#### Experiments in Learning to Solve Formal Analogical Equations

Rafik Rhouma and Philippe Langlais



Dept. I.R.O. Université de Montréal, Québec, Canada felipe@iro.umontreal.ca

#### ICCBR 2018

Analogy Formal Analogy

# Analogy

[x : y :: z : t] stands for a proportional analogy

x is to y as z is to t



Analogy Formal Analogy

# Analogy

[x : y :: z : t] stands for a proportional analogy

x is to y as z is to t





Ph. Langlais

LEARNING TO SOLVE FORMAL ANALOGICAL EQUATIONS

Analogy Formal Analogy

Formal Analogies (or Analogies on Forms)

•  $[x \setminus y \bigcirc z \supset t]$  denotes a formal analogy

- $1 \quad [funny \setminus funniest \bigcirc lucky \supset luckiest]$
- 2 [suggère \ suggérer ingère ⊃ ingérer]
- 3 [This guy drinks too much \ This boat sinks () These guys drank too much ⊃ These boats sank]
- Several operational definitions of formal analogy [?, ?]

Analogy Formal Analogy

# Definition of [?]

 $[x \setminus y \bigcirc z \supset t]$  iff we can find *d*-factorizations  $f_x, f_y, f_z$  and  $f_t$  such that,  $\forall i \in [1, d]$ :

$$(f_{\mathbf{y}}^{(i)}, f_{\mathbf{z}}^{(i)}) \in \left\{ (f_{\mathbf{x}}^{(i)}, f_{\mathbf{t}}^{(i)}), (f_{\mathbf{t}}^{(i)}, f_{\mathbf{x}}^{(i)}) \right\}$$

[this guy drinks too much \ this boat sinks ○ these guys drank too much ⊃ these boats sank] because:

| Х | $\equiv$ | this          | guy      | $\epsilon$ | dr | inks    | too much   |
|---|----------|---------------|----------|------------|----|---------|------------|
| у | ≡        | this          | boat     | $\epsilon$ | s  | inks    | $\epsilon$ |
| z | $\equiv$ | these         | guy      | s          | dr | ank     | too much   |
| + |          | Also a second | la a a t | _          | _  | a se la |            |

Analogy Formal Analogy

# Definition of [?]

 $[x \setminus y \bigcirc z \supset t]$  iff we can find *d*-factorizations  $f_x, f_y, f_z$  and  $f_t$  such that,  $\forall i \in [1, d]$ :

$$(f_{\mathbf{y}}^{(i)}, f_{\mathbf{z}}^{(i)}) \in \left\{ (f_{\mathbf{x}}^{(i)}, f_{\mathbf{t}}^{(i)}), (f_{\mathbf{t}}^{(i)}, f_{\mathbf{x}}^{(i)}) \right\}$$

[this guy drinks too much \ this boat sinks ○ these guys drank too much ⊃ these boats sank] because:

| Х | $\equiv$ | this  | guy  | $\epsilon$ | dr | inks | too much   |
|---|----------|-------|------|------------|----|------|------------|
| у | ≡        | this  | boat | $\epsilon$ | s  | inks | $\epsilon$ |
|   |          |       |      |            |    |      |            |
| Z | $\equiv$ | these | guy  | S          | dr | ank  | too much   |



Finite State Automaton alea Word2Vec Our Approach

(Yvon & al., 2004)  
$$[x \setminus y \bigcirc z \supset t] \iff t \in (y \bullet z) \setminus x$$

shuffle a • b read sequences in a and b from left to right, allowing to switch from one string to another

spondy on dontil algiatis et ond  $spondony la ltitisgia \in spondy la lgia \circ on dontitis$ 

#### • complement $a \setminus b$ strings obtained by removing substring b in a

 $spondylitis \in spondyondontilalgiatis \setminus ondontalgia$  $spydoniltis \in spondyondontilalgiatis \setminus ondontalgia$ 

 $\{(y \bullet z) \setminus x\}$  is a rational language

Finite State Automaton alea Word2Vec Our Approach

édition • dicteur \ éditeur



#### idction, diction, idciton, diicton, diciton

Finite State Automaton alea Word2Vec Our Approach

édition • dicteur \ éditeur



## idction, diction, idciton, diicton, diciton

Finite State Automaton alea Word2Vec Our Approach

édition • dicteur \ éditeur



## idction, diction, idciton, diicton, diciton

Finite State Automaton alea Word2Vec Our Approach

édition • dicteur \ éditeur



# idction, diction, idciton, diicton, diciton

Context Finite State Automa Equation Solving alea Experiments Word2Vec Conclusion Our Approach

Solver alea [?]

