Test d'hypothèse 48760 30291806 2008-06-03T18:44:25Z 86.71.86.93 /* Déroulement d'un test */ En [[statistiques]], un '''test d'hypothèse''' est une démarche consistant à rejeter ou à accepter une [[hypothèse statistique]], appelée ''hypothèse nulle'', en fonction d'un jeu de données (échantillon). On cherche par exemple à tester si un certain paramètre <math>\theta</math>, qui peut par exemple être la valeur moyenne d'une grandeur, prend une certaine valeur <math>\theta_0</math>. L'hypothèse nulle dans ce cas est "la moyenne vaut <math>\theta_0</math>" et l'hypothèse contraire sera "la moyenne est différente de <math>\theta_0</math>". == Risque de Première et de deuxième espèces == Une notion fondamentale concernant les tests est la probabilité que l'on a de se tromper. Dans l'idéal on souhaiterait avoir un test qui renvoie toujours le "bon" résultat. Par exemple on aimerait avoir un test qui choisisse toujours l'hypothèse nulle lorsque celle ci est vérifiée et qui rejette tout le temps l'hypothèse nulle lorsque celle ci est fausse. Il y a deux façons de se tromper lors d'un test statistique: *la possibilité de rejeter à tort l'hypothèse nulle lorsqu'elle est vraie. On appelle ce risque le '''risque de première espèce''' et en général on note <math>\alpha</math> la probabilité de se tromper dans ce sens. <math>\alpha</math> est alors la probabilité d'avoir un [[faux-négatif]] : de rejeter une hypothèse alors qu'en fait elle était vraie. *la possibilité d'accepter à tort l'hypothèse nulle lorsqu'elle est fausse. On appelle ce risque le '''risque de deuxième espèce''' et en général on note <math>\beta</math> la probabilité de se tromper dans ce sens. <math>\beta</math> est alors la probabilité d'avoir un [[faux positif]] : d'accepter une hypothèse alors qu'en fait elle était fausse. Dans l'idéal on aimerait bien que ces deux erreurs soient nulles, malheureusement ce n'est pas possible, en tout cas lorsque l'on ne dispose que d'un nombre fini d'observations, et il faut alors faire un choix. == Tests classiques et tests bayésiens == Pour les tests classiques qui constituent l'essentiel des tests statistiques, ces deux erreurs jouent un rôle '''asymétrique'''. On contrôle uniquement le risque de première espèce à un niveau <math>\alpha</math> (principe de Neyman). Cela revient à considérer que le risque de rejeter l'hypothèse nulle alors que cette hypothèse est vraie est beaucoup plus coûteux que celui de la conserver à tort (ce dernier risque n'étant pas maîtrisé). Pour les tests [[Inférence bayésienne|bayésiens]] on peut parfois pondérer ces deux risques grâce à la connaissance d'une ''probabilité a priori''. La connaissance de cette probabilité a priori est l'un des fondements de la statistiques bayésienne et constitue l'une de ses difficultés majeures. Si on cherche par exemple à tester le fait qu'un certain paramètre <math>\theta</math> vaut une certaine valeur <math>\theta_0</math> cette probabilité a priori sera une loi de probabilité sur <math>\theta</math> qui donne la probabilité que l'on à d'observer <math>\theta</math>. Cette loi a priori est également appelée croyance a priori ou croyance bayésienne. Ces tests sont souvent d'une mise en œuvre plus complexe que les tests statistiques la raison principale est qu'ils nécessitent de "trouver" une bonne loi a priori puis de la réviser grâce à la [[Probabilité#Révision Bayésienne|révision des croyances]]. == Classification == D'ordinaire on range les tests dans deux catégories les tests paramétriques et les tests non paramétriques. Les premiers testent la valeur d'un certain paramètre. Ces tests sont généralement les tests les plus simples. Les tests non paramétriques quant à eux ne font pas intervenir de paramètre. C'est par exemple le cas des tests d'adéquation à une loi ou des [[Test du χ²]]. On peut également distinguer les tests d'homogénéité et les tests d'adéquations: * Dans le cas d'un test d'homogénéité, on veut comparer deux échantillons entre eux. L'hypothèse nulle H<sub>0</sub> supposera l'homogénéité des deux échantillons. Par exemple on comparera deux moyennes. * Dans le cas d'un test d'adéquation, on veut déterminer si un échantillon suit une loi statistique connue. L'hypothèse nulle H<sub>0</sub> supposera l'adéquation de l'échantillon à cette loi. == Déroulement d'un test == Pour le cas spécifique d'un test unilatéral, le test suit une succession d'étapes