Résistance des matériaux 33805 30708851 2008-06-16T19:57:01Z Pld 71269 précision cat. (*) {{Voir homonymes|Résistance}} {{à désacadémiser}} La '''résistance des matériaux''' est une branche de la [[mécanique des milieux continus]] adaptée aux déformations des structures ([[machine]]s — [[génie mécanique]] — ou [[bâtiment (construction)|bâtiment]]s — [[génie civil]]). [[Image:Concrete Compression Testing.jpg|thumb|250px|Lors d'un test de compression sur cette éprouvette de béton, une pression croissante est appliquée verticalement sur l'échantillon pendant que deux appareils mesurent la réaction du cylindre au test]] [[Image:Failed Concrete Cylinder.jpg|thumb|250px|A l'issue du test, l'éprouvette s'est rompue. Noter la cassure longitudinale]] Cette science permet de ramener la loi de '''comportement global d'une structure''' (relation entre ''sollicitations''-[[Force (physique)|force]]s ou [[Couple (physique)|couple]]- et déplacements) à une '''loi de comportement locale''' des [[matériaux]] (relation entre [[contrainte]]s et [[déformation]]s). L'objectif étant le dimensionnement de la structure suivant un critère de résistance ou de déplacement admissible. Selon l'intensité de la contrainte, il y a d'abord ''déformation élastique'' (lorsque la sollicitation disparaît, le matériau reprend sa forme et sa position initiale) puis ''déformation plastique'' (lorsque la sollicitation disparaît, une certaine déformation subsiste) et enfin ''rupture'' lorsque les limites intrinsèques du matériau sont dépassées. ==Histoire== Premier cours de ''Résistance des Matériaux'' donné par [[August Wöhler]] à l'Université de [[Göttingen]] en [[1842]]. (sources : voir discussion) ==Hypothèses de la RDM== Le calcul de RDM est valide dans un domaine limité par les hypothèses suivantes : La matière est : * '''élastique''' (pas de plastification), * '''linéaire''' (pas de non-linéarité), * '''homogène''' (pas de variation de comportement dans le matériau), * '''isotrope''' (pas de variation de comportement suivant la direction). Le problème est : * '''iso-statique''' (pièce en équilibre cinématique), * en '''petits déplacements''' (pas de grand déplacement), * '''quasi-statique''' (pas d'effet dynamique), * '''quasi-isotherme''' (pas de changement de température). ==Notion de poutre== L'[[ingénierie|ingénieur]] utilise la ''résistance des matériaux'' avant tout pour concevoir les éléments de construction et vérifier leur résistance et leur déformation. Quelques rapides calculs peuvent être menés facilement si on se limite à la ''poutre à plan moyen'', c'est-à-dire un objet de grande longueur par rapport à sa section et doté d'un plan de [[symétrie]] (plan moyen). ''Voir l'article complet sur la notion de [[Poutre (élément de structure)|poutre]] en RDM'' ==Sollicitations== ===Simples=== {| class="wikitable" |style="text-align: center;"|Type||style="text-align: center;"|Commentaire||style="text-align: center;"|Exemple |- |[[force (physique)|Traction]]||Allongement longitudinal, on ''tire'' de chaque côté||Câble de remorquage |- |[[Compression]]||Raccourcissement, on ''appuie'' de chaque côté|| noyau d'une tour en absence de vent |- |[[Cisaillement]]||Glissement relatif des sections|| tectonique des plaques |- |[[Torsion]]||Rotation par glissement relatif des sections droites|| arbre de transmission d'un moteur |- |[[Flexion]] simple||Fléchissement sans allongement des fibres contenues dans le plan moyen|| planche de plongeoir |- |[[Flexion]] pure ou circulaire||Fléchissement sans effort tranchant dans certaines zones|| partie de poutre entre deux charges concentrées |} === Base de résolution === Le '''Principe de Saint-Venant''' stipule qu'une condition limite (au point M) peut être remplacée par un chargement équivalent sans modifier notablement le problème , si l'on se place suffisamment "loin" de M. * remplacement des conditions limites par un chargement, * notion d'erreur à "proximité" des conditions limites. Le '''Principe de Navier-Bernoulli''' précise que les sections droites à la fibre moyenne (pour les poutres) ou au plan moyen (pour les plaques et coques) restent planes après déformation. Le '''Principe de superposition''' permet de décomposer toute sollicitation complexe en somme de sollicitations simples. Ce principe est directement lié à l'hypothèse de linéarité. L''''équilibre statique''' donne la base de la résolution du problème. Il stipule que : * La somme des [[force]]s extérieures au système est égale au vecteur nul : :<math>\sum {\underline{F_{ext}}} = {\underline{0}}</math>. * La somme des [[moment]]s en un point, ici au point A, est égale au vecteur nul : :<math>\sum {\underline{M_{(A)}}} = {\underline{0}}</math>. le '''Théorème de Castigliano''' définit déplacement du point, lieu d'application d'une force par la dérivée du potentiel élastique par rapport de cette force. Suivant les domains étudiés, il existe deux types de grandeur (extérieur et intérieur). elles sont différenciées par rapport à la pièce étudiée. {| class="wikitable" |----- ! domaine physique ! point de vue extérieur ! point de vue intérieur |----- | mécanique || efforts || contraintes |----- | géométrique || déplacements || déformations |} Les efforts (ou chargement) regroupent les Forces [N] et les moments [Nm]. les déplacement engloblent les translations et les rotations. === Contraintes mécaniques === * [[Loi de Hooke]] La contrainte normale σ [Pa] est proportionnelle à l’allongement relatif ε [sans unité] par la constante du module de Young E [Pa]: <math>\displaystyle\underline{\underline{\sigma}} = E . \underline{\underline{\epsilon}} </math> avec l’[[allongement]] relatif ε [sans unité] donné par la relation des longueurs initiale et finale [m]: <math>\epsilon = \frac{l_{finale} - l_{initiale}}{l_{initiale}} </math> * Traction / Compression <!--[[Image:traction.jpg]]--> Cette contrainte est donnée normale à la force de traction. σ [Pa] est égale à la force F [N] divisée par la [[surface]] normale S [<math>m^2</math>] : <math>\displaystyle\sigma_{traction} = \frac{F}{S} </math> * Flexion <!--[[Image:flexion.jpg]]--> la contrainte de flexion est décrite avec le moment de flexion M_3 [N.m], la flèche x_2 [m] et le moment quadratique I_3 [m^4] <math>\displaystyle\sigma_{flexion}= \frac{M_3 . x_2}{I_3}</math> avec le [[Moment quadratique]] : <math>I_3 = \int_S { x_2^2}dS</math> * Cisaillement <!--[[Image:cisail.jpg]]--> <math>\displaystyle\tau_{moy} = \frac{F_{cisaillement}}{S} = G . \gamma </math> avec le moment de cisaillement [Pa] : <math>G = \frac{E}{2(1+\upsilon)}</math> Références théoriques * La contrainte normale σ : [[contrainte]] * l’allongement relatif ε : [[Tenseur des déformations]] * le module de Young E ou le module d’élasticité longitudinal : [[Module de Young]] * le module de cisaillement G ou le module d’élasticité tangentiel : [[Module de Cisaillement]] * le moment d'inertie de flexion I : [[Moment d'inertie]] ===Composées=== {| class="wikitable" |style="text-align: center;"|Type||style="text-align: center;"|Commentaire||style="text-align: center;"|Exemple |- |Flexion et torsion||||arbre de transmission |- |Flexion et traction||||vis |- |Flexion et compression||[[Flambage]]|| |- |Cisaillement et compression|||| |- |Cisaillement et traction|||| |} La poutre est généralement supposée composée d'un [[matériau]] [[isotrope]] [[homogène]] et chargée dans son plan moyen (pas de torsion donc). Dans ces conditions, la résultante des efforts extérieurs est composée : *d'un effort longitudinal de compression ou traction ; *d'un effort normal de cisaillement : l'effort ''tranchant'' ; *d'un moment ''fléchissant''. On peut encore simplifier en considérant par exemple, une poutre droite, horizontale, de section constante, chargée uniformément et reposant sur deux appuis simples. Si on désigne par p la charge linéaire et par l la longueur de la poutre, la solution du problème tient en quelques formules simples : *la réaction d'appui est réduite à deux forces verticales, égales chacune à la moitié de la charge soit pl/2 *l'effort tranchant varie de +pl/2 à -pl/2 avec une valeur nulle en milieu de travée&nbsp;. On doit vérifier que la contrainte de cisaillement sur appui reste inférieure à la [[résistance au cisaillement]] maximum du matériau *le moment fléchissant est nul sur appui et maximum en milieu de travée où il vaut pl²/8&nbsp; On doit vérifier que les contraintes dans la section médiane ne dépassent ni la [[résistance à la compression]], ni la [[résistance à la traction]] maximales. ==Voir aussi== *[[Mécanique]] *[[Matériau]] *[[Statique du solide]] *[[Mécanique statique]] ==Lien externe== *[http://www.pats.ch/~form/fr/menu.asp?target=principale&show=resmat#resmat Calculs simples en ligne] {{portail physique}} [[Catégorie:Résistance des matériaux|*]] [[bg:Якост]] [[ca:Resistencia dels materials]] [[cs:Pevnost (fyzika)]] [[de:Festigkeit]] [[el:Αντοχή των υλικών]] [[en:Strength of materials]] [[es:Resistencia de materiales]] [[fa:مکانیک مواد]] [[fi:Lujuusoppi]] [[he:חוזק חומרים]] [[it:Resistenza meccanica]] [[ja:材料強度学]] [[ko:재료역학]] [[nl:Mechanische materiaaleigenschappen]] [[pl:Wytrzymałość materiałów]] [[ru:Сопротивление материалов]] [[sk:Pevnosť (materiál)]] [[sl:Trdnost]] [[sv:Hållfasthetslära]] [[tr:Mukavemet]] [[vi:Độ bền vật liệu]] [[zh:材料力学]]