Potentiel hydrogène
17726
31710450
2008-07-19T17:15:11Z
90.36.3.115
/* Historique */ corr. ortho : "Sorensen défini --> Sorensen définit"
{{Voir homonymes|PH}}
{| align=right style="border: 1px solid #CCCCCC; padding: 1px; margin: 0 0 0.5em 3em; background: #F9F9F9;"
| style="border: 1px solid #CCCCCC; background: #FFFFFF; padding: 1px;" colspan="2" | '''Le pH en phase aqueuse au quotidien :'''
|-
! Substance || pH approximatif
|-
| [[Acide chlorhydrique|Acide chlorhydrique molaire]] ||bgcolor=#990000 style="color:#FFFFFF;"|<center>0</center>
|-
| [[Drainage minier acide]] (DMA) ||bgcolor=#990000 style="color:#FFFFFF;"|<center><1,0</center>
|-
| [[Batterie d'accumulateurs|Batterie]] acide ||bgcolor=#CC0000 style="color:#FFFFFF;"|<center><1,0</center>
|-
| [[Acide gastrique]] ||bgcolor=#FF0000 style="color:#FFFFFF;"|<center>2,0</center>
|-
| Jus de [[citron]] ||bgcolor=#FF3300 style="color:#FFFFFF;"|<center>2,4</center>
|-
| [[Cola]]<ref>[http://www.ac-orleans-tours.fr/physique/phyel/cinq/pH/pH.htm {{citation|L'acidité, le pH}}] sur le site de l'[http://www.ac-orleans-tours.fr académie d'Orléans-Tours]</ref> ||bgcolor=#FF3300 style="color:#FFFFFF;"|<center>2,5</center>
|-
| [[Vinaigre]] ||bgcolor=#FF6600|<center>2,9</center>
|-
| Jus d'[[Orange (fruit)|orange]] ou de [[pomme]] ||bgcolor=#FF9900|<center>3,5</center>
|-
| [[Bière]] ||bgcolor=#FFCC00|<center>4,5</center>
|-
| [[Café]] ||bgcolor=#FFFF00|<center>5,0</center>
|-
| [[Thé]] ||bgcolor=#CCFF00|<center>5,5</center>
|-
| [[Pluie acide]] ||bgcolor=#CCFF00|<center>< 5,6</center>
|-
| [[Lait]] ||bgcolor=#66CC00|<center>6,5</center>
|-
| style="border: 1px solid #CCCCCC; background: #FFFFFF;" | [[Eau]] pure ||bgcolor=#33CC00|<center>7,0</center>
|-
| [[Salive]] humaine ||bgcolor=#33CC00|<center>6,5 – 7,4</center>
|-
| [[Sang]] ||bgcolor=#00CC33|<center>7,34 – 7,45</center>
|-
| [[Eau de mer]] ||bgcolor=#009966 style="color:#FFFFFF;"|<center>8,0</center>
|-
| [[Savon]] ||bgcolor=#006699 style="color:#FFFFFF;"|<center>9,0 à 10,0</center>
|-
| [[Ammoniaque]] ||bgcolor=0033CC style="color:#FFFFFF;"|<center>11,5</center>
|-
| [[Chaux (chimie)|Chaux]] ||bgcolor=#0000CC style="color:#FFFFFF;"|<center>12,5</center>
|-
| [[Soude|Soude molaire]] ||bgcolor=#000099 style="color:#FFFFFF;"|<center>14,0</center>
|}
Le '''potentiel hydrogène''' (ou '''pH''') mesure l'[[activité chimique]] de [[proton]]s (H<sup>+</sup>) solvatés. Notamment, en solution aqueuse, ces [[proton]]s sont présents sous la forme de l'ion [[oxonium]] (également, et improprement, appelé [[hydronium]]). ''Plus couramment, on considère que le pH mesure l'acidité ou la basicité d'une solution''.
