Information Extraction @ RALI: the Case for Named-Entity Recognition

Philippe Langlais *Huawei*

October 3rd, 2019

Agenda

- RALI
- Motivation: Open Information Extraction
- How robust is NER today?
- Better NER?
 - Learning dedicated representations with distant supervision
 - Better sequence labelling with multi-tasking
- Conclusion

RALI (Recherche Appliquée en Linguistique Informatique)

Guy Lapalme

Text Generation

Question Answering

Rule-based inspired

Jian-Yun Nie

Information Retrieval Crosslingual Apps Social Media Mining

Philippe Langlais

Tools for Translation Information Extraction Analogical Learning

!!! We are recruiting for September 2020 !!!

Some Deep-Related Projects at RALI

Louis van Beurden (MSc)
Translating Weather Alerts
Environment Canada

- translation memory >> NMT > SMT
- NMT < SMT on outdomain alerts

Francis Grégoire (MSc)
Recognizing Parallel Sentence Pairs

 Siamese Network > feature-based classifier

Shivendra Bhardwaj (MSc)
Cleaning Translation Memory (MSc)

Translation Bureau

- cleaning improves NMT
- XLM > FairSeq

Guillaume Le Berre (Phd)
Inference in DL for QA

Cotutelle Univ. Loraine (France)

- Attention on facts does not improve a BERT solution

Zakaria Soliman (MSc) Career Path Prediction

- DL < feature-based predictors
- Issue with LinkedIn Data

Vincent Letard (PostDoc)
Entity Linking

- BERT is good
- So are rules

Agenda

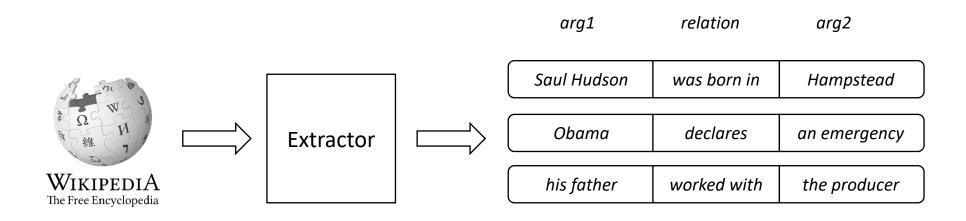
• RALI

Motivation: Open Information Extraction

- How robust is NER today?
- Better NER?
 - Learning dedicated representations with distant supervision
 - Better sequence labelling with multi-tasking
- Conclusion

Open Information Extraction (OIE)

- Traditional IE: narrow domains and pre-defined needs
- OIE: reads unstructured text and extracts information tuples without supervision [Banko et al., 2007]



Knowledge base

Barcelona's surrender at the hands of the Nationalist forces of General Francisco Franco

- RegExps on POS tags
 - TextRunner [Banko et al., 2007], ReVerb [Fader et al., 2011], Sonex, etc.
- Rules applied to sentence parse tree
 - Ollie [Maussam et al., 2012], ClausIE [Del Corro and Gemulla, 2013], MinIE [Gashteovski et al., 2017], Graphene [Cetto et al., 2018], etc.
- Hybrid systems
 - OpenIE, etc.

```
REVERB
OLLIE
Ø
DISTYLIUM
         be surrender the hands of the Nationalist forces of General Francisco Franco
CLAUSIE
              surrender at the hands of the Nationalist forces of General Francisco Franco -106,88
MINIE
Francisco Franco is General 0,00
Barcelona has surrender at hands of Nationalist forces of Francisco Franco 0,00
STANFORD
              surrender at hands of Nationalist forces of General Francisco Franco 1,00
OPENIE
                                                  No or arguably deficient triples
Ø
```

PROPS

Dystilium

- An extension to a rule system for OIE
 - Data-driven
 - Weakly supervised
 - Able to capture non-verbal relations
 - Capable of rephrasing tuples

Barcelona's surrender at the hands of the Nationalist forces of General Francisco Franco

(Barcelona, fell to, Franco)

One of the many ways to leverage NER in OIE

Relation selection

fall to

2 Relation lookup in a large corpus

France fall to the Axis Powers in 1940.

Again, the Broncos fall to the 49ers.

When Constantinople fall to the Turks, ...

3 Find sentences with pairs of NEs

Thing would head back downhill when Constantinople be take by the Turks in 1453 In the ruin of Constantinople 's defeat by the Turks later in the century. 4 Gather candidate patterns

NE₁ be take by NE₂ NE₁ 's defeat by NE₂ NE₁ under NE₂ NE₁ declare war on NE₂

5 Filter and order patterns

NE₁ be conquer by NE₂ NE₁ be take by NE₂ NE₁ be capture by NE₂ NE₁ surrender to NE₂

Agenda

Motivation

Named-Entity Recognition

- How robust is NER today?
 - Using existing systems
 - Using proposed models
- Better NER?
 - Learning dedicated representations with **distant supervision**
 - Better sequence labelling with multi-tasking

Conclusion

Named Entity Recognition

[PER Chilly Gonzales] (born [PER Jason Charles Beck]; [MISC 20 March 1972]) is a [MISC Canadian] musician who resided in [LOC Paris], [LOC France] for several years, and now lives in [LOC Cologne], [LOC Germany]......was signed to a three-album deal with [ORG Warner Music Canada] in [MISC 1995], a subsidiary of [ORG Warner Bros. Records]

The task consists in:

- Identifying mentions,
- Labeling them with a predefined set of types

Existing Toolkits

Named Entity Recognition for de-identification Technical Report, Oct. 2018

Work conducted with IROSoft

Gabriel Bernier Colborne

Datasets

Fin **WNUT 12B2 CoNLL Onto** 24k 2k 82k **12k** tokens 6 18 **23** labels

In domain

	CoNLL	FIN	i2b2	ONTO	WNUT	Avg.
baseline	59.10	41.18	14.60	20.69	0	11.76
CRF++	69.59	28.57	63.65	75.54	0.19	46.46
Stanford	86.90	51.52	87.50	85.74	27.06	66.77
Illinois	90.57	57.71	87.76	87.21	31.38	68.78
NeuroNER	89.86	48.18	91.31	89.20	33.96	71.49
Spacy	88.09	52.80	90.83	87.61	36.64	71.69