- building the automaton typically is combinatorial
- ▶ alea randomly samples p shuffles of y and z and complements them (with x)

#### notes:

- ▶ for too low values of *p*, alea may fail to identify a solution
- different shuffles may lead (after complementation) to the same solution
- solutions are ranked in decreasing order of frequency

Context Finite State Automato Equation Solving alea Experiments Word2Vec Conclusion Our Approach

[this guy drinks too much  $\setminus$  this boat sinks  $\bigcirc$  those guys drink too much  $\supset$  ?]

| $\rho = 20$          | n = 8            |  |  |  |
|----------------------|------------------|--|--|--|
| t = 0.0003           | $rank=\phi$      |  |  |  |
| thos_boate_sinks (2) |                  |  |  |  |
| tho_boatse_sinks (2) |                  |  |  |  |
| thoboatse            | <i>sinks</i> (2) |  |  |  |
|                      |                  |  |  |  |

 $\begin{array}{ll} \rho = 1000 & n = 28 \\ t = 0.009 & rank = 2 \\ \hline those\_boat\_ssink \ (5) \\ those\_boats\_sink \ (5) \\ thoes\_tboa\_sinks \ (5) \end{array}$ 

- ρ: nb of shuffles sampled
- n: # of solutions proposed

 $\begin{array}{ll} \rho = 100 & n = 28 \\ t = 0.001 & rank = 13 \\ \hline thoboatse\_sinks (2) \\ tho\_boatse\_sinks (2) \\ those\_sboat\_sink (2) \end{array}$ 

 $ho = 10^6$  n = 19796 t = 3.82 rank = 10those\_boat\_sinks (2550) those\_boat\_sink (1037) those\_boat\_ssink (999)

- rank: rank of the reference solution (φ ≡ not found)
- ► *t*: time (in sec.)

Context Finite State Automator Equation Solving alea Experiments Word2Vec Conclusion Our Approach

[this guy drinks too much  $\setminus$  this boat sinks  $\bigcirc$  those guys drink too much  $\supset$  ?]

| $\rho = 20$          | n = 8            |  |  |
|----------------------|------------------|--|--|
| t = 0.0003           | $rank=\phi$      |  |  |
| thos_boate_sinks (2) |                  |  |  |
| tho_boatse_sinks (2) |                  |  |  |
| thoboatse            | <i>sinks</i> (2) |  |  |
|                      |                  |  |  |

 $\begin{array}{ll} \rho = 1000 & n = 28 \\ t = 0.009 & rank = 2 \\ \hline those\_boat\_ssink \ (5) \\ those\_boats\_sink \ (5) \\ thoes\_tboa\_sinks \ (5) \end{array}$ 

- ρ: nb of shuffles sampled
- n: # of solutions proposed

 $\rho = 100 \qquad n = 28$   $t = 0.001 \qquad rank = 13$   $thoboatse\_sinks (2)$   $tho\_boatse\_sinks (2)$  $those\_sboat\_sink (2)$ 

- $ho = 10^6$  n = 19796 t = 3.82 rank = 10those\_boat\_sinks (2550) thoses\_boat\_sink (1037) those\_boat\_ssink (999)
  - rank: rank of the reference solution (φ ≡ not found)
  - ► *t*: time (in sec.)

Context Finite State Automaton Equation Solving alea Experiments Word2Vec Conclusion Our Approach

[this guy drinks too much  $\setminus$  this boat sinks  $\bigcirc$  those guys drink too much  $\supset$  ?]

| $\rho = 20$          | n = 8            |  |  |
|----------------------|------------------|--|--|
| t = 0.0003           | $rank = \phi$    |  |  |
| thos_boate_sinks (2) |                  |  |  |
| tho_boatse_sinks (2) |                  |  |  |
| thoboatse            | <i>sinks</i> (2) |  |  |

$$\begin{array}{ll} \rho = 1000 & n = 28 \\ t = 0.009 & rank = 2 \\ those\_boat\_ssink \ (5) \\ those\_boats\_sink \ (5) \\ thoes\_tboa\_sinks \ (5) \end{array}$$

- $\rho$ : nb of shuffles sampled
- n: # of solutions proposed

 $\begin{array}{l} \rho = 100 \quad n = 28\\ t = 0.001 \quad rank = 13\\ \hline thoboatse\_sinks \ (2)\\ tho\_boatse\_sinks \ (2)\\ those\_sboat\_sink \ (2)\\ \end{array}$ 

 $ho = 10^6$  n = 19796 t = 3.82 rank = 10those\_boat\_sinks (2550) thoses\_boat\_sink (1037) those\_boat\_ssink (999)

- rank: rank of the reference solution (φ ≡ not found)
- t: time (in sec.)