==Historique==
En [[1909]], le chimiste danois [[S.P.L. Sørensen|Søren Peder Lauritz Sørensen]], qui travaille alors sur les effets des concentrations de quelques ions sur des protéines, remarque l'importance des ions hydrogènes et décide d'introduire le concept de pH<ref name="chemheritage">{{en}} {{lien web|url=http://www.chemheritage.org/classroom/chemach/electrochem/sorensen.html|titre=Søren Sørenson|consulté le=2007-01-09|série=Chemical Achievers - The Human Face of the Chemical Science|éditeur=Chemical Heritage Foundation}}</ref>. Dans l'article où est évoqué le pH pour la première fois, Sørensen utilise la notation p<sub>H</sub><ref name=Sorensen>{{de}} Søren Peder Lauritz Sørensen, « Enzymstudien. II: Mitteilung. Über die Messung und die Bedeutung der Wasserstoffionenkoncentration bei enzymatischen Prozessen », dans ''Biochemische Zeitschrift'', volume 21, 1909, p.131-304</ref>. Dans cette publication, il donne au sigle la signification en latin Pondus Hydrogenii ("potentiel de l'hydrogène") ; mais dans les comptes-rendus de travaux qu'il rédige au sein du Carlsberg Laboratory de l'Université de Copenhague la même année, p est l'abréviation du mot allemand ''potenz'' (potentiel) et H est simplement le symbole de l'[[hydrogène]]<ref name="CR">{{en}} ''Comptes rendus des travaux du laboratoire Carlsberg'', vol. 8, p. 1, Copenhague, 1909{{ISSN|0075-7497}}</ref>. Sørensen définit alors l'acidité d'une solution comme étant le cologarithme décimal de la [[Concentration molaire|concentration]] (exprimée en [[Mole (unité)|moles]] par [[litre]]) en [[ion]]s hydrogène :
<math>p_H=-\log_{10} \left[ H^+ \right] \,</math>
Le principe d'une telle échelle de pH est accepté par la communauté scientifique notamment grâce au chimiste allemand [[Leonor Michaelis]] qui publie en 1914 un livre sur la concentration des ions hydrogène<ref>[http://www.geocities.com/bioelectrochemistry/sorensen.htm Søren Peter Lauritz Sørensen] sur le site [http://www.geocities.com/bioelectrochemistry]</ref>.
En 1924, suite à l'introduction du concept d'activité, Sørensen publie un nouvel article précisant que le pH dépend plutôt de l'activité que de la concentration en H<sup>+</sup><ref name="pH facts">{{en}} {{Lien web
|url=http://chem.lapeer.org/Chem2Docs/pHFacts.html
|titre=The facts about pH
|auteur=Patrick Gormley
|année=2003
}}.</ref> Entre temps, la notation '''pH''' a été adopté, sans que l'on sache vraiment qui en a été l'initiateur :
<math> pH = -\log_{10} \; a \left( {H^+} \right)</math>
Par la suite, la lettre ''p'' est reprise dans plusieurs notations usuelles en chimie, pour désigner le cologarithme : pK, pOH, pCl... La signification du sigle pH a été adaptée par chaque langue. Ainsi, en français, on entendra par pH "potentiel hydrogène"<ref>[http://atilf.atilf.fr/dendien/scripts/tlfiv5/advanced.exe?8;s=869030055; « pH »] dans le ''[[Trésor de la langue française informatisé]]''</ref>{{,}}<ref>{{Lien web
|url=http://www.futura-sciences.com/fr/comprendre/glossaire/definition/t/matiere-1/d/ph_222/
|titre=pH
|site=[http://www.futura-sciences.com Futura-Sciences]
|consulté le=10/05/2006
}}</ref>, on acceptera "potential hydrogen"<ref>{{Lien web
|url=http://www.morrisonlabs.com/ph_study_guide.htm
|titre=pH quiz Study Guide
|site=http://www.morrisonlabs.com/
}}</ref> en anglais, "potenz hydrogene" en allemand ou encore "potencial hidrógeno" en espagnol.