Feature-based

Deep

Mention-level F-scores after mapping labels into MISC, PER, LOC et ORG

baseline: the most frequent label associated to each word in the training set

Out domain

	CoNLL	FIN	i2b2	ONTO	WNUT	Avg.
baseline	-33.90	-38.72	-13.20	+24.28	+4.43	+3.93
CRF++	-34.05	+3.15	-27.24	-30.27	+10.79	-14.48
Stanford	-21.90	-37.00	-65.29	-18.17	+3.49	-26.80
Illinois	-19.03	-30.63	-58.29	-15.47	+3.32	-21.87
NeuroNER	-19.40	-22.93	-54.86	-16.23	+3.30	-23.01
Spacy	-20.98	-35.23	-68.17	-17.84	-3.61	-29.66

Gains of mention-level F-scores after mapping labels into MISC, PER, LOC et ORG

- Except on WNUT (small, test mentions unseen) we observe a significant drop
- Affects specific domains much more (FIN and i2b2)
- Recall more affected in general

In-domain + out-domain (data mixing)

	CoNLL	FIN	i2b2	ONTO	WNUT	Avg.
baseline	-22.70	-38.40	-11.85	-0.08	+4.47	+1.64
CRF++	-2.80	+18.60	+3.57	+0.91	+11.85	+7.47
Stanford	-2.02	-9.01	-4.75	-0.78	+4.56	-1.43
Illinois	-2.21	-21.78	-6.57	-1.09	+4.86	-3.21
NeuroNER	-0.08	+3.76	-2.38	-0.38	+5.90	+0.38
Spacy	-2.26	-13.06	-9.49	-0.31	-0.50	-5.62

Gains of mention-level F-scores over training and tuning in-domain

NeuroNER seems to be the most robust

Training out-domain, fine tuning in-domain

spacy	i2b2
In-domain	90.83
In+out domain	81.34
Fine tuning	90.96

Fine tuning is preferable, but the performance is close to training in-domain directly

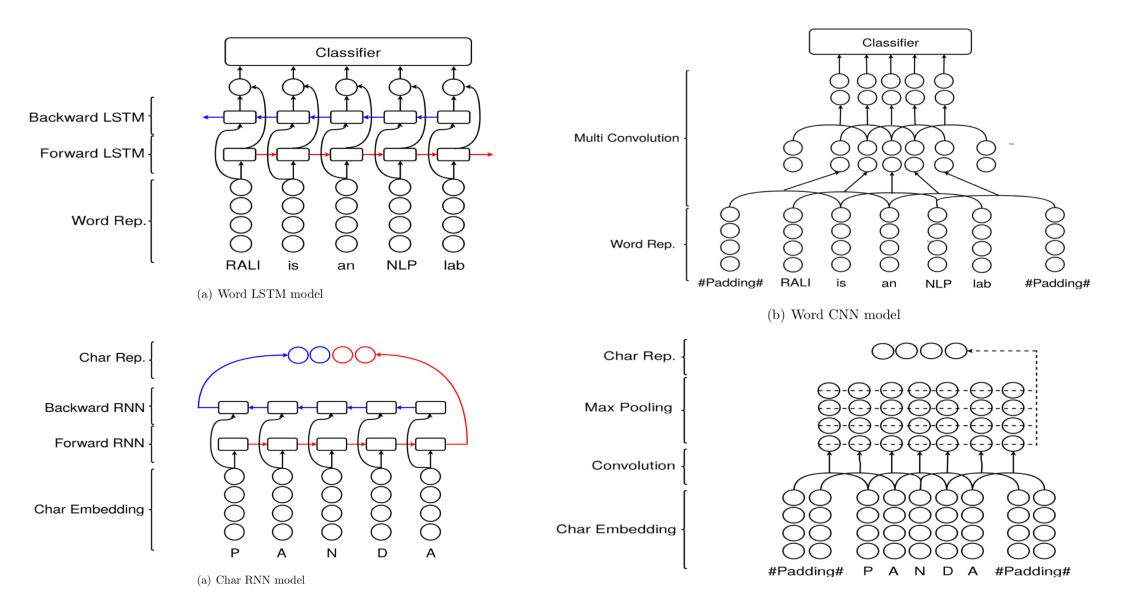
Which Neural Model?

Empirical Study and Multi-task Learning Exploration for Neural Sequence Labeling Models

[Master Thesis, Aug. 2019]

Peng Lu

CNN/RNN, Char/Words Embeddings ...



No clear answer ...

	No Char	Char-LSTM	Char-CNN
Word-LSTM	[Ma & Hovy, 2016] [Zhai et al. 2017] [Plank et al. 2016]	[Lample et al. 2016]	[Ma & Hovy, 2016]
Word-CNN	[Strubell et al. 2017]		
Word-LSTM + CRF	[Huang et al. 2015]	[Lample et al. 2016] [Rei, 2017] [Yasunaga et al. 2017]	[Ma & Hovy, 2016] [Chiu et Nichols, 2015] [Peters et al. 2017]
Word-CNN + CRF	[Collobert et al. 2012]		[Bjerva et al. 2016]

Controlled Comparison

- 12 models coded in the same framework (PyTorch)
- Fixed set of metaparameters
- 5 runs -> average + std

Layer	Parameter	
Word Erobodding	type	GloVe
Word Embedding	dimension	100
Character-level Embedding	dimension	30
Dropout	rate	0.5

Table 3.2. Hyper-parameters of twelve neural based models

Layer	Parameter	
Word I CTM	hidden size	256
Word-LSTM	layer#	2
	kernel size	3
	padding	1
Word-CNN	stride	1
	channel	50
	layer#	4

Layer	Parameter	
Char-LSTM	hidden size	50
Cnar-LSTM	layer#	1
	kernel size	3
	padding	1
Char-CNN	stride	1
	channel	50
	layer#	1

Table 3.3. Hyper-parameters of word encoding layers (left) and character encoding layers

F1-sco	NER			
r 1-sco	No Char	Char-LSTM	Char-CNN	
Word-LSTM	Reported	87.00 [35]	89.15 [28]	89.36 [35]
Word-LSTW	Ours (Mean±std)	88.55 ± 0.15	90.63 ± 0.12	90.60 ± 0.22
Word-CNN	Reported	89.97 [58]	-	-
Word-CININ	Ours (Mean±std)	88.45 ± 0.11	90.35 ± 0.21	90.33 ± 0.11
$oxed{ ext{Word-LSTM} + ext{CRF}}$	Reported	90.10 [23]	90.94 [28]	91.21 [35]
Word-LSTWI + CRF	Ours (Mean±std)	89.98 ± 0.09	91.04 ± 0.10	91.11 ± 0.25
Word CNN CDE	Reported	89.59 [12]	-	-
$oxed{ ext{Word-CNN} + ext{CRF}}$	Ours (Mean±std)	89.65 ± 0.11	90.47 ± 0.21	90.57 ± 0.11

Table 3.4. F1-scores on the CoNLL03 NER dataset.