Context Finite State Automaton Equation Solving alea Experiments Word2Vec Conclusion Our Approach

[this guy drinks too much  $\setminus$  this boat sinks  $\bigcirc$  those guys drink too much  $\supset$  ?]

| $\rho = 20$          | n = 8       |  |  |  |
|----------------------|-------------|--|--|--|
| t = 0.0003           | $rank=\phi$ |  |  |  |
| thos_boate_sinks (2) |             |  |  |  |
| tho_boatse_sinks (2) |             |  |  |  |
| thoboatsesinks (2)   |             |  |  |  |
|                      |             |  |  |  |

 $\begin{array}{ll} \rho = 1000 & n = 28 \\ t = 0.009 & rank = 2 \\ \hline those\_boat\_ssink \ (5) \\ those\_boats\_sink \ (5) \\ thoes\_tboa\_sinks \ (5) \end{array}$ 

- $\rho$ : nb of shuffles sampled
- n: # of solutions proposed

 $\rho = 100 \qquad n = 28$   $t = 0.001 \qquad rank = 13$   $thoboatse\_sinks (2)$   $tho\_boatse\_sinks (2)$  $those\_sboat\_sink (2)$ 

$$ho = 10^6$$
  $n = 19796$   
 $t = 3.82$   $rank = 10$   
thoes\_boat\_sinks (2550)  
those\_boat\_sink (1037)  
those\_boat\_ssink (999)

- rank: rank of the reference solution (φ ≡ not found)
- ► *t*: time (in sec.)

Finite State Automato alea Word2Vec Our Approach

## Solver word2vec

• 
$$queen - king \sim woman - man$$

$$\hat{t} = \operatorname*{argmax}_{t \in V} \cos(t, z - x + y)$$

- Can also solve syntactic equations: [work \ worked ○ accept ⊃ ?] ▷ accepted
- Note: rank words in V but does not generate new ones

Context Finite State Au Equation Solving Experiments Word2Vec Conclusion Our Approach

# Learning to Solve Equations

- ▶ making use of a training set of equations and their solutions  $T = \{((x, y, z), t)\}$  where  $[x \setminus y \bigcirc z \supset t]$
- using structured learning
  - given g : I<sup>3</sup> × I → ℝ which evaluates a fit between a triple of strings in I, i ≡ (x, y, z), and any string t, we seek to find (search):

$$\hat{t} = \mathop{\mathrm{argmax}}_{t \in \mathcal{I}} g(i,t)$$

- we assume a linear model for  $g = \langle \mathbf{w}, \Phi(i, t) \rangle$  parametrized by a feature vector  $\mathbf{w}$  in  $\mathbb{R}^{K}$  and a feature map  $\Phi(i, t)$  decomposed into K binary feature fonctions  $\phi_k : (i, t) \to \{0, 1\}$ .
- we wish to adjust w so as to minimize over T the number of search errors, thanks to the voted perceptron algorithm [?]

Finite State Automator alea Word2Vec Our Approach

## Search



Finite State Automaton alea Word2Vec Our Approach

# Peculiarities of the Search

- ► Tree of depth |x| + |y| + |z| with a branching factor close to 2 on average (too many nodes)
- Only few actions increase the prefix of a solution (in particular, many states with an empty prefix)

In practice, we:

- search space organized as a graph
- check that complementation is still possible
- ► control the maximum number of *X* or *Y* actions that can take place without complementing with *x*

Context Finite State Automaton Equation Solving alea Experiments Word2Vec Conclusion Our Approach

# Feature Map

3 families of binary features for characterizing  $\langle s, i, j, k, p \rangle$ :

language model (14 features) evaluating the likelihood of the prefix p (or shuffle s) so far, according to a n-gram LM trained on an out-domain monolingual corpus.

