<page> <title>Thermoélectricité</title> <id>103153</id> <revision> <id>31372178</id> <timestamp>2008-07-07T11:50:09Z</timestamp> <contributor> <username>Leag</username> <id>14331</id> </contributor> <minor /> <comment>Page d'homonymie [[Voyager]] corrigée en [[programme Voyager]] grâce au [[Utilisateur:Leag/Navigation popups|popups]]</comment> <text xml:space="preserve">Découvert puis compris au cours du {{XIXe siècle}} grâce aux travaux de [[Thomas Johann Seebeck|Seebeck]], [[Jean-Charles Peltier|Peltier]] ou encore Lord [[William Thomson|Kelvin]], l''''effet thermoélectrique''' est un phénomène [[physique]] présent dans certains matériaux : il y lie le flux de [[transfert thermique|chaleur]] qui les traverse au [[courant électrique]] qui les parcourt. Cet effet est à la base d'applications de [[réfrigération]] (ex. [[module Peltier]]) et de [[génération d'électricité]] : un matériau thermoélectrique va permettre de transformer directement de la [[transfert thermique|chaleur]] en [[électricité]], ou de déplacer des [[calorie]]s par l'application d'un [[courant électrique]]. Un grand nombre des matériaux possédant des propriétés thermoélectriques intéressantes ont été découverts au cours des décénies 1950 et 1960. C'est notamment le cas du [[tellure|tellurure]] de [[bismuth]] (Bi<sub>2</sub>Te<sub>3</sub>) utilisé dans les modules peltiers commerciaux, ou des [[alliage]]s [[silicium]]-[[germanium]] (SiGe) utilisé pour l'alimentation des [[sonde spatiale|sondes spatiales]] dans des [[générateur thermoélectrique à radioisotope|générateurs thermoélectriques à radioisotope]]. Jusqu'à présent, les [[Efficacité énergétique|rendement]]s peu élevés et les coûts importants des systèmes de conversion thermoélectriques les ont limités à un [[marché de niche]]. Néanmoins, des progrès récents ainsi qu'un nouvel intérêt pour ces systèmes, dû à la fois à la hausse des coûts de l'énergie et aux exigences environnementales, ont conduit à un renouveau important des recherches scientifiques dédiées à cette technologie (voir par exemple<ref name = Vining>C.B. Vining, ZT ~ 3.5: Fifteen teen Years of Pr Progress gress and Thing Things to Come, 5th european conference on thermoelectrics, Odessa, 2007, [http://ect2007.thermion-company.com/system/files/u1/pdf/02.pdf texte].</ref>) == Aspects historiques<ref name = nolas>G. S. Nolas, J. Sharp and G. H. J., Thermoelectrics, basic principles and new materials developments, Springer 2001.</ref>{{,}}<ref>G. D. Mahan, B. C. Sales and J. Sharp, Thermoelectric materials: new approaches to an old problem, Physics Today, Vol. 50 (1997), pp. 42.</ref> == {{Article détaillé|Effet Seebeck}} Le premier effet thermoélectrique a été découvert par le physicien allemand [[Thomas Johann Seebeck]] en [[1821]]. Celui-ci remarqua qu’une aiguille métallique est déviée lorsqu’elle est placée entre deux [[conducteur (physique)|conducteurs]] de natures différentes liés par des jonctions à leurs extrémités et soumis à un [[gradient]] thermique (voir [[effet Seebeck]]). Il interprête ses observations en postulant un lien entre [[champ magnétique]] et différence de température entre les deux jonctions et établit le sens de déviation de l'aiguille pour un grand nombre de couples. Il pense ainsi avoir trouvé une explication à l'origine du [[champ magnétique terrestre]].<ref name = Seebeck>T.J. Seebeck, ''Magnetische Polarisation der Metalle und Erze durch Temperatur-Differenz'', Abhandlungen der Königlichen Preußischen Akademie der Wissenschaften zu Berlin 265 (1823)</ref> En réalité, l'effet observé est d'origine électrique : une [[différence de potentiel]] apparaît à la jonction de deux matériaux soumis à une différence de température. L’utilisation la plus connue de l’effet Seebeck est la mesure de température à l’aide de [[thermocouple]]s. Quelques années plus tard, en [[1834]], le physicien français Jean [[Jean-Charles Peltier|Peltier]] découvrit le second effet thermoélectrique : une différence de température apparaît aux jonctions de deux matériaux de natures différentes soumis à un [[courant électrique]] (voir [[effet Peltier]]). En 1838, [[Heinrich Lenz (physicien)|Heinrich Lenz]] montre que de la chaleur est absorbée ou libérée à une jonction suivant le sens du courant.<ref name = Allred>D.D. Allred, ''An overview of thermoelectrics'' in "Short course on thermoelectrics", edited by the International thermoelectric society, 1993 </ref> Le physicien anglais William Thomson (Lord [[William Thomson|Kelvin]]) montra en [[1851]] que les effets Seebeck et Peltier sont liés : un matériau soumis à un gradient thermique et parcouru par un courant électrique échange de la chaleur avec le milieu extérieur. Réciproquement, un courant électrique est généré par un matériau soumis à un gradient thermique et parcouru par un flux de chaleur. La différence fondamentale entre les effets Seebeck et Peltier considérés séparément et l’effet Thomson est l'existence de ce dernier pour un seul matériau et l'inutilité d’une jonction (voir [[effet Thomson]]). == Applications potentielles == Les applications actuelles et potentielles des matériaux thermoélectriques tirent