- Word-LSTM > Word-CNN
- Systematic boost of the CRF layer
- Char representation always helps

Could reproduce/ouperform most of the reported results, **but** the one of [Strubell et al. 2017]

Agenda

Motivation

How robust is NER today?

- Better NER ?
 - Learning dedicated representations with distant supervision
 - Better sequence labelling with multi-tasking

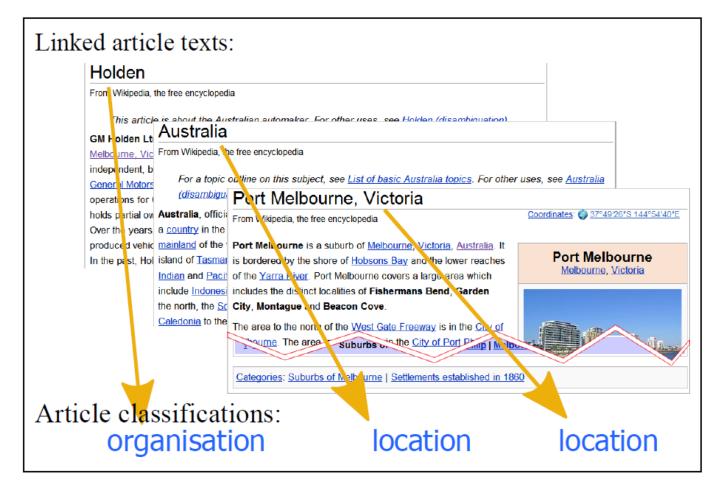
Conclusion

- Contextualized Word Representations from Distant Supervision with and for NER, WNUT 2019
- Robust Lexical Features For Improved Neural Network Named-Entity Recognition, COLING 2018
- Transforming Wikipedia Into A Large-Scale Fine-Grained Entity Type Corpus, LREC 2018
- WiNER: A Wikipedia Annotated Corpus For Named Entity Recognition, IJCNLP 2017

Abbas Ghaddar

Distant Supervision for NER (Nothman et

al., 2009)



NE-tagged sentences:

[ORG Holden] is an [Loc Australian] automaker based in [Loc Port Melbourne, Victoria].

Missing links in Wikipedia

Chilly Gonzales (born Jason Charles Beck; 20 March 1972) is a <u>Canadian</u> musician who resided in <u>Paris</u>, France for several years, and now lives in <u>Cologne</u>, Germany. Though best known for his first <u>MC</u> and electro albums. Gonzales is also a pianist, producer, and songwriter........ Son was signed to a three-album deal with Warner Music Canada in 1995, a subsidiary of <u>Warner Bros. Records</u> While the album's production values were limited, Warner Bros. simply released the band.......

Mentions of the main entity of an article not anchored

=> detect proper nouns, noun phrases and pronouns that refer to the main entity (binary classifier) [CONLL 2016]

Missing links in Wikipedia

Chilly Gonzales (born Jason Charles Beck; 20 March 1972) is a Canadian musician who resided in Paris, France for several years, and now lives in Cologne, Germany. Though best known for his first MC and electro albums. Gonzales is also a pianist, producer, and songwriter.......... Son was signed to a three-album deal with Warner Music Canada in 1995, a subsidiary of Warner Bros. Records While the album's production values were limited, Warner Bros. simply released the band.........

Wikipedians are missing links

=> following out-links

Following out-links

musician who resided in Paris, France for several years

in Europe.

2012, accounting for 30.0 percent of the GDP of

France and ranking it as one of the wealthiest regions

Related changes

Upload file

Special pages

now lives in Cologne, Germany Cologne WikipediA The Free Encyclopedia Coordinates: 6 50°56′11″N 6°57′10″E From Wikipedia, the free enc clopedia This article is about the German city. For the style of perfume, see Eau de Main page Cologne. For other uses, see Cologn (disambiguation) and Köln Contents Featured content (disambiguation). Current events "Koln" redirects here. I is not to be confused with KOLN. Random article Cologne Donate to Wikipedia Cologne Köln (English pronunciation: /kəˈloʊn/; Wikipedia store German: Köln, pronounced [kœln] (◀ Interaction **Germany** Help the la gest cit About Wikipedia in the German federal State of Community portal North Rhine-Westphalia dd th Recent changes fourth-largest city i Germany Contact page Berlin, Hamburg, and Munich). It is Tools

Missing links in Wikipedia

<u>Chilly Gonzales</u> (born <u>Jason Charles Beck</u>; 20 March 1972) is a <u>Canadian</u> musician who resided in <u>Paris</u>, <u>France</u> for several years, and now lives in <u>Cologne</u>, <u>Germany</u>. Though best known for <u>his</u> first <u>MC</u> and electro albums. <u>Gonzales</u> is also a pianist, producer, and songwriter....... <u>Son</u> was signed to a three-album deal with <u>Warner Music Canada</u> in 1995, a subsidiary of <u>Warner Bros</u>. <u>Records</u> While the album's production values were limited, <u>Warner Bros</u>. simply released the band.......

First mention on an entity only is anchored (at best)

=> iterate!