La notion d'acidité qui était à la base uniquement qualitative, s'est vue dotée d'un caractère quantitatif avec les apports de la [[théorie de Bronsted-Lowry]] et du pH. Alors qu'au début du XX{{e}} siècle on utilisait uniquement des [[indicateur de pH|indicateurs de pH]] pour justifier du caractère acide ou basique d'une solution, les évolutions en [[électrochimie]] ont permis à l'[[IUPAC]] de se tourner dans les années 1990 vers une nouvelle définition du pH, permettant des [[#Mesures du pH|mesures]] plus précises<ref name="chemheritage"/>.
==Définitions==
===Définition classique===
Depuis le milieu du XX{{e}} siècle, l'[[IUPAC]] reconnaît officiellement la définition de Sorensen du pH<ref name="sorensen 79">« Manual of Symbols and Terminology for Physicochemical Quantities and Units », 2{{e}} rév., dans ''Pure Appl. Chem.'' n°51, p. 1, 1979</ref>. Elle est utilisée dans les programmes scolaires (études supérieures) et les dictionnaires :
:<math>pH=-\log \,\, a_H</math>
où a<sub>H</sub> (on utilise aussi la notation a(H<sup>+</sup>) ou encore (H<sup>+</sup>)) est l'activité des ions hydrogène H<sup>+</sup>, sans unité. Le pH est lui-même une grandeur sans unité.
Cette définition formelle ne permet pas des mesures directes de pH, ni même des calculs. Le fait que le pH dépende de l'activité des ions hydrogènes induit que le pH dépend de plusieurs autres facteurs, tels que l'influence du solvant. Toutefois, il est possible d'obtenir des [[#Calculs de pH|valeurs approchées de pH]] par le calcul à l'aide de définitions plus ou moins exactes de l'activité.
===Loi de Nernst===
L'[[IUPAC]] donne aujourd'hui une définition du pH à partir d'une méthode électrochimique expérimentale. Elle consiste à utiliser la [[Équation de Nernst|relation de Nernst]] dans la cellule électrochimique suivante :
:''Electrode de référence | Solution de KCl concentré | Solution X | H<sub>2</sub> | Pt (électrode à hydrogène)''
A l'aide de mesures de la fem de la cellule avec une solution X et une solution S de référence, on obtient :
:<math>\text{pH(X)} = \text{pH(S)} + \frac{(E_{\text{S}} - E_{\text{X}})F}{RT \ln 10}</math>
avec
:pH(X) : pH de la solution inconnue
:pH(S) : pH tabulé de la solution de référence S
:E(X) : fem de la cellule avec la solution inconnue X
:E(S) : fem de la cellule avec la solution de référence S à la place de la solution X
:F = 96485 [[Coulomb (unité)|C]]·[[Mole (unité)|mol]]<sup>-1</sup> : [[Constante de Faraday]]
:R = 8,314472 [[Joule|J]]·[[Mole (unité)|mol]]<sup>-1</sup> K<sup>-1</sup> : [[Constante universelle des gaz parfaits]]
:T : [[température]] absolue, en [[K]]elvin
<br>
{{boîte déroulante début|titre=Démonstration}}
L'électrode de travail est en fait une électrode à hydrogène (voir [[#Mesure du pH]]). On considère le couple H<sup>+</sup>/H<sub>2</sub>.<br>
Le potentiel électrochimique de l'électrode de travail est donné par la [[Équation de Nernst|relation de Nernst]] :<br>
<math>E_W=E^0_{H^+/H_2}+\frac{RT}{F} \ln \frac{a(H^+)}{a(H_2)}</math><br>
Sachant que le potentiel standard du couple H<sup>+</sup>/H<sub>2</sub> est nul par convention (référence), on obtient :<br>