définies: # Énoncé de l'hypothèse nulle H<sub>0</sub> et de l'hypothèse alternative H<sub>1</sub>. # Calcul d'une variable de décision correspondant à une mesure de la distance entre les deux échantillons dans le cas de l'homogénéité, ou entre l'échantillon et la loi statistique dans le cas de la conformité. Plus cette distance sera grande et moins l'hypothèse nulle H<sub>0</sub> sera probable. En règle générale, cette variable de décision se base sur une statistique qui se calcule à partir des observations. Par exemple, la variable de décision pour un test unilatéral correspond à rejeter l'hypothèse nulle si la statistique dépasse une certaine valeur fixée en fonction du risque de première espèce. # Calcul de la probabilité, en supposant que H<sub>0</sub> est vraie, d'obtenir une valeur de la variable de décision au moins aussi grande que la valeur de la statistique que l'on a obtenue avec notre échantillon. Cette probabilité est appelée la p-value. # Conclusion du test, en fonction d'un risque seuil α<sub>seuil</sub>, en dessous duquel on est prêt à rejeter H<sub>0</sub>. Souvent, un risque de 5% est considéré comme acceptable (c'est-à-dire que dans 5% des cas quand H<sub>0</sub> est vraie, l'expérimentateur se trompera et la rejettera). Mais le choix du seuil à employer dépendra de la certitude désirée et de la vraisemblance des alternatives. #Si la p-value est plus grande que <math>\alpha</math> on accepte l'hypothèse H<sub>0</sub>. Si la p-value est plus petite que <math>\alpha</math> on la rejette. La probabilité pour que H<sub>0</sub> soit acceptée alors qu'elle est fausse est β, le ''risque de deuxième espèce''. C'est le risque de ne pas rejeter H<sub>0</sub> quand on devrait la rejeter. Sa valeur dépend du contexte, et est très difficilement évaluable (voire impossible à évaluer), c'est pourquoi seul le risque α est utilisé comme critère de décision. == Tests classiques == Il existe de nombreux [[Test (statistique)|tests statistiques]] classiques parmi lesquels on peut citer : {{Article détaillé|Test (statistique)}} *le [[test de Student]], parfois appelé aussi test de Student-Fisher, qui sert à la comparaison d'une moyenne observée avec une valeur « attendue ». *le [[test de Fisher]], parfois appelé aussi test de Fisher-Snedecor, qui sert à la comparaison de deux variances observées. <!-- ou d'une variance observée avec une valeur « attendue ». Non, pour ça il faut khi 2! --> *l'[[Analyse de la variance]] ou ANOVA, qui sert à comparer plusieurs moyennes observées entre-elles, selon un plan expérimental prédéterminé. Il se base sur une décomposition de la variance en une partie « explicable » et une partie « erreur », supposée distribuée selon la [[loi normale]]. Ce test est particulièrement utilisé dans les sciences humaines et sociales (SHS), les [[sciences cognitives]], les sciences médicales et les sciences du vivant. *le [[test de Khi-2]], qui sert notamment à la comparaison d'un couple d'effectifs observés, ou à la comparaison globale de plusieurs couples d'effectifs observés, et plus généralement à la comparaison de deux [[Loi de probabilité|distributions]] observées. *le [[test de Kolmogorov-Smirnov]], qui comme le test de Khi-2 est un test d'adéquation entre des échantillons observés et une [[Loi de probabilité|distribution de probabilité]]. Il compare la [[fonction de répartition]] observée et la fonction de répartition attendue. Il est particulièrement utile pour les [[variable aléatoire|variables aléatoires]] continues. En [[Inférence bayésienne|méthodes bayésiennes]], on utilise beaucoup le psi-test (mesure de [[distance]] dans l'espace des possibles) dont on montre que le Khi-2 constitue une très bonne approximation asymptotique lorsqu'existe un grand nombre d'observations. == Voir aussi == * [[Plan d'expérience]] * [[Test (statistique)]] * [[Test de Jarque Bera]] * [[Statistique mathématique]] {{Probabilités et Statistiques}} [[Catégorie:Test statistique]] [[cs:Testování hypotéz]] [[cy:Prawf rhagdybiaeth]] [[da:Hypoteseprøvning]] [[de:Statistischer Test]] [[en:Statistical hypothesis testing]] [[es:Contraste de hipótesis]] [[fa:آزمون فرض آماری]] [[it:Test di verifica d'ipotesi]] [[ja:仮説検定]] [[lo:ການທົດສອບສົມມຸດຕິຖານສະຖິຕິ]] [[nl:Statistische toets]] [[pl:Weryfikacja hipotez statystycznych]] [[ru:Проверка статистических гипотез]] [[simple:Statistical hypothesis test]] [[ur:احصائی اختبار مفروضہ]] [[zh:假設檢定]]