- Chilly Gonzales → {Gonzales, Jason Charles Beck, the performer}
- <u>France</u> → {French Republic, Kingdom of France, the country}
- Warner Bros. Records → {Warner Bros., Warner, the company}

Statistics

	#Links	#Documents	Links per Doc
Wikipedia (dump 2014)	71.5M	4.3M	16.6
Raganato et al. 2016	162.6M	4.3M	37.8
Our approach (dump 2013)	182.7M	3.2M	57.0

95.1M proper names, 62.4M noun phrases and 24.2M pronouns

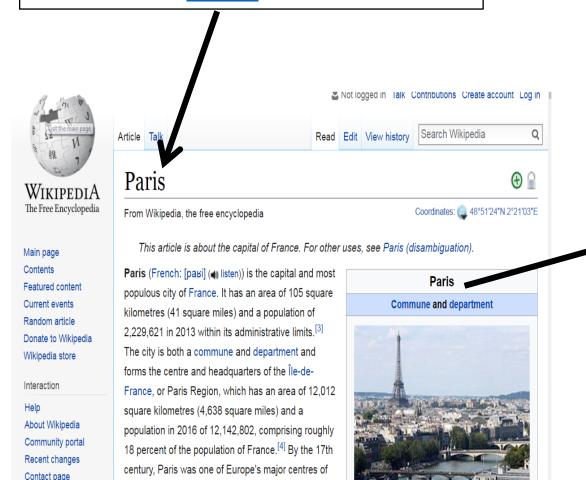
- 3% of tokens in Wikipedia natively anchored, 30% after our process
- Comes with some noise...
 - 77% correct according to an evaluation on 1000 annotations

Eldridge Pope was a traditional brewery.....Sixteen years later the **Pope** Brothers floated the business...

From anchored mentions to annotations

....is a <u>Canadian</u> musician who resided in <u>Paris</u>

....is a <u>Canadian</u> musician who resided in [LOC Paris]





WINER

[IJCNLP 2017]

4 classes: PER ORG LOC MISC

[PER Chilly Gonzales] (born [PER Jason Charles Beck]; 20 March 1972) is a [MISC Canadian] musician who resided in [LOC Paris], [LOC France] for several years, and now lives in [LOC Cologne], [LOC Germany]. Though best known for his first [MISC MC] and electro albums, [PER Gonzales] is also a pianist, producer, and songwriter........... [MISC Son] was signed to a three-album deal with [ORG Warner Music Canada] in 1995, a subsidiary of [ORG Warner Bros. Records] While the album's production values were limited, [ORG Warner Bros.] simply released the band........

Available here: http://rali.iro.umontreal.ca/rali/?q=en/wikipedia-main-concept

WifiNE

[LREC 2018]

On October 9, 2009, the Norwegian Nobel Committee announced that Obama had won the 2009 Nobel Peace Prize.

On /date, the /organization/government_agency announced that /person/politician had won the /award.

(Automatically) projected into 2 fine-grained entity types:

- FIGER: 120 types [Lin and Weld, 2012]
 - 2-level: /person, /person/musician
- Gillick: 89 types [Gillick et al. 2014]
 - 3-level /person, /person/artist, /person/artist/musician

(Lin and Weld. 2012)

person actor architect artist athlete author coach director		doctor engineer monarch musician politician religious_le soldier terrorist	ader	airl cor edu frat spo	ernit	/ nal_institution y_sorority eague	governm governm political	_party nal_department
location city country county province railway road bridge	islar mou glac astra	untain ier al_body etery	eng airp car shi spa	product engine mobile_phone airplane computer car software ship game spacecraft instrument train weapon			written_work newspaper music military_conflict natural_disaster sports_event terrorist_attack	
building airport dam hospital hotel library power_sta restaurant sports_fact theater		time color award educationa title law ethnicity language religion god	il_deg	gree	biolo med disea symp drug body	ptom g y_part g_thing nal	broadca tv_chan currency stock_ex algorithi	/ kchange m iming_language system

Ambiguity

- Mapping a mention to its type is a 1-n problem
 - Several object-type properties in DBPedia
 - Only a few valid in a given context

```
Chilly Gonzales
/person
/person/artist
/person/artist/musician
/person/artist/actor
/person/artist /author
```

• 23% of mentions are ambiguous

Disambiguation

Using 2 rules:

(a) Gonzales was born on 20 March 1972 in Montreal, Canada.

rel: /people/person/place_of_birth person, artist, musician, actor, auhor

(b) Additionally, he has collaborated with Jamie Lidell on the albums Multiply and Compass.....

person, artist, musician, actor, auhor person, artist, musician

Desambiguation (evaluation)

On 1000 ambiguous mentions

Heuristic	Pre	Rec	F1			
w/o Rules	31.8	100.0	48.3			
Rule-1 only	48.8	87.2	62.3			
Rule-2 only	56.4	85.6	68.0			
Both Rules	79.2	81.8	80.5			
Level of Application						
Sentence	66.5	85.5	73.7			
+ Paragraph	72.7	82.6	78.6			
+ Section	79.2	81.8	80.5			

WiFiNE

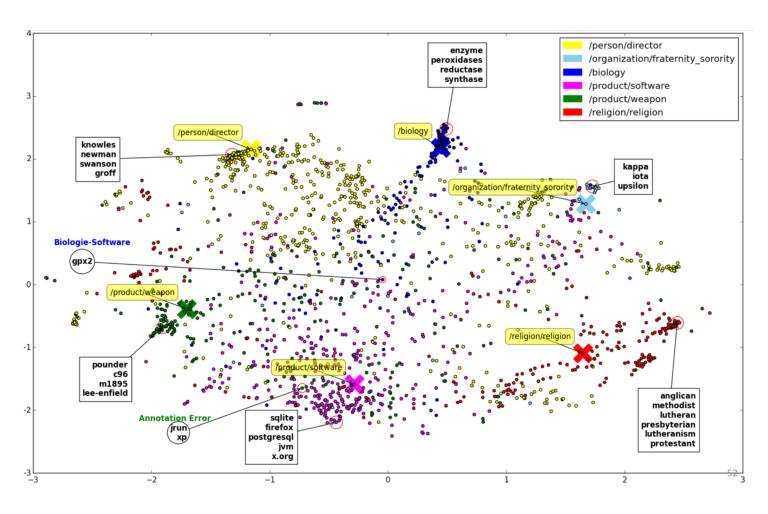
	FIGER	GILLICK
Total mentions	159.4	111.1
Proper mentions	82.5 (52%)	64.8 (58%)
Nominal mentions	55.9 (35%)	29.8 (27%)
Pronominal mentions	21.0 (13%)	16.5 (15%)
Total Labels	243.2	230.9
Level 1	153.8 (63%)	111.1 (48%)
Level 2	89.5 (37%)	90.0 (39%)
Level 3	_	29.8 (13%)