<math>E_W=\frac{RT}{F} \, \ln 10 \, \log \, a(H^+) + \frac{RT}{F} \ln \frac{1}{a(H_2)} </math><br>
et donc <math>E_W=-\frac{RT}{F} \, \ln 10 \, pH + \frac{RT}{F} \ln \frac{1}{a(H_2)}</math><br>
La fem de la cellule électrochimique est :<br>
<math>E=E_W-E_{ref}</math><br>
Distinguons maintenant deux fem, E<sub>X</sub> pour une solution inconnue, et E<sub>S</sub> pour une solution connue S. En les soustrayant, on a :<br>
<math>E_S-E_X=E_{WS}-E_{ref}- \left( E_{WX} - E_{ref} \right)=-\frac{RT}{F} \, \ln 10 \, pH(S) + \frac{RT}{F} \ln \frac{1}{a(H_2)} - \left( -\frac{RT}{F} \, \ln 10 \, pH(X) + \frac{RT}{F} \ln \frac{1}{a(H_2)}\right)</math><br>
d'où <math>E_S-E_X=-\frac{RT}{F} \, \ln 10 \, pH(S) + \frac{RT}{F} \, \ln 10 \, pH(X)</math><br>
et enfin <math>\text{pH(X)} = \text{pH(S)} + \frac{(E_{\text{S}} - E_{\text{X}})F}{RT \ln 10}</math>
{{boîte déroulante fin}}
Cette définition du pH a été standardisée par la norme ISO 31-8 en 1992<ref>{{en}} [[Organisation internationale de normalisation]], ''ISO Standards Handbook: Quantities and units'',ISO, Genève, 1993, {{ISBN|92-67-10185-4}}</ref>.
===En solution aqueuse===
====Définitions approximatives====
Les manipulations liées au pH en chimie étant le plus souvent réalisées en milieu aqueux, on peut déterminer plusieurs définitions approchées du pH en solution aqueuse. En utilisant deux définitions différentes de l'activité chimique, on peut écrire les deux relations ci-dessous. Elle sont valables dans le domaine limité des solutions aqueuses de concentrations en ions inférieures à 0,1 mol.L<sup>-1</sup> et n'étant ni trop acide, ni trop basique, c'est-à-dire pour des pH entre 2 et 12 environ<ref name="green book">{{en}} Ian Mills, Tomislav Cvitas, Klaus Homann et al., ''Quantities, Units and Symbols in Physical Chemistry'' ("Green Book"), Blackwell Science (pour l'[[IUPAC]]), 1993, 2{{e}} éd. (1{{er}} éd. 1988), p.62, {{ISBN|0-632-03583-8}}, {{lire en ligne|lien=http://www.iupac.org/publications/books/gbook/green_book_2ed.pdf Green Book de l'IUPAC}}</ref>.
:<math>pH=-\log_{10} \left( \gamma _H \frac{[H^+]}{C^0} \right)</math>
avec
:γ<sub>H</sub> est le coefficient d'activité des ions H<sup>+</sup>, sans unité
:[H<sup>+</sup>] est la concentration molaire en ions H, en mol.L<sup>-1</sup>
:C<sup>0</sup> = 1 mol.L<sup>-1</sup> est la concentration standard
et
:<math>pH=-\log_{10} \left( \gamma _H \frac{m_H}{m^0} \right)</math>
avec
:γ<sub>H</sub> est le coefficient d'activité des ions H<sup>+</sup>, sans unité
:m<sub>H</sub> est la molalité des ions H, en mol.kg<sup>-1</sup>
:m<sup>0</sup> = 1 mol.kg<sup>-1</sup> est la molalité standard
Pour des concentrations encore plus faibles en ions en solution, on peut assimiler l'activité des ions H<sup>+</sup> à leur concentration (le coefficient d'activité tend vers 1). On peut écrire :
:<math>pH=-\log_{10} \, [H^+] </math>
Par abus d'écriture, l'écriture n'est pas homogène, La concentration standard c<sup>0</sup> étant souvent omise pour simplifier la notation. Cette relation est la plus connue et est la plus utilisée dans l'enseignement secondaire.