partie des deux aspects de l’effet Thomson : D’une part, l’établissement d’un flux de chaleur, opposé à la [[transfert thermique|diffusion thermique]], lorsqu’un matériau soumis à un gradient thermique est parcouru par un courant, permet d’envisager des applications de '''[[réfrigération]] thermoélectrique'''. Cette solution alternative à la réfrigération classique utilisant des [[Réfrigération|cycles de compression-détente]] ne nécessite aucune pièce mobile, d’où une plus grande fiabilité, l’absence de vibration et de bruit. Ces propriétés sont fondamentales dans des applications pour lesquelles la température doit être régulée de manière très précise et fiable, comme par exemple pour les containers utilisés pour le transport d’organes à transplanter, ou pour des applications dans lesquelles les vibrations constituent une gêne considérable, comme par exemple les systèmes de guidage [[laser]] ou les [[circuits intégrés]]. De plus, la possibilité de créer un flux thermique à partir d’un courant électrique de manière directe rend inutile l’utilisation de gaz de type [[Fréon (gaz)|fréon]], qui contribuent à dégrader la [[couche d'ozone]].</br> {{Article détaillé|Refroidissement thermoélectrique}} D’autre part, la possibilité de convertir un flux de chaleur en courant électrique permet d’envisager des applications de '''génération d’électricité''' par effet thermoélectrique, notamment à partir de sources de chaleur perdue comme les [[Pot d'échappement|pots d’échappement]] des [[automobile]]s, les cheminées d’incinérateurs, les circuits de refroidissement des [[Centrale nucléaire|centrales nucléaires]]… Les systèmes thermoélectriques constitueraient alors des sources d’énergie d’appoint « propres », puisque, utilisant des sources de chaleur existantes inutilisées. L’utilisation de la thermoélectricité dans l’automobile pourrait par exemple permettre de suppléer partiellement à l’[[alternateur]], réduisant de l’ordre de 10% la consommation de carburant.<ref>K. Matsubara, Development of a high efficient thermoelectric Stack for a waste exhaust heat recovery of vehicles, Proc 21st International Conference on Thermoelectrics- Long Beach (CA) USA, 2002, pp. 418.</ref> De plus, la très grande fiabilité et durabilité des systèmes (grâce à l’absence de pièces mobiles) a conduit à leur utilisation pour l’alimentation en électricité des [[sonde spatiale|sondes spatiales]]. C’est notamment le cas de la [[Programme Voyager|sonde Voyager]], lancée en 1977, dans laquelle le flux de chaleur établi entre du PuO2 fissile (PuO2 est [[radioactif]] et se désintègre, c'est donc une source de chaleur) et le milieu extérieur traverse un système de conversion thermoélectrique à base de SiGe (alliage de [[silicium]] et [[germanium]]), permettant l’alimentation de la sonde en électricité (en effet, les sondes spatiales s'éloignant au delà de [[mars (planète)|Mars]] ne peuvent pas être alimentées par des [[panneaux solaires]], le flux solaire étant trop faible). Voir l'article [[Générateur thermoélectrique à radioisotope]]. Les systèmes de conversion utilisant l’effet thermoélectrique ont des rendements faibles, que ce soit en génération d’électricité ou en réfrigération (voir plus loin). Ils sont donc pour l’instant limités à des niches commerciales dans lesquels la fiabilité et la durabilité sont plus importantes que les coûts et le rendement. == Principes de base, en détails<ref name=nolas/>== La conversion d'énergie par effet thermoélectrique (''chaleur'' '''→''' ''électricité'' ou ''électricité'' '''→''' ''chaleur'') est basée à la fois sur les effets [[effet Seebeck|Seebeck]], [[effet Peltier|Peltier]] et [[effet Thomson|Thomson]]. === Bref rappel sur les coefficients Seebeck, Peltier et Thomson === ==== [[effet Seebeck|Coefficient Seebeck]] ==== Une différence de température dT entre aux jonctions de deux matériaux a et b implique une [[différence de potentiel]] électrique dV selon : :<math> S_{ab}=\frac{dV}{dT}\, </math> Le coefficient Seebeck, également appelé "Pouvoir Thermoélectrique" s'exprime en V.K<sup>-1</sup> (ou plus généralement en µV.K<sup>-1</sup> au vu des valeurs de ce coefficient dans les matériaux usuels). Les coefficients Seebeck des deux matériaux sont reliés au coefficient Seebeck du couple selon : :<math> S_{ab}=S_a-S_b\, </math> ==== [[effet Peltier|Coefficient Peltier]] ==== Dans le cas de l’effet Peltier, un [[courant électrique]] I est imposé à un circuit composé de deux matériaux, ce qui entraîne une libération de [[transfert thermique|chaleur]] Q à une jonction et une absorption de [[transfert thermique|chaleur]] à l’autre jonction, selon : :<math> \Pi_{ab}=\frac{Q}{I}\, </math> ==== [[effet Thomson|Coefficient Thomson]] ==== Au contraire des coefficients Seebeck et Peltier, le coefficient Thomson peut être défini directement pour un seul matériau. Lorsque sont présents simultanément un [[gradient]] de température et un [[courant électrique]], il y a génération ou absorption de [[transfert thermique|chaleur]] dans chaque segment de matériau pris individuellement. Le [[gradient]] de flux thermique au sein du matériau est alors donné par : :<math> \frac{dQ}{dx}=I\frac{dT}{dx}\tau\, </math> où x est la coordonnée spatiale et Ï„ est le coefficient Thomson du matériau. ==== Relations entre les coefficients Seebeck, Peltier et Thomson ==== [[William Thomson|Kelvin]] a montré que les trois coefficients Seebeck, Peltier et Thomson ne sont pas indépendants les uns des autres. Ils sont liés par les deux relations : :<math> \Pi_{ab}=S_{ab}T \, </math> :<math> \tau_a-\tau_b=T\frac{dS_{ab}}{dT} \, </math> === Principes de la conversion d'énergie par effet thermoélectrique === [[Image:schéma module thermoélectrique série et parallèle.png|350px|thumb|right|Module connecté en série électriquement et en parallèle thermiquement]] Pour la réfrigération ou la génération d’électricité par effet thermoélectrique, un "module" est constitué de "couples" connectés électriquement. Chacun des couples est constitué d’un matériau [[semi-conducteur]] de type p (S>0) et d’un matériau semi-conducteur de type n (S<0). Ces deux matériaux sont joints par un matériau conducteur dont le pouvoir thermoélectrique est supposé nul. Les deux branches (p et n) du couple et tous les autres couples composant le module sont connectés en série électriquement et en parallèle thermiquement (voir schéma à droite). Cette disposition permet d’optimiser le flux thermique qui traverse le module et sa [[résistance électrique]]. Par souci de simplicité, nous raisonnerons dans la suite sur un seul couple, formé de deux matériaux de sections constantes. [[Image:schéma module refroidissement thermoélectrique.png|350px|thumb|right|Module de réfrigération thermoélectrique]] La figure à droite présente le schéma de principe d’un couple p-n utilisé pour la réfrigération thermoélectrique. Le courant électrique est imposé de telle manière que les [[semi-conducteur|porteurs de charge]] (électrons et trous) se déplacent de la source froide à la source chaude (au sens [[thermodynamique]]) dans les deux branches du couple. Ce faisant, ils contribuent à un transfert d’[[entropie]] de la source froide à la source chaude, et donc à un flux thermique qui va s’opposer à celui de la conduction thermique. Si les matériaux choisis ont de bonnes propriétés thermoélectriques (nous verrons par la suite quels sont les paramètres importants), ce flux thermique créé par le mouvement des porteurs de charge sera plus important que celui de la conductivité thermique. Le système permettra donc d'évacuer de la chaleur depuis la source froide vers la source chaude, et agira alors comme un réfrigérateur. Dans le cas de la génération d'électricité, c'est le flux de chaleur qui entraîne un déplacement des porteurs de charge et donc l'apparition d'un courant électrique. === Rendement de conversion et paramètres importants === ==== Calcul du rendement de conversion d'un système thermoélectrique ==== Le calcul du rendement de conversion d'un système thermoélectrique s'effectue en déterminant la relation entre le flux de chaleur et le courant électrique dans le matériau. Il nécessite l'utilisation des relations de Seebeck, Peltier et Thomson (voir plus haut), mais aussi des lois de [[transfert thermique|propagation de la chaleur]] et du [[courant électrique]]. L'exemple suivant présente le calcul du rendement de conversion dans le cas de la réfrigération (celui de la génération d'électricité peut être effectué par des raisonnements analogues). Reprenons donc le schéma précédent. Dans chacune des deux branches du couple, le flux de chaleur généré par l’effet Peltier s’oppose à la conductivité thermique. Les flux totaux sont donc dans la branche p et la branche n : :<math> Q_p=S_pIT-\lambda_pA_p\frac{dT}{dx} \,</math> et <math> Q_n=-S_nIT-\lambda_nA_n\frac{dT}{dx} \,</math> avec x la coordonnées spatiale (voir schéma), λ<sub>p</sub> et λ<sub>n</sub> les conductivités thermiques des matériaux, et A<sub>p</sub> et A<sub>n</sub> leurs sections. La chaleur est donc extraite de la source froide avec un flux Q<sub>f</sub> : :<math> Q_f=(Q_n+Q_p)_{|x=0} \,</math> Dans le même temps, le courant qui parcourt les deux branches est à l’origine d’une création de chaleur par [[effet Joule]] I<sup>2</sup>Ï/A par unité de longueur des branches. En utilisant l’équation de [[Domenicali]]<ref>C. A. Domenicali, Stationary temperature distribution in an electrically heated conductor, Journal of Applied Physics, Vol. 25 (1954), pp. 1310.</ref> et en supposant que le coefficient Thomson est nul (cela revient à supposer que S est indépendant de la température, voir la relation de Thomson), la conservation de l’énergie dans le système s’écrit dans les deux branches : :<math> -\lambda_pA_p\frac{d^2T}{dx^2}=\frac{I^2\rho_p}{A_p}\,</math> et <math> -\lambda_nA_n\frac{d^2T}{dx^2}=\frac{I^2\rho_n}{A_n}\,</math> En considérant des conditions aux limites T=T<sub>f</sub> en x=0 et T=T<sub>c</sub> en x=L<sub>p</sub> ou x=L<sub>n</sub> avec L<sub>p</sub> et L<sub>n</sub> les longueurs des branches p et n, T<sub>f</sub> et T<sub>c</sub> les températures des sources froide et chaude, Q<sub>f</sub> s'écrit : :<math> Q_f=(S_p-S_n)IT_f-K\triangle\mathrm{T}-\frac{1}{2}I^2R\,</math> avec K et R les [[conduction thermique|conductance