In millions

Available here: http://rali.iro.umontreal.ca/rali/?q=en/wikipedia-main-concept

Embedding words and labels in the same space using FastText (Bojanowski et al. 2016)

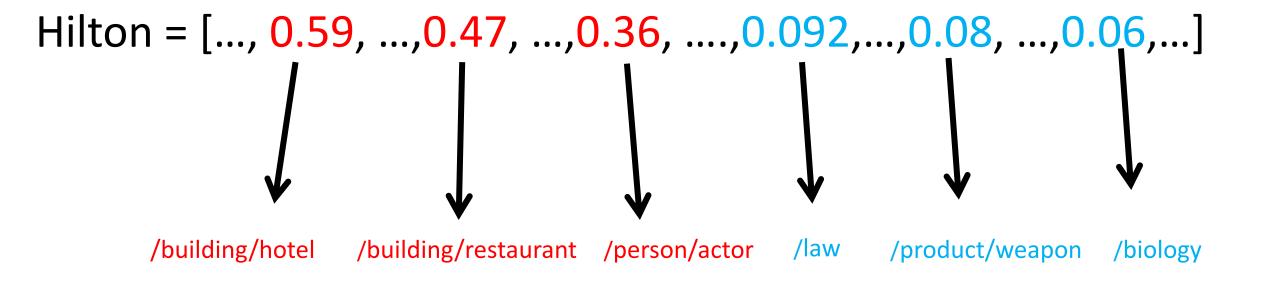
TSNE view of 6
selected types
and 1500 randomly
sampled single-word
mentions labelled
with these types in
WiFiNE



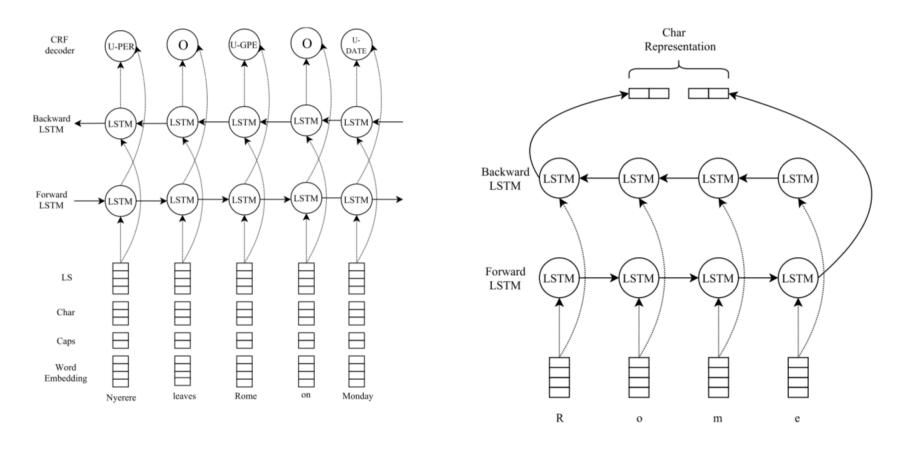
[COLING 2018]

Word = vector (d=120)

Each word represented by its cosine similarity to each vector associated to type

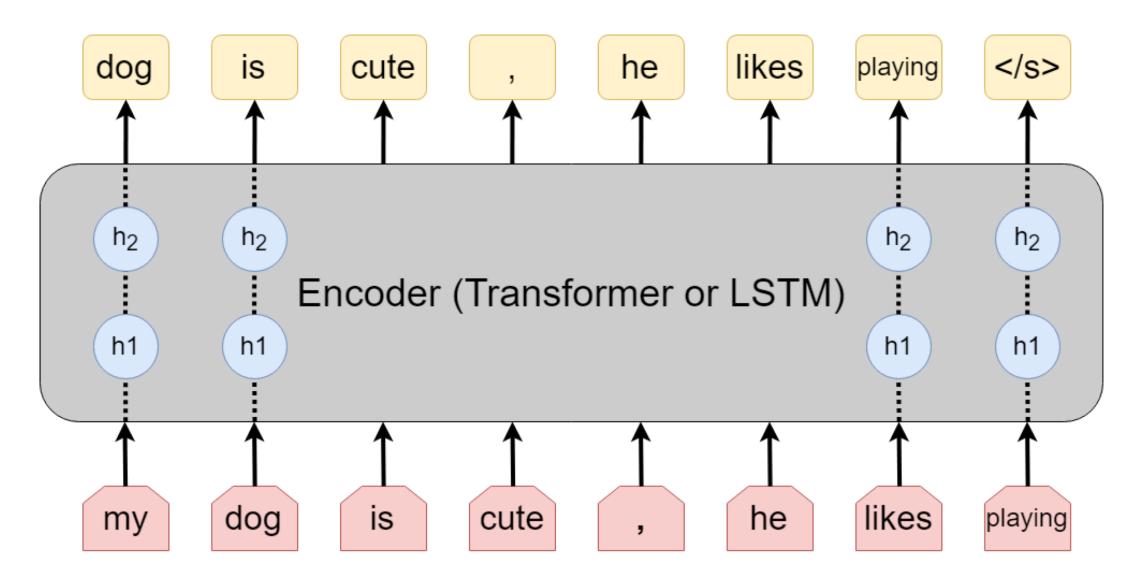


BiLSTM-CRF (Lample et al 2016; Chiu and Nichols, 2016; Søgaard and Goldberg, 2016)