 $\blacktriangleright \exists ?i: p_{LM}(p_i|p_{i-2}p_{i-1}) < \delta$ 

edit-distance (20 features) to enforce that the solution shares with y and z subsequences

[reader : unreadable :: doer : undoable]

search-based (20k features)

- global: e.g. number of Y or Z actions in a row
- ► local: e.g.  $(x_i, y_j, z_k) \equiv (\mathbf{r}, \mathbf{a}, \mathbf{d})$

Finite State Automato alea Word2Vec Our Approach

# Averaged Voted Perceptron [?]

```
\mathbf{w}, \mathbf{w}_a \leftarrow \mathbf{0}
e \leftarrow 0
repeat
    e \leftarrow e + 1
     for all example (i, t) \in D do
         \hat{t} = \operatorname{argmax}_{t} \mathbf{w}^{T} \Phi(i, t)
         if \hat{t} \neq t then
              \mathbf{w} \leftarrow \mathbf{w} + \Phi(i, t) - \Phi(i, \hat{t})
              \mathbf{w}_a \leftarrow \mathbf{w}_a + \mathbf{w}
until converged
return \mathbf{w}_a/e.|\mathcal{D}|
```

Finite State Automaton alea Word2Vec Our Approach

# Averaged Voted Perceptron Variants

- Not suited for inexact search (our case) [?]
  - update only if  $\Phi(i,t) \Phi(i,\hat{t}) < 0$
- We implemented 4 different variants (using forced-decoding)



standard do not care

safe remove the example if condition is not satisfied

early update on a prefix whenever there is no prefix of a reference solution in the beam

late update on the largest prefix that satisfies the condition



Metrics Solving Analogies on Words Solving Analogies on Phrases

## **Metrics**

accuracy percentage of test equations for which the solver output the correct solution at rank 1 silence percentage of test equations without any solution proposed

Metrics Solving Analogies on Words Solving Analogies on Phrases

## Dataset google

#### Formal analogies of the dataset released by [?]

# of analogies: 4977 word's avr. length: 7

| adjective-adverbeADJ-ADV |       | $[amazing \setminus amazingly \bigcirc serious \supset seriously]$         |
|--------------------------|-------|----------------------------------------------------------------------------|
| opposite                 | OPP   | $[certain \setminus uncertain \bigcirc competitive \supset uncompetitive]$ |
| comparative              | COMP  | $[fast \setminus faster \bigcirc bright \supset brighter]$                 |
| superlative              | SUP   | $[warm \setminus warmest \bigcirc strange \supset strangest]$              |
| present-participle       | PP    | $[code \setminus coding \bigcirc dance \supset dancing]$                   |
| nationality-adverb       | NAT   | $[Australia \setminus Australian \bigcirc Croatia \supset Croatian]$       |
| past-tense               | PAST  | $[decreasing \setminus decreased \bigcirc listening \supset listened]$     |
| plural                   | PLUR  | $[eye \setminus eyes \bigcirc donkey \supset donkeys]$                     |
| plural-verbs             | PL-VB | $[listen \setminus listens \bigcirc eat \supset eats]$                     |

Metrics Solving Analogies on Words Solving Analogies on Phrases

#### Dataset: msr

#### Formal analogies of the dataset released by [?]

| # of analogies: 3664 | word's avr. length: 6                                                                        |
|----------------------|----------------------------------------------------------------------------------------------|
|                      |                                                                                              |
| JJ-JJR               | $[\mathit{high} \setminus \mathit{higher} \bigcirc \mathit{wild} \supset \mathit{wilder}]$   |
| JJR-JJ               | $[greater \setminus greatest \bigcirc earlier \supset earliest]$                             |
| JJS-JJ               | $[\mathit{low} \setminus \mathit{lowest} \bigcirc \mathit{short} \supset \mathit{shortest}]$ |
| NN-NNPOS             | [problem \ problems $\bigcirc$ program $\supset$ programs]                                   |
| VB-VBP               | $[take \setminus takes \bigcirc run \supset runs]$                                           |
| VB-VBD               | [prevent \ prevented $\bigcirc$ consider $\supset$ considered]                               |
| NNPOS-NN             | $[days \setminus day \bigcirc citizens \supset citizen]$                                     |
| VBZ-VBD              | $[believes \setminus believed \bigcirc likes \supset liked]$                                 |

Metrics Solving Analogies on Words Solving Analogies on Phrases

# Accuracy as a function of the beam size (or $\rho$ )

training on msr and testing on google (left), or the other way round (right)



Metrics Solving Analogies on Words Solving Analogies on Phrases

# A Comparison to State-of-the-art

trust early if the solution defines with the equation a formal analogy, word2vec otherwise

|                   | msr   | google |
|-------------------|-------|--------|
| word2vec          | 67%   | 63%    |
| early+word2vec    | 72%   | 71%    |
| Levy et al., 2015 | 72.9% | 75.8%  |

