:Science des matériaux]] [[Catégorie:Physique quantique]] [[Catégorie:Instrument scientifique]] [[de:Elektronenstrahlmikroanalyse]] [[en:Electron microprobe]] [[ja:電子線マイクロアナライザ]]