thermique]] et [[résistance électrique]] totales des branches du couples : :<math> K=\frac{\lambda_pA_p}{L_p}+\frac{\lambda_nA_n}{L_n}\,</math> et <math> R=\frac{L_p\rho_p}{A_p}+\frac{L_p\rho_p}{A_p}\,</math> La [[Puissance (physique)|puissance électrique]] W dissipée dans le couple correspond à l’[[effet Joule]] et à l’effet Seebeck, soit : :<math> W=I[(S_p-S_n)\triangle\mathrm{T}+IR]\,</math> Le rendement du système de réfrigération thermoélectrique correspond au rapport de la chaleur extraite de la source froide à la puissance électrique dissipée, soit : :<math> \eta=\frac{Q_f}{W}=\frac{(S_p-S_n)IT_f-K\triangle\mathrm{T}-\frac{1}{2}RI^2}{I[(S_p-S_n)\triangle\mathrm{T}+IR]}\,</math> Pour une différence de température ΔT donnée, le rendement dépend du [[courant électrique]] imposé. Deux valeurs particulières du courant permettent de maximiser soit le rendement de conversion η soit la [[transfert thermique|chaleur]] extraite de la source froide Q_f. Par un raisonnement similaire, le rendement d’un couple p-n utilisé en génération d’électricité sera donné par le rapport de la [[Puissance (physique)|puissance]] électrique utile délivrée à une [[résistance électrique|résistance]] de charge r au flux thermique traversant le matériau : :<math> \eta=\frac{P_u}{Q_c}=\frac{I[(S_p-S_n)\triangle\mathrm{T}+IR]}{(S_p-S_n)IT_c+K\triangle\mathrm{T}-\frac{1}{2}(R+r)I^2}\,</math> Ici encore, deux valeurs particulières de I maximisent soit le rendement de conversion soit la puissance électrique délivrée par le système. ==== Paramètres importants pour obtenir un bon rendement ==== En maximisant ces deux rendements de conversion, on peut montrer qu’ils dépendent uniquement des températures T<sub>f</sub> et T<sub>c</sub> et d'un nombre adimensionnel (sans unité) Z<sub>pn</sub>T<sub>M</sub> appelé "facteur de mérite" (T<sub>M</sub> est la température moyenne du système, T<sub>M</sub>=(T<sub>f</sub>+T<sub>c</sub>)/2) dont l'expression est : :<math> Z_{pn}=\frac{(S_p-S_n)^2}{RK} \,</math> On remarque que Z<sub>pn</sub> pour un couple n’est pas une quantité intrinsèque au matériau mais dépend des dimensions relatives des branches du module au travers de R et K ([[résistance électrique]] et [[conduction thermique|conductance thermique]]). Le rendement de conversion du système (en génération d'électricité comme en refroidissement) est maximum lorsque Z<sub>pn</sub> est maximum, donc lorsque le produit RK est minimum, ce qui est vérifié quand : :<math> \frac{L_nA_p}{L_pA_n}=\left (\frac{\rho_p\lambda_n}{\rho_n\lambda_p}\right )^2\,</math> Le facteur de mérite Z<sub>pn</sub> devient alors fonction uniquement de paramètres intrinsèques aux matériaux : :<math> Z_{pn}=\frac{(S_p-S_n)^2}{(\sqrt{\lambda_p\rho_p}+\sqrt{\lambda_n\rho_n})^2}\,</math> Pour obtenir un rendement de conversion maximum, il convient donc de choisir les matériaux constituant le couple de manière à maximiser Z<sub>pn</sub>. En règle générale, cela ne revient pas simplement à optimiser individuellement les deux matériaux pour optimiser leurs facteurs de mérite respectifs Z=S<sup>2</sup>/(Ïλ). À la plupart des températures utilisées dans la pratique, et notamment celles utilisées pour la génération d’électricité, les propriétés thermoélectriques des meilleurs matériaux de type p et de type n sont similaires. Dans ce cas, le facteur de mérite du couple est proche de la moyenne des facteurs de mérite individuels, et il est raisonnable d’optimiser les deux matériaux indépendamment l’un de l’autre. L’optimisation de matériaux pour une utilisation dans la conversion d’énergie par effet thermoélectrique passe donc nécessairement par l’optimisation de leurs propriétés de transport électriques et thermiques de manière à maximiser le facteur de mérite : :<math> ZT=\frac{S^2}{\rho\lambda}\,</math> Un bon matériau thermoélectrique possèdera donc simultanément un [[effet Seebeck|coefficient Seebeck]] élevé, une bonne [[conductivité électrique]] (c.a.d. une faible resistance électrique) , et une faible [[conductivité thermique]]. [[Image:rendement thermoélectrique et facteur de mérite.PNG|left|450px|thumb|Evolution du rendement de conversion en fonction du facteur de mérite]] La figure ci-contre montre l'évolution du rendement de conversion d'un système thermoélectrique dans des conditions idéales en fonction du facteur de mérite ZT. Par exemple, si ZT=1 et que la différence de température est de 300°C, le rendement de conversion sera de 8%, ce qui signifie suivant le cas (génération d'électricité ou réfrigération) que 8% de la [[transfert thermique|chaleur]] traversant le matériau sera convertie en [[électricité]], ou bien que la [[transfert thermique|chaleur]] extraite par le refroidissement correspondra à 8% de la [[Puissance (physique)|puissance]] électrique employée. === Modules thermoélectriques === ==== Optimisation géométrique ==== Nous avons vu que les propriétés de conversion d'un couple de matériaux thermoélectriques constituant un module ne sont pas uniquement intrinsèques : elles dépendent également de la géométrie du système (longueur et section des branches du module) dont dépendent la [[résistance électrique]] R