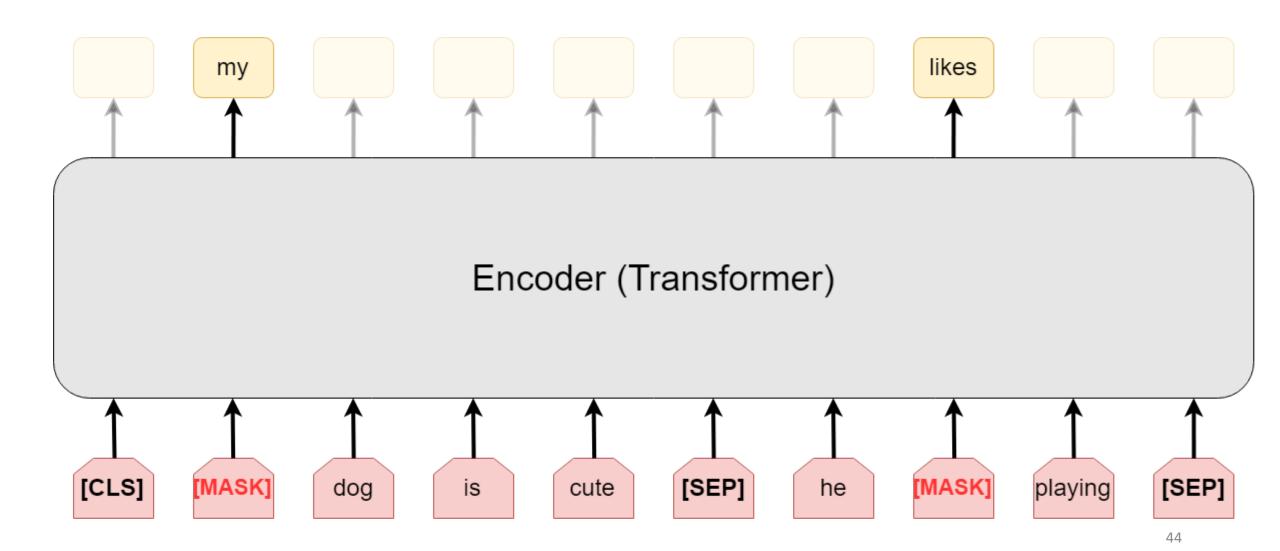


Feeding our static representation (LS) into a biLSTM-CRF model was SOTA in 2017 (Ontonotes: 87.95 CONLL: 91.73 F1-scores)

Contextual embeddings: ELMo (Peters et al. 2018)



Contextual embeddings: BERT (Devlin et al., 2018)

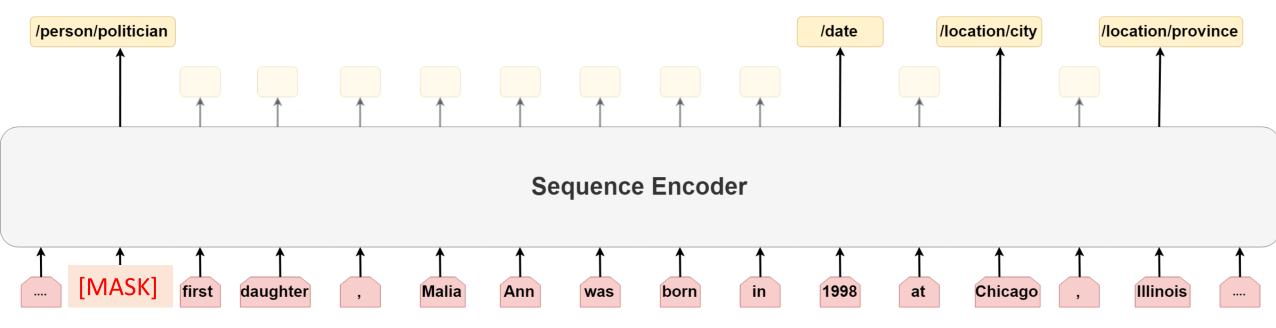


GhAWi: our Contextual Representation

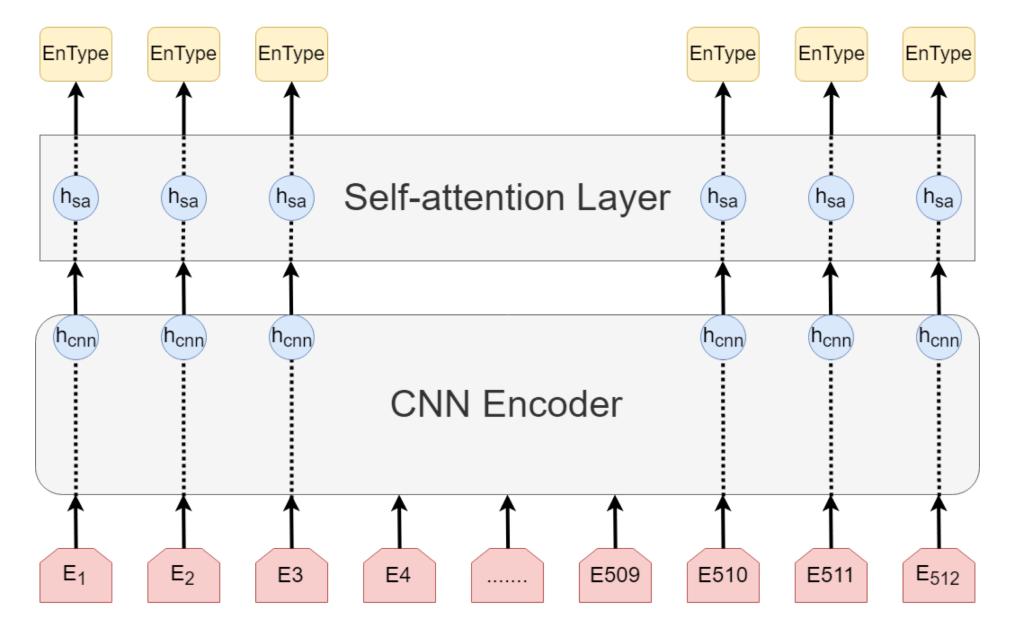
BERT inspired!

Sequences of 512 words max. (paragraph/section)