====Hydratation des ions H<sup>+</sup>====
{{détails|Ion hydronium}}
==Acides et bases==
Bronsted et Lowry ont donné une définition simple des concepts d'[[acide]] et de [[base (chimie)|base]] comme étant respectivement un donneur et un accepteur de [[proton]]. D'autres conceptions de l'acidité sont utilisées dans les milieux non protiques (milieux où l'espèce échangeable n'est pas le proton), telle la théorie de Lewis :
{| class="wikitable" align="center" border="1"
|-----
| Théorie || Acide || Base || Domaine d'application
|-----
| Arrhenius || donneur de H<sup>+</sup>
| donneur de OH<sup>-</sup> || eau
|-----
| Bronsted || donneur de H<sup>+</sup>
| accepteur de H<sup>+</sup> || solvant protique
|-----
| Lewis || accepteur paire e<sup>-</sup> || donneur de paire e<sup>-</sup>
| cas général
|}
Exemples :
*NaOH est une base d'Arrhenius, Bronsted et Lewis ;
*NH<sub>3</sub> est une base de Bronsted et Lewis, mais pas d'Arrhenius ;
*BF<sub>3</sub> est un acide de Lewis, mais ni d'Arrhenius, ni de Bronsted.
== Autoprotolyse ==
Le pH varie dans l'intervalle défini grâce à la constante d'auto-protolyse du solvant.
En solution aqueuse, à [[Conditions normales de température et de pression|température et pression standard]] (<small>TPN</small>), un pH de 7,0 indique la neutralité car l'eau, [[amphotère]], se dissocie naturellement en ions H<sup>+</sup> et OH<sup>-</sup> aux concentrations de 1,0 × 10<sup>-7</sup>mol/L. Cette dissociation est appelée [[autoprotolyse]] de l'eau :
* l'eau est un acide : H<sub>2</sub>O (l) = H<sup>+</sup> (aq) + OH<sup>-</sup> (aq)
* l'eau est une base : H<sub>2</sub>O (l) + H<sup>+</sup> (aq) = H<sub>3</sub>O<sup>+</sup> (aq)
* d'où la réaction : 2 H<sub>2</sub>O (l) = H<sub>3</sub>O<sup>+</sup> (aq) + OH<sup>-</sup> (aq)
Dans les conditions normales de température et de pression (<small>TPN</small>), le produit ionique de l'eau ([H<sup>+</sup>][OH<sup>-</sup>]) vaut 1,0116 × 10<sup>-14</sup>, d'où pK<sub>e</sub> = 13,995. On peut également définir le pOH (-log a<sub>OH</sub>-), de sorte que pH + pOH = pK<sub>e</sub>.
Le pH doit être redéfini – à partir de l'[[équation de Nernst]] – en cas de changement de conditions de température, de pression ou de solvant.
==Influence de la pression et de la température==
Le produit ionique de l'eau ([H<sup>+</sup>][OH<sup>-</sup>]) varie avec la pression et la température : sous 1013 hPa et à 298 K (<small>TPN</small>), le produit ionique vaut 1,0116 × 10<sup>-14</sup>, d'où pK<sub>e</sub> = 13,995 ; sous 10<sup>10</sup> Pa et à 1073 K, pK<sub>e</sub> n'est que de 7,68 : le pH d'une eau neutre est alors de 3,84 ! Sous une atmosphère de 1013 hPa (pression de vapeur d'eau saturante), on a :
*à 0°C : pK<sub>e</sub> = 14,938, d'où le pH de la neutralité = 7,4690 ;
*à 25 °C : pK<sub>e</sub> = 13,995, d'où le pH de la neutralité = 6,9975 ;
*à 100 °C : pK<sub>e</sub> = 12,265, d'où le pH de la neutralité = 6,1325.