et la [[conduction thermique|conductance thermique]] K des branches. Il faut en effet que K soit suffisamment faible pour qu'un [[gradient]] thermique puisse être maintenu, tout en étant suffisamment élevée pour que de la [[transfert thermique|chaleur]] traverse le module : si K est nulle aucune chaleur ne traverse le module et il n'y a donc pas de conversion. De même, R doit être choisi de manière à avoir le meilleur compromis possible entre la [[Puissance (physique)|puissance électrique]] et la [[différence de potentiel]] électrique. Une fois les matériaux constituant le module choisis (grâce au facteur de mérite ZT), il est donc nécessaire d'optimiser la géométrie du système pour pouvoir obtenir le rendement de conversion, la [[Puissance (physique)|puissance électrique]] ou la [[transfert thermique|chaleur]] extraite maximum en fonction de l'application du module. ==== Modules segmentés ==== Les matériaux utilisés dans les modules de conversion thermoélectrique ne sont généralement efficaces que dans une gamme de température restreinte. Ainsi, l'alliage SiGe utilisé pour l'alimentation de la sonde [[programme Voyager|Voyager]] n'est efficace qu'à des températures supérieures à 1000K environ. Il peut donc être intéressant, pour des applications ou le [[gradient]] de température est très grand, d'utiliser plusieurs matériaux thermoélectriques dans chaque branche, chacun dans la gamme de température pour laquelle il est le plus efficace. On parle alors de module thermoélectrique ''segmenté''. [[Image:Module thermoelectrique segmente.png|right|thumb|400px|Module thermoélectrique "segmenté"]] La figure ci-contre illustre le concept de module thermoélectrique segmenté. Nous avons ici un [[gradient]] de température très important (700K de différence entre la zone chaude et la zone froide), et aucun matériau connu n'est efficace dans toute la gamme de température. Chacune des deux branches du couple est donc formé de plusieurs matériaux (ici deux pour la branche n et trois pour la branche p). La longueur de chacun de ces matériaux est choisie pour qu'il soit utilisé dans la gamme de température où il est le plus efficace. Un tel module permettra donc d'obtenir un rendement de conversion, une [[Puissance (physique)|puissance électrique]], ou une [[transfert thermique|chaleur]] extraite, nettement plus élevée que si chaque branche n'était composée que d'un seul matériau. Ainsi, les meilleurs rendements obtenus en laboratoire avec ce type de modules sont à l'heure actuelle voisins de 15% (ce qui signifie que 15% de la [[transfert thermique|chaleur]] traversant le matériau est convertie en [[Puissance (physique)|puissance électrique]]). Les modules segmentés sont cependant d'un prix beaucoup plus élevés que les modules "simples", ce qui les restreint à des applications pour lesquelles le coût n'est pas le facteur de choix décisif. == Les matériaux thermoélectriques == === Matériaux utilisés dans les dispositifs actuels === ====Basses températures==== Le matériau thermoélectrique le plus couramment utilisé aux basses températures (150K-200K), est formé sur la base de '''Bi<sub>1-x</sub>Sb<sub>x</sub>''' (alliage de [[bismuth]] et d'[[antimoine]]) et ne présente malheureusement de bonnes propriétés thermoélectriques qu’en type n (conduction par les électrons), ce qui restreint le rendement de conversion du système puisque aucun matériaux n'est efficace en type p dans cette gamme de température (rappelons qu'un système de conversion thermoélectrique est constitué ''à la fois'' de branches p et n). Curieusement, alors que ses propriétés sont relativement moyennes (ZT~0,6), l’application d’un [[champ magnétique]] permet de doubler le facteur de mérite qui dépasse alors l’unité. Ce matériau est donc généralement utilisé en association avec un [[aimant]] permanent.<ref>W. M. Yim and A. Amith, Bi-Sb alloys for magneto-thermoelectric and thermomagnetic cooling, Solid-State Electron., Vol. 15, No. 10 (1972), pp. 1141.</ref> ====Voisinage de la température ambiante==== Le matériau le plus étudié à l’heure actuelle est '''Bi<sub>2</sub>Te<sub>3</sub>''' (alliage de [[bismuth]] et de [[tellure]]). Il est utilisé dans tous les dispositifs fonctionnant au voisinage de la température ambiante, ce qui inclut la plupart des dispositifs de réfrigération thermoélectrique. Les meilleures performances sont obtenues lorsqu’il est allié à '''Sb<sub>2</sub>Te<sub>3</sub>''' (alliage d'[[antimoine]] et de [[tellure]]) qui possède la même [[structure cristalline]].<ref>O. Yamashita and S. Tomiyoshi, Effect of annealing on thermoelectric properties of bismuth telluride compounds, Japanese Journal of Applied Physics, Vol. 42 (2003), pp. 492.</ref> Des échantillons de type p comme de type n peuvent être obtenus par de petites variations de composition au voisinage de la [[stoechiométrie]]. Dans les deux cas, des valeurs du facteur de mérite ZT proches de 1 sont obtenues au voisinage de la température ambiante.