We mask some entities



GhAWi: a two-Component model



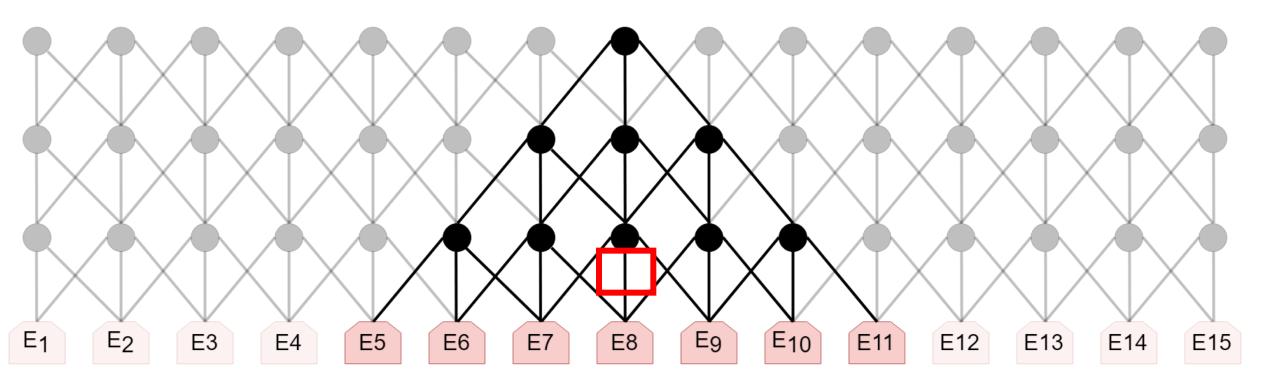
training on a Titan XP GPU

5 days of

Encoder: CNN

$$c_t = W_c \bigoplus_{k=0}^r x_{t \pm k}$$

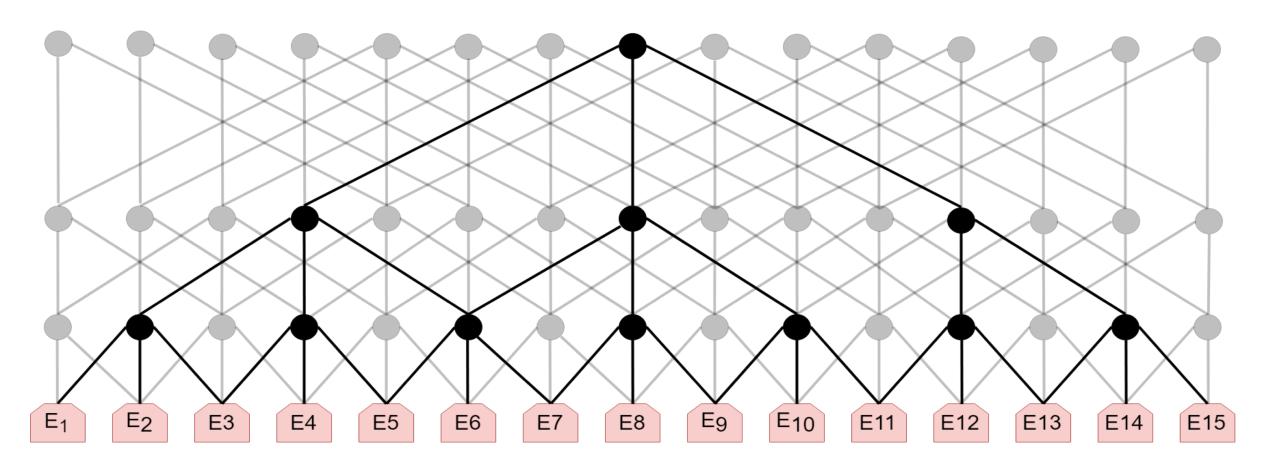
$$c_8 = Wc[E7; E8; E9]$$



255 layers to cover a batch of **512** words with r=3

Dilated CNN (with increasing window size)

Yu and Koltum (2015), Strubbel et al. (2017)



Encoder: Self-attention (Transformer)

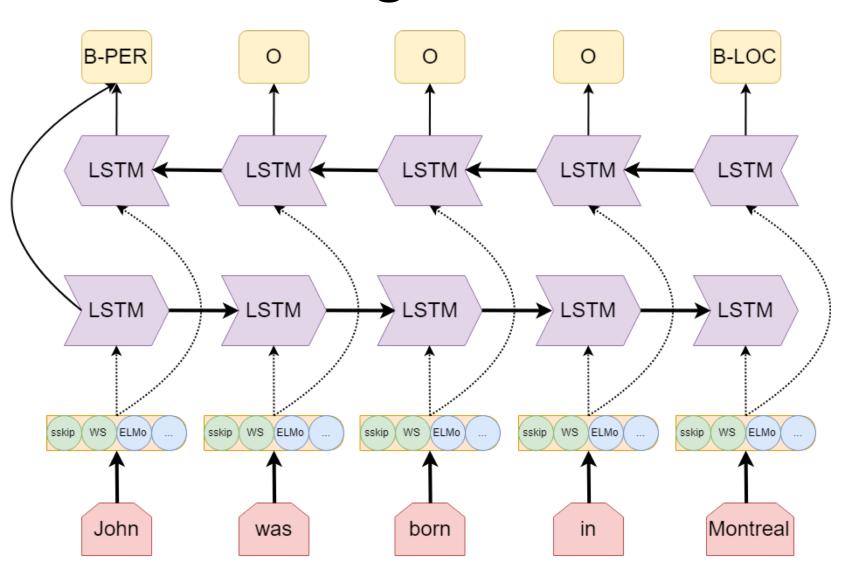
	John	was	born	in	Mtl
John	0.06	0.12	0.76	0.04	0.02
was	*	*	*	*	*
born	*	*	*	*	*
in	*	*	*	*	*
Montreal	0.08	0.09	0.37	0.41	0.05

born strongly suggests

John is a person

born in strongly suggests Montreal is a location

Our NER recognizer



Baseline:

- sskip: skipgram model
- WS: Word Shape features

Contextual representations:

- ELMo
- Flair (Akbik et al. 2018)
- BERT
- GhAWi

Benchmarks

Fin **WP** Wiki **WNUT 12B2 CoNLL Onto** WORLD **WWW** Wikipédia L'encyclopédie libre 24k H.D. 82k 2k H.D. 12k 6 18 **23**

Adding contextual representations greedily

	In-domain				Out- domain		
	Onto	CoNLL	I2B2	WNUT	Fin	Wiki	WP
SSKIP+WS	86.44	90.73	86.41	32.30	81.82	66.03	45.13
+ELMo	89.37	92.47	94.47	44.15	82.03	76.34	54.45
+GhAWi	89.68	92.96	94.75	47.40	83.00	78.51	57.23
+Flair	89.73	93.22	94.79	46.80	83.11	77.77	56.20
+Bert	89.97	93.02	94.92	46.47	81.94	78.06	56.84

Comparing to SOTA

	CoNLL	ONTO
(Ghaddar et al., 2018)	91.73	87.95
(Peters et al., 2018)	92.20	_
(Clark et al., 2018)	92.61	88.81
(Devlin et al., 2018)	92.80	-
(Ghaddar et al., 2018) (best)	92.87	89.69
This work (best)	93.22	89.95

Follow up

- Two very recent papers have been reproducing a similar approach
 - [Abhishek et al. 2019] Fine-grained Entity Recognition with Reduced False Negatives and Large Typw Coverage
 - [Zhu et al. 2019] Towards Open-Domain Named Entity Recognition via Neural Correction Models
- No direct comparison (yet), but clearly distant supervision is back again

Agenda

Motivation: Open Information Extraction

How robust is NER today?