Le produit ionique de l'eau varie selon l'équation suivante (Marshall et Franck, 1981) :
<center>log K<sub>e</sub><sup>*</sup> = -4,098 - 3245,2/T + 2,2362 × 10<sup>5</sup>/T<sup>2</sup> - 3,984 × 10<sup>7</sup>/T<sup>3</sup> + (13,957+1262,3/T + 8,5641 × 10<sup>5</sup>/T<sup>2</sup>) log d<sub>e</sub><sup>*</sup></center>
dans laquelle K<sub>e</sub><sup>*</sup> = K<sub>e</sub>/(mol.kg<sup>-1</sup>) et d<sub>e</sub><sup>*</sup>=d<sub>e</sub>/(g.cm<sup>-3</sup>) (pression de vapeur)
==Influence du solvant==
Dans d'autres solvants que l'eau, le pH n'est pas fonction de la dissociation de l'eau. Par exemple, le pH de neutralité de l'[[acétonitrile]] est de 27 (TPN) et non de 7,0.
Le pH est défini en solution non aqueuse par rapport à la concentration en protons solvatés et
non pas par rapport à la concentration en protons dissociés. En effet, dans certains solvants peu solvatants, le pH d'un acide fort et concentré n'est pas nécessairement faible. D'autre part, selon les propriétés du solvant, l'échelle de pH se trouve décalée par rapport à l'eau. Ainsi, dans l'eau l'acide sulfurique est un acide fort, tandis que dans l'[[éthanol]], c'est un acide faible. Travailler en milieu non aqueux rend le calcul du pH très compliqué.
==Acidité et alcalinité==
Un pH moins élevé que celui de la neutralité (par exemple 5 pour une solution aqueuse) indique une augmentation de l'[[acide|acidité]], et un pH plus élevé (par exemple 9 pour une solution aqueuse) indique une augmentation de l'alcalinité, c'est-à-dire de la [[base (chimie)|basicité]].
Un acide diminuera le pH d'une solution neutre ou basique ; une base augmentera le pH d'une solution acide ou neutre. Lorsque le pH d'une solution est peu sensible aux acides et aux bases, on dit qu'il s'agit d'une solution tampon (de pH) ; c'est le cas du sang, du lait ou de l'eau de mer, qui renferment des couples acido-basiques susceptibles d'amortir les fluctuations du pH, tels anhydride carbonique / hydrogénocarbonate / carbonate, acide phosphorique / hydrogénophosphate / phosphate, acide borique / borate.
Le pH d'une solution dite physiologique est de 7,41.
==Activité et concentration==
Pour des concentrations ioniques importantes, l'activité ne peut plus être assimilée à la concentration et on doit tenir compte de la force ionique, par exemple grâce à la théorie de Debye-Hückel. Le pH d'une solution décamolaire d'acide fort n'est donc pas égal à -1 comme le pH d'une solution décamolaire de base forte n'est pas égal à 15. L'agressivité de telles solutions et leur force ionique importante rend la mesure du pH délicate avec les habituelles électrodes de verre. On a donc recours à d'autres méthodes s'appuyant sur les indicateurs colorés (spectroscopie <small>UV</small> ou <small>RMN</small>). Pour des concentrations élevées de H<sup>+</sup>, on peut définir par analogie d'autres échelles de mesure d'acidité, telle l'[[échelle de Hammett]] H<sub>0</sub>.
==Mesure et Indicateurs==
[[Image:Papier pH.jpg|thumb|Rouleau de papier pH]]
L'activité d'un ion n'étant pas directement mesurable, on mesure la force électromotrice engendrée par une différence de pH, d'où l'utilisation d'une référence. Cette relation suit la [[Équation de Nernst|loi de Nernst]] :
<center>
<math> \rm{pH}\left( X \right) = \rm{pH}\left( S \right) + \ln \left(10\right).R.T.F^{-1} \left[ E(S)-E(X) \right]</math>
</center>
dans laquelle X est la solution dont le pH est inconnu et S, la solution de référence ; avec ln(10).R.T.F<sup>-1</sup> = 59,159 mV à 298 K (R est la constante des gaz parfaits, T, la température et F, la constante de Faraday).