<ref>H. Goldsmid, Thermoelectric refrigeration, 1964</ref> Ces bonnes valeurs de ZT sont obtenues en partie grâce à la très faible conductivité thermique λ, proche de 1 W.m<sup>-1</sup>.K<sup>-1</sup> dans les meilleurs matériaux. ==== Températures intermédiaires ==== Pour une utilisation à moyenne température (550K-750K environ), le matériau le plus utilisé est le [[tellure]] de [[plomb]] '''PbTe''' et ses alliages '''(PbSn)Te''' (Sn = [[étain]]). Les deux composés PbTe et SnTe peuvent former une [[solution solide]] complète ce qui permet d’optimiser le gap (bande interdite du [[semi-conducteur]]) à la valeur désirée. Les meilleurs matériaux obtenus ont des facteurs de mérite proche de l’unité autour de 700K.<ref>Z. H. Dughaish, Lead telluride as a thermoelectric material for thermoelectric power generation, Physica B, Vol. 322 (2002), pp. 205.</ref> Cependant, ces valeurs sont obtenues uniquement dans les matériaux de type n. PbTe ne peut donc pas à l’heure actuelle constituer à lui seul les deux branches d’un thermoélément. La branche p est donc généralement constituée d’un matériau de type TAGS (pour [[Tellure]]-[[Antimoine]]-[[Germanium]]-[[Argent (métal)|Argent]]), qui quant à lui permet d’obtenir des facteurs de mérite supérieurs à l’unité à 700K uniquement en type p.<ref>J. W. Sharp, Some properties of Ge-Te based thermoelectric materials, Proc 22nd International Conference on Thermoelectrics, La Grand Motte, France, 2003, pp. 267.</ref> Il apparaît donc crucial de développer un nouveau matériau qui puisse être utilisé à la fois en type p et en type n dans cette gamme de température. Il est en effet plus facile industriellement d'utiliser le même type de matériau pour les deux branches (et cela permettrait de plus d’éliminer le [[tellure]] fortement toxique).<ref>fiche internationale de sécurité pour le tellure : http://www.cdc.gov/niosh/ipcsnfrn/nfrn0986.html</ref> ==== Hautes températures ==== Les [[alliage]]s à base de [[silicium]] et [[germanium]] possèdent de bonnes caractéristiques thermoélectriques aux hautes températures (au-dessus de 1000K) et sont notamment utilisés pour la génération d’électricité dans le domaine spatial.<ref>B. Abeles, D. S. Beers, G. D. Cody et coll., Thermal conductivity of Ge-Si alloys at high temperatures, Physical Review, Vol. 125 (1962), pp. 44.</ref>{{,}}<ref>O. Yamashita and N. Sadatomi, Thermoelectric properties of Si1-xGex (x<0.10) with alloy and dopant segregations, Journal of Applied Physics, Vol. 88, No. 1 (2000), pp. 245.</ref> Ce sont notamment des alliages de ce type qui sont utilisés pour l'alimentation en électricité de la sonde Voyager. === Optimisation des matériaux thermoélectriques === L’expression du facteur de mérite ZT=(S<sup>2</sup>T)/(Ïλ) résume à elle seule la difficulté à optimiser les propriétés de transport d’un matériau thermoélectrique. Intuitivement, il paraît difficile pour un matériau de posséder simultanément une bonne conductivité électrique et une mauvaise conductivité thermique, caractéristique des isolants. Idéalement, un bon matériau thermoélectrique devrait ainsi posséder tout à la fois la conductivité électrique d'un [[métal]] et la conductivité thermique d'un [[verre]]!<ref>G. A. Slack, in Thermoelectric Handbook- Ed. Rowe DM- Chemical Rubber Company, Boca Raton FL (1995), pp. 407.</ref> Le numérateur du facteur de mérite ZT, S<sup>2</sup>σ (σ est la [[conductivité électrique]], inverse de la [[résistivité|résistivité électrique]] : σ=1/Ï) est nommé facteur de puissance. En génération d’électricité par effet thermoélectrique, la puissance utile sera d’autant plus grande que le facteur de puissance sera grand. Malheureusement, le coefficient Seebeck et la conductivité électrique ne sont pas indépendants l’un de l’autre, et varient de manière opposée avec la concentration en porteurs de charge (concentration d'électrons ou de trous, voir [[semi-conducteur]]) : les meilleurs pouvoirs thermoélectriques seront obtenus dans des matériaux de faible concentration en porteurs tandis que les meilleures conductivités électriques le seront dans des matériaux à forte concentration de porteurs. Par compromis, les meilleurs matériaux thermoélectriques appartiendront donc à la classe des [[semi-conducteur]]s. Le second facteur important dans l’expression du facteur de mérite ZT (en sus du facteur de puissance) est la [[conductivité thermique]] : un matériau aura des propriétés thermoélectriques optimales pour une faible conductivité thermique. En effet, de manière intuitive, une bonne conductivité thermique tendrait à s’opposer à l’établissement du [[gradient]] thermique : la chaleur traverserait le matériau sans rencontrer de résistance. L'optimisation des matériaux nécessitera donc de chercher à diminuer la conductivité thermique, sans dégrader la conductivité électrique. Seule la contribution des vibrations du réseau (voir [[conductivité thermique]]) devra donc être diminuée, et pas la contribution due aux porteurs de charge ([[semi-conducteur|électrons ou trous]]) == Voies de recherche == Nous avons vu dans le paragraphe précédent que les meilleurs matériaux utilisés à l'heure actuelle dans les dispositifs de conversion thermoélectrique possèdent des '''facteurs de mérite ZT''' voisins de 1. Cette valeur ne permet pas d'obtenir des rendements de conversion