- Better NER?
 - Learning dedicated representations with distant supervision
 - Better sequence labelling with multi-tasking
- Conclusion

SC-LSTM: Learning Task-Specific Representations In Multi-Task Learning For Sequence Labeling [NAACL 2019]

Peng Lu

Ting Bai

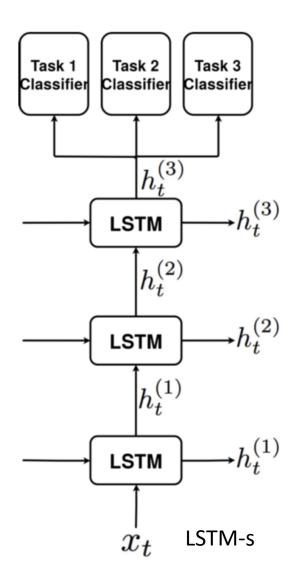
Jointly learning multiple tasks (MTL)

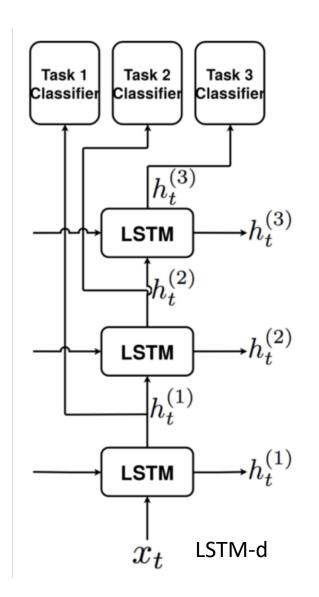
- Many attempts (Caruana, 1997; Collobert and Weston, 2008; Collobert et al. 2011)
- Results so far are inconclusive
 - Works for some tasks, not for others (ex: Alonso et Plank, 2017)
 - Sensitive to critical choices (ex: order on the task being learned)
 - Often, one system has to be trained for a specific target task

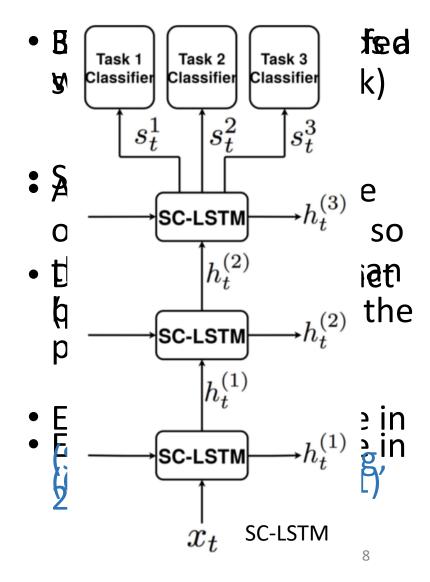
Intuition: different tasks may have conflicting needs at training

=> Allowing task-specific parameters

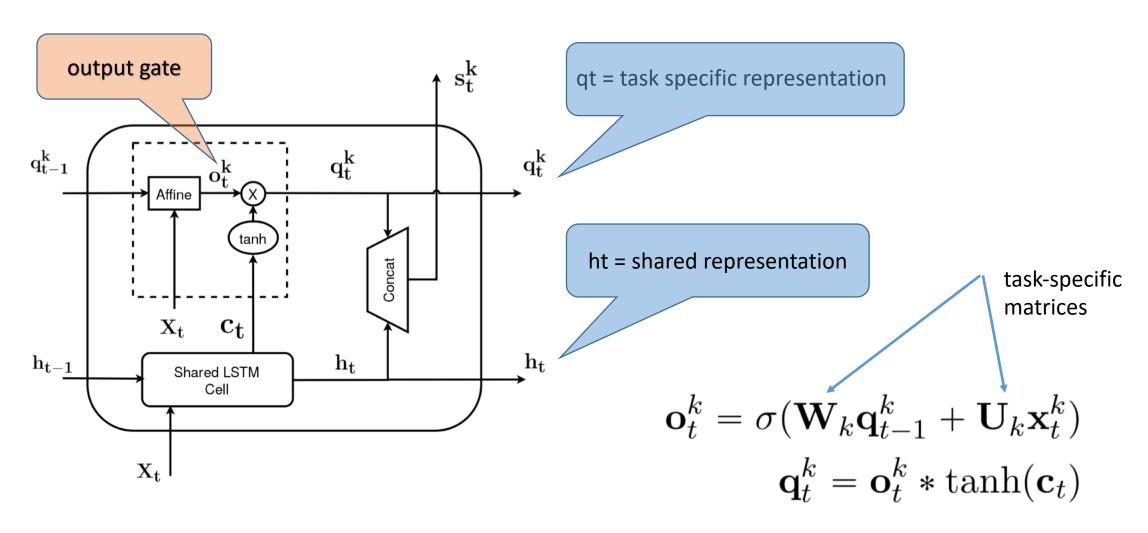
MTL architectures







SC-LSTM Cell



Results

	POS (accuracy)	Chunking (F1)	NER (F1)
LSTM (single task)	95.46	94.44	89.39
LSTM-s	95.45	95.12	89.35
LSTM-d	95.44	95.24	89.37
SC-LSTM	95.51	96.04	89.96
+ char CNN & CRF	95.83	96.41	91.37
+ char CNN & LM	96.83	97.40	92.60
(Devlin et al, 2018)			92.80
(Akbik et al., 2018)		96.72	93.09*
(Peters et al., 2018)	96.62	96.92	92.22

Follow up

- At the very same conference
 - [Guo et al. 2019] AUTOSEM: Automatic Task Selection and Mixing in Multi-Task Learning
 - A two-stage approach
 - Selecting (automatically) the most usefull auxiliary tasks
 - Learning to mix them during training

Summary

- RALI is working on Open Information Extraction
 - Not easy to evaluate
 - Interplay with NER
- Most works on NER focuss on CoNLL and Ontