Principe de Huygens-Fresnel 46171 30987185 2008-06-25T09:01:12Z GillesC 38320 -bandeau d'homonymie inutile {{ébauche|optique}} Le '''principe de [[Christiaan Huygens|Huygens]]-[[Augustin Fresnel|Fresnel]]''' est un principe utilisé en [[optique]], et qui permet entre autres de calculer l'intensité dans les phénomènes de [[diffraction]] et d'[[interférence]]. Il consiste à considérer chaque point de l'espace indépendamment. Si un point ''M'' reçoit une [[onde]] d'amplitude ''E''(''M'', ''t''), alors on peut considérer qu'il réémet lui-même une '''onde sphérique''' de même fréquence, même amplitude et même phase. En fait, au lieu de considérer que l'onde progresse de manière continue, on décompose sa progression en imaginant qu'elle progresse de proche en proche. Considérons une [[onde plane]], le front d'onde est rectiligne. Prenons maintenant des points situés sur un plan ''P'' parallèle au front d'onde ; pour simplifier, on ne considérera qu'une période de l'onde, dont le maximum passe en ''P'' à l'instant 0 ; pour une onde « complète » ([[sinusoïde]] infinie), il suffit de superposer les périodes. Si chaque point de ''P'' émet une onde sphérique, alors après un instant ''t'' : * un point situé à une distance ''c''.''t'' du plan ''P'' ne recevra que le front d'une seule onde sphérique (celle émise par le point de ''P'' le plus proche à l'instant 0), chaque point situé sur ce plan parallèle aura donc une amplitude positive ; * un point situé au-delà de cette distance n'a pas encore reçu l'onde, et a donc une amplitude nulle ; * un point situé en deçà de cette distance reçoit des ondes produites par de nombreux points de ''P'' (les « côtés » des ondes sphériques), mais toutes les ondes ont un déphasage différent, donc les amplitudes s'annulent. Donc, en considérant une réémission sphérique, on obtient bien un front plan progressant à une vitesse ''c'', les deux formulations sont équivalentes. [[Image:Principe huygens.png|équivalence entre le front plan et la réémission sphérique ; le trait plein figure le maximum de l'onde, le trait pointillé le minimum (les deux sont distants d'une demi-longueur d'onde)]]<br /> <small>''Équivalence entre le front plan et la réémission sphérique ; le trait plein figure le maximum de l'onde, le trait pointillé le minimum (les deux sont distants d'une demi-longueur d'onde)''</small> Il s'agit donc là d'un simple artifice mathématique, que l'on n'utilise en général qu'en un endroit particulier, souvent au niveau d'une fente pour calculer la figure de [[diffraction]] en champ lointain. Dans le cas de la propagation de la lumière dans un solide, l'onde progresse réellement de proche en proche : en effet, le nuage électronique des atomes masque l'onde, de telle sorte que celle-ci ne peut pas progresser mais peut exciter les atomes qui réémettront eux-même une onde ([[diffusion Rayleigh]]), qui va exciter l'atome voisin. Ceci explique notamment le « ralentissement » de l'onde (et donc l'[[indice de réfraction]]) : les ondes électromagnétiques progressent toujours à la vitesse ''c'' (environ 300000 km/s), mais le front d'onde est ralenti par le phénomène de masquage et réémission. Mais le principe de Huygens est également valable pour la propagation dans le vide, sans support matériel. On doit noter que dans le cas de sources planes, le principe de Huygens peut être dépassé en introduisant la notion de [[spectre d'ondes planes]], fournissant la solution exacte à toute distance. RESUMONS : *Contribution de Huygens : :Chaque point P d'une surface d'onde se comporte comme une source (fictive) ponctuelle de même fréquence que la source mère et dont la phase est celle de l'onde arrivant en ce point P. *Contribution de Fresnel : :Les ondelettes sphériques émises par ces sources fictives se propagent jusqu'au point M où elles vont interférer. Traduction mathématiques du Principe : <center> <math>A(M) = \int\int~~f(P)~~\frac{e^{ikPM}}{PM}~~K(a)~~dS(P)~~</math> </center> Avec : * ''A(M)'' l'amplitude en ''M''. * ''f(P) dS(P)'' l'amplitude des sources sur ''dS(P)'' centrée ''P''. * <math>\frac{e^{ikPM}}{PM}</math> traduit la propagation sphérique de P jusqu'en M. * ''K(a) est le facteur d'inclinaison introduit par Fresnel pour tenir compte de : # l'anisotropie dans la distribution de l'énergie diffractée. # l'absence de diffraction "arrière". {{portail physique}} [[Catégorie:optique ondulatoire]] [[catégorie:principe physique]] [[ar:مبدأ هوغنز]] [[ca:Principi de Huygens]] [[cs:Huygensův princip]] [[de:Huygenssches Prinzip]] [[en:Huygens–Fresnel principle]] [[es:Principio de Fresnel - Huygens]] [[et:Huygensi printsiip]] [[fi:Huygensin periaate]] [[he:עקרון הויגנס]] [[id:Prinsip Huygens]] [[it:Principio di Huygens-Fresnel]] [[ja:ホイヘンスの原理]] [[ko:하위헌스의 원리]] [[nl:Principe van Huygens-Fresnel]] [[pl:Zasada Huygensa]] [[pt:Princípio de Huygens]] [[ro:Principiul Huygens–Fresnel]] [[ru:Принцип Гюйгенса — Френеля]] [[sk:Huygensov princíp]] [[sv:Huygens princip]] [[th:หลักการของไฮเกนส์]] [[uk:Принцип Гюйгенса]] [[vi:Nguyên lý Huygens-Fresnel]] [[zh:惠更斯原理]]