qui rendent ces systèmes rentables économiquement pour des applications "grand public". Par exemple, il faudrait des matériaux pour lesquels ZT=3 pour pouvoir développer un réfrigérateur domestique concurrentiel. Pour les systèmes de génération d'électricité (qui pourrait être utilisés par exemple sur le [[pot d'échappement]] de voitures ou camions, ou sur des [[microprocesseur]]s), deux moyens permettraient d'augmenter la rentabilité des systèmes : une augmentation significative de leurs rendements (avec par exemple ZT>2), ou bien une diminution des coûts. Le but de ce paragraphe est de présenter de manière non exhaustive quelques voies de recherche actuellement suivies, tant dans des laboratoires industriels que publics. === Structures de '''basse dimensionnalités''' === On nomme structure de ''basse dimensionnalité'' une mise en forme d'un matériau pour laquelle une ou plusieurs dimensions sont très petites par rapport aux autres. C'est par exemple le cas des couches minces en [[microélectronique]]s (structure 2D), de nanofils (structure 1D) ou de nanopoudres (structure 0D), par opposition au matériau massif qui possèdent 3 dimensions. Ces structures possèdent généralement des propriétés assez différentes du matériau massif de même composition. Dans le domaine de la thermoélectricité, le but de la recherche est double : chercher à améliorer la rendement de conversion en utilisant des structures de basse dimensionnalités, tout en bénéficiant des systèmes de fabrication en grande série utilisées en [[microélectronique]]. L’étude des structures de basses dimensionnalités est devenue très importante depuis que des améliorations notables du facteur de mérite ZT y ont été prédites théoriquement puis observées expérimentalement.<ref>L. D. Hicks and M. S. Dresselhaus, Effect of quantum well structures on the thermoelectric figure of merit, Physical Review B, Vol. 47 (1993), pp. 12727.</ref> Les deux principaux effets observés sont une forte [[diffusion des ondes|diffusion]] des [[phonon]]s par les [[joint de grain|joints de grains]] (frontières entre les différents grains constituant le matériau) induisant une diminution de la [[conductivité thermique]] de réseau, et des effets de confinement (phénomène de type [[mécanique quantique|quantique]]) des [[semi-conducteur|porteurs de charge]] qui modifient fortement les propriétés de transport électrique ([[conductivité électrique]] et [[effet Seebeck|coefficient Seebeck]]). Des valeurs très élevées du facteur de mérite ZT, de l’ordre de 2.5 à la température ambiante, ont ainsi été observées en laboratoire dans des structures en couches minces.<ref>R. Venkatasubramanian, E. Siivola, T. Colpitts et coll., Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, Vol. 413 (2001), pp. 597.</ref> À l'heure actuelle, ces structures sont principalement envisagées pour des applications à des températures basses ou moyennes (<150-200°C). Une des principales difficultés est en effet d'obtenir des couches minces thermoélectriques dont les propriétés ne se dégradent pas avec la température. === Identification et optimisation de nouveaux matériaux === ==== Principes ==== Nous avons vus précédemment que pour obtenir un bon rendement de conversion, les matériaux doivent avoir une [[conductivité thermique]] la plus faible possible et une [[conductivité électrique]] la plus forte possible. Il doit donc idéalement conduire le [[courant électrique]] comme un [[métal]], et la [[transfert thermique|chaleur]] comme un [[verre]]. Différentes propriétés peuvent permettre à la [[conductivité thermique]] d’un [[cristal]] (les métaux ont une [[cristallographie|structure cristallisée]]) de s’approcher de celle d’un [[verre]] (les verres sont [[amorphe]]s). Ce sont principalement : * '''Une [[cristallographie|structure cristalline]] complexe'''. En effet la plus grande partie de la [[transfert thermique|chaleur]] est transportée par les modes de [[phonon|phonons acoustiques]]. Or un matériau possédant N atomes par [[maille]] aura 3 modes acoustiques, et 3(N-1) modes optiques, d’où l’intérêt de structures complexes pour lesquelles N est grand et la majorité des modes de phonon sont des modes optiques qui transportent peu la chaleur.<ref>G. A. Slack, The thermal conductivity of non metalic crystals, Solid State Physics, Vol. 34 (1979), pp. 1.</ref> * '''Des [[atome]]s faiblement liés''' au reste du réseau cristallin (par exemple des atomes petits dans une cage grande), ou dont les positions ne sont pas parfaitement définies (sous-positions autour d’un même site, amplitudes de vibrations importantes). Ces atomes induisent un désordre important qui contribue à la diffusion des phonons et donc à la diminution de la [[conductivité thermique]]. En revanche, comme ils participent peu à la [[conductivité électrique]], le désordre n'occasionne pas de dégradation trop importante de cette conductivité. ==== Matériaux prometteurs particulièrement étudiés ==== Actuellement, trois classes de matériaux sont particulièrement étudiées suivant ces recommandations (structure complexe et atomes faiblement liés). Ce sont : * Les composés de type '''[[semi-Heusler]]''', de formule générale XYZ avec X et Y des [[métaux de transition]] et Z un [[métalloïde]] ou un métal, par exemple ZrNiSn ([[zirconium]], [[nickel]], [[étain]]). Ces composés présentent des facteurs de puissance S<sup>2</sup>σ très élevés, à la fois en type p et en type n. L’une de leurs caractéristiques les plus intéressantes est la possibilité de [[dopage (semi-conducteur)|dopage]] sur chacun des trois sites, ce qui tend en outre à modifier les vibrations du réseau. Cependant leurs conductivités thermiques sont trop élevées, et les meilleurs ZT obtenus à l’heure actuelle sont de l’ordre de 0,7 à 700K-800K.