Généralement, le pH est mesuré par électrochimie avec un [[pH-mètre]], appareil comportant une [[électrode]] combinée spéciale, dite électrode de verre, ou deux électrodes séparées. L'électrode de référence est en général au calomel saturé (<small>[[ECS]]</small>).
Il existe de nombreuses façons de mesurer l'acidité, on utilise fréquemment des [[indicateur de pH|indicateurs de pH]].
== Formules de calcul approché du pH pour des solutions aqueuses ==
===Cas d'un [[acide fort]]===
<math> \rm{pH} = -\rm{log}_{10}(C_a) \ \ \ ,</math> où <math>C_a</math> est la concentration en acide en mol/L
Cette relation n'est pas valable pour des concentrations inférieures à 10<sup>-7</sup> mol.L<sup>-1</sup> '''et ne devrait s'appliquer qu'avec des concentrations supérieures à 10<sup>-5</sup> mol.L<sup>-1</sup>.''' Son application à une solution diluée à 10<sup>-8</sup> donne en effet pH = 8, ce qui est absurde puisque la solution est acide et non alcaline (le pH d'une telle solution est de 6,98) ;
Dans le cas d'un monoacide, le pH se calcule en résolvant l'équation du troisième degré suivante : (H<sup>+</sup>)<sup>3</sup> + K<sub>a</sub> (H<sup>+</sup>)<sup>2</sup> - (H<sup>+</sup>) [K<sub>e</sub> + K<sub>a</sub> C] - K<sub>a</sub>.K<sub>e</sub> = 0 ;
Dans le cas limite <math>K_a \to +\infty</math>, l'équation précédente devient alors <math>(\textrm{H}^+)^2 - C_a \textrm{H}^+ - K_e = 0</math> d'où on déduit que <math>\textrm{H}^+ = \frac{C_a + \sqrt{C_a^2 + 4K_e}}{2}</math>. Lorsque <math>C_a \gg 2\sqrt{K_e} \approx 2\cdot 10^{-7}</math>, on a <math>\textrm{pH} = - \log_{10} \textrm{H}^+ \approx -\log_{10} C_a</math>.
===Cas d'une [[base forte]]===
<math> \rm{pH} = 14 + \log_{10}(C_b) ~</math> où <math>C_b</math> est la concentration en base en mol.L<sup>-1</sup>
Cette relation est soumise aux mêmes remarques que pour le cas d'un acide fort.
===Cas d'un [[acide faible]]===
<math> \rm{pH} = \frac{1}{2}(pK_a - \log_{10}(C_a)) ~</math> où le <math>pK_a</math> est celui de l'acide.
===Cas d'une [[base faible]]===
<math> \rm{pH} = 7 +\frac{1}{2}(pK_a+\log_{10}(C_b)) ~</math> où le <math>pK_a</math> est celui de l'acide créé
===Cas d'un mélange de solutions de pH connus===
<math> \rm{pH} = -\rm{log} \left(\frac{V_1.10^{-\rm{pH}_1}+V_2.10^{-\rm{pH}_2}}{V_1+V_2}\right)</math>
Cette formule est très approximative, notamment si les acides ou bases utilisés sont faibles, et devrait être utilisée avec la plus grande prudence.
== pH négatif ==
En conséquence des formules précédentes, lorsque la concentration est très importante, avec une molarité supérieure à 1; ''ce qui n'a rien d'impossible'', le pH devient négatif.
Dans des solutions assez peu concentrées (on dit "[[solution aqueuse|aqueuses]]"), l'acidité est mesurée par la concentration en ions [[hydronium]] ou [H<sub>3</sub>O<sup>+</sup>], car les ions H<sup>+</sup> s'associent avec [H<sub>2</sub>O], ce qui pourrait limiter le pH à 0 (molarité égale à 1 : toutes les molécules d'eau ont reçu un ion H<sup>+</sup>), mais pour des solutions très concentrées (> 1 mole/l) la concentration en ion [H<sub>3</sub>O<sup>+</sup>] ne peut plus être utilisée : rien n'empèche l'existence d'ion H<sup>+</sup> en solution dans l'eau à des concentrations supérieures.
Par exemple, les laboratoires peuvent se procurer un acide chlorydrique [HCl] concentré commercial (37% en masse) qui fournit un pH d'environ -1,1; de même, une solution saturée en NaOH a un pH de 15.0.
Les produits plus acides que l’acide sulfurique à 100 %, sont qualifiés de [[superacide]]s.
Le superacide le plus fort connu actuellement est l'[[Acide fluoroantimonique]] avec un pH de -25.
Évidemment, les acidités inférieures à 0 ou à 1 ou les basicités supérieures à 14 sont rarement rencontrées, même en laboratoire, sans parler des superacides qui sont des curiosités.
== pH d'un sol ==
Le pH d'un sol a une influence sur l'assimilation des [[nutriments]] et [[oligoélément]]s par une [[plante]].
== Voir aussi ==
=== Articles ===
*[[pH-mètre]]
*[[Indicateur de pH]]
*[[Indicateur universel]]
*[[Superacide]]
=== Liens externes ===
*[http://techniques-aquatiques.com/articles/37-influence-du-ph-sur-l-assimilation-des-elements-nutritifs Influence du pH d'un sol sur l'assimilation des éléments nutritifs pour une plante]
*[http://www.atomer.fr/1/1_pKa-acides-bases.html pKa de 70 couples acide/base usuels]
==Notes et références==
{{références|colonnes = 2}}
{{portail chimie}}
[[Catégorie:chimie générale]]
[[Catégorie:échelle]]
[[Catégorie:propriété chimique]]
[[Catégorie:repère logarithmique]]
[[af:PH]]
[[ar:أس هيدروجيني]]
[[bg:Водороден показател]]
[[bs:PH]]
[[ca:PH]]
[[cs:Kyselost]]
[[cy:PH]]
[[da:PH og pOH]]
[[de:PH-Wert]]
[[el:PH]]
[[en:PH]]
[[eo:PH (kemia parametro)]]
[[es:PH]]
[[et:Vesinikeksponent]]
[[eu:PH]]
[[fa:پهاش]]
[[fi:Happamuus]]
[[gl:PH]]
[[he:PH]]
[[hr:PH]]
[[hu:PH]]
[[ia:Potential de hydrogeno]]
[[id:PH]]
[[io:PH]]
[[is:Sýrustig]]
[[it:PH]]
[[ja:水素イオン指数]]
[[ko:수소 이온 농도]]
[[ku:Nirxa pH]]
[[la:Pondus Hydrogenii]]
[[lt:PH]]
[[lv:PH]]
[[mk:Водороден показател]]
[[ml:പി.എച്ച്. മൂല്യം]]
[[ms:PH]]
[[nl:PH]]
[[nn:PH]]
[[no:PH]]
[[nov:PH]]
[[pam:PH]]
[[pl:Skala pH]]
[[pt:PH]]
[[ro:PH]]
[[ru:Водородный показатель]]
[[sh:PH]]
[[simple:PH]]
[[sk:Kyslosť]]
[[sl:PH]]
[[so:PH]]
[[sr:PH вредност]]
[[su:PH]]
[[sv:PH]]
[[th:ค่า pH]]
[[tr:PH]]
[[uk:PH]]
[[vi:PH]]
[[zh:PH值]]
[[zh-min-nan:PH]]