Metrics Solving Analogies on Words Solving Analogies on Phrases

## Comparison by Types



Metrics Solving Analogies on Words Solving Analogies on Phrases

## Dataset

- Much harder to get. We did this:
  - 1 Train a phrasal translation table (from an EN-ES parallel corpus)

a actualizar los acuerdos | to update the agreements | 0.0047 a cambiar la base | to change the basis | 0.0035545 basado en el trabajo de | based on the efforts of |  $2.02579e^-$ 

- 2 Split good enough associations into R a reference set, and M a translation memory
- 3 For each  $(s, e) \in R$ ,
  - use an analogical device to translate *s* into *e*, using *M* as a memory, that is, finding  $(x, x'), (y, y'), (z, z') \in M$  such that:  $[x \setminus y \bigcirc z \supset s]$  and  $[x' \setminus y' \bigcirc z' \supset e]$
  - collecting  $[x' \setminus y' \bigcirc z' \supset e]$  (analogies in the English side)

#### 4 Select:

- simple: a random subset of those equations
- hard: a sampling of equations more difficult for alea to solve

Metrics Solving Analogies on Words Solving Analogies on Phrases

Dataset: simple

| S | simple phrase's avr. length: 16                                    |        |                                                                  |   |   |
|---|--------------------------------------------------------------------|--------|------------------------------------------------------------------|---|---|
| [ | international investigation<br>an international investigation      | \<br>⊃ | international democracy<br>an international democracy            | 0 | ] |
| [ | young girls<br>young girls and                                     | \<br>⊃ | training of young girls<br>training of young girls and           | 0 | ] |
| [ | political situation is viable<br>the political situation is viable | \<br>⊃ | political situation is still<br>the political situation is still | 0 | ] |

Metrics Solving Analogies on Words Solving Analogies on Phrases

## Dataset: hard

| h | ard phra                                        | ase's  | avr. length: 17                                    |   |   |
|---|-------------------------------------------------|--------|----------------------------------------------------|---|---|
| [ | adopted recently by study published recently by | \<br>⊃ | recently adopted by study recently published by    | 0 | ] |
| [ | competition and the competition and of the      | \<br>⊃ | competition and against of competition and against | 0 | ] |
| [ | their governments to their governments and to   | \<br>⊃ | their governments are and their governments are    | 0 | ] |

Metrics Solving Analogies on Words Solving Analogies on Phrases

# Accuracy (Silence)

test  $\equiv$  simple Structured solvers trained on 10 epochs with  $\eta=$  7, against alea with  $\rho=1000$ 

| train    | simple          | hard      |
|----------|-----------------|-----------|
| standard | 30.6 (7)        | 30.1 (10) |
| early    | <b>38.4</b> (8) | 27.6 (10) |
| late     | 26.9 (9)        | 20.3 (11) |
| safe     | 25.4 (8)        | 25.6 (13) |
| alea     | 33              | (0)       |

- alea is competitive, but outperformed by early
- preferable to train on simple analogies

Metrics Solving Analogies on Words Solving Analogies on Phrases

# Accuracy (Silence)

test  $\equiv$  hard Structured solvers trained on 10 epochs with  $\eta=$  7, against alea with  $\rho=1000$ 

| train    | simple           | hard              |
|----------|------------------|-------------------|
| standard | <b>19.6</b> (17) | <b>24.0</b> (56)  |
| early    | <b>26.0</b> (6)  | <b>22.9</b> (7)   |
| late     | <b>18.9</b> (9)  | <b>20.1</b> (6.7) |
| safe     | 14.6 (18.7)      | <b>21.0</b> (56)  |
| alea     | 18 (0)           |                   |

- more challenging dataset !
- structured learning systematically better
- preferable to train on harder to solve analogies
- silence rate rather high

Metrics Solving Analogies on Words Solving Analogies on Phrases

## Accuracy on hard

- after 1 and 10 epochs
- for 2 values of η: 7 and 20



- more epochs is (of course) preferable
- opening the search space as well (expectedly)
- early seems overall the best variant tested

# Conclusion

# Futur

#### En cours

probabiliser le solveur (thèse de Rafik Rhouma)

#### Long terme

- probabiliser tout le processus (search, solveur, agrégation)
- passage à l'échelle
- noyau analogique ?
- analogie sur les arbres [?, ?]

# Bibliography I