<ref>Q. Shen, L. Zhang, L. Chen et coll., Thermoelectric properties of ZrNiSn based half Heusler compounds by solid state reaction method, Journal of Materials Science Letters, Vol. 20 (2001), pp. 2197.</ref> * La seconde famille de composés, qui présente un très grand nombre de variétés structurales, est celle des '''[[clathrate]]s'''. Ces composés ont une structure relativement ouverte constituée, pour les composés les plus étudiés à l’heure actuelle, d’un réseau de Si ([[silicium]]), GaGe ([[gallium]] [[germanium]]) ou GaSn ([[gallium]] [[étain]]) formant de grandes cages dans lesquels peuvent être insérés des atomes lourds (notamment des [[terres rares]] ou des [[métal alcalino-terreux|alcalino-terreux]]).<ref>P. Rogl, Y. Mudryk, C. Paul et coll., Structural Chemistry, Constitution and Properties of Clathrates, 22nd International Conference on Thermoelectrics, La Grande Motte, France, 2003, oral.</ref> Leur conductivité thermique est similaire à celle du verre (l’atome inséré dans la cage diffuse fortement les phonons) alors que les propriétés électroniques, qui sont principalement fonction du réseau, sont bonnes. Les meilleurs facteurs de mérite obtenus approchent l’unité autour de 800K.<ref>H. Anno, M. Hokazono, M. Kawamura et coll., Thermoelectric properties of Ba8GaxGe46-x clathrate compounds, Proc 21st conference on thermoelectrics, Long Beach (CA) USA, 2002, pp. 77.</ref> * La troisième famille très étudiée est celle des '''[[skutterudite]]s'''. Ces composés ont une [[structure cristalline|structure cubique]] formé d'un réseau de type MX<sub>3</sub> (avec M un [[métal de transition]] et X = [[arsenic]], [[phosphore]] ou [[antimoine]]), avec au centre de ce réseau une grande cage dans laquelle peuvent être insérés des atomes lourds (notamment des [[terres rares]]).<ref>I. Z. Oftedal, Die Kristallstruktur von skutterudit und speiskobalt chloanthit, Zeitschrift fuer Kristallographie, Vol. 66 (1928), pp. 517.</ref>{{,}}<ref>W. Jeitschko and D. J. Braun, LaFe4P12 with filled CoAs type structure and isotypic LnxMyPz, Acta Crystallographica, Vol. 33 (1977), pp. 3401.</ref> Ces composés possèdent des coefficients Seebeck très élevés ainsi qu'une bonne [[conductivité électrique]], mais leurs conductivités thermiques demeurent trop élevées. Les meilleurs facteurs de mérite obtenus sont voisins de 1.4 autour de 800K.<ref>X. F. Tang, L. M. Zhang, R. Z. Yuan et coll., High temperature thermoelectric properties of n-type BayNixCo4-xSb12, Journal of Materials Research, Vol. 16, No. 12 (2001), pp. 3343.</ref>{{,}}<ref>X. Tang, L. Chen, T. Goto et coll., Effects of Ce filling fraction and Fe content on the thermoelectric properties of Co rich CeyFexCo4-xSb12, Journal of Materials Research, Vol. 16, No. 3 (2001), pp. 837.</ref> == Voir également == === Bibliographie === En l'absence d'ouvrage de référence traitant de la thermoélectricité en français, il est possible de consulter : * {{en}} ''Thermoelectric Handbook'', Ed. Rowe DM - Chemical Rubber Company, Boca Raton (Floride) 1995. * {{en}} GS Nolas (''et al.''), ''Thermoelectric, basic principles and new materials developments'', Springer 2001. * {{en}} GD Mahan (''et al.''), ''Thermoelectric materials: new approaches to an old problem'', Physics Today, Vol. 50 (1997), p42. === Articles connexes === Pour une meilleure compréhension de cet article, il est intéressant de se référer aux notions développées dans : * [[effet Seebeck]] * [[effet Peltier]] * [[effet Thomson]] * [[semi-conducteur]] * [[conductivité thermique]] * [[conductivité électrique]] * [[Refroidissement thermoélectrique]] === Lien externe === * {{en}} [http://www.its.org/ Société internationale de thermoélectricité] == Notes et Références == Cet article est basé en grande partie sur l'introduction de la thèse de doctorat "''Étude de skutterudites de terres-rares (R) et de métaux d (M) du type RM<sub>4</sub>Sb<sub>12</sub> : de nouveaux matériaux thermoélectriques pour la génération d’électricité.''<ref>Thèse disponible en ligne sur [http://tel.ccsd.cnrs.fr/ tel.ccsd.cnrs.fr]</ref> {{Références|colonnes=2}} {{Portail|physique|électricité et électronique}} {{Article de qualité|date=17 juillet 2005|oldid=2756732}} [[Catégorie:Thermoélectricité]] [[Catégorie:Transfert thermique]] [[Catégorie:énergie]] [[Catégorie:électronique]] [[Catégorie:Génie énergétique]] [[bg:ТермоелектричеÑтво]] [[ca:Termoelectricitat]] [[de:Thermoelektrizität]] [[en:Thermoelectricity]] [[es:Termoelectricidad]] [[sl:TermoelektriÄni pojav]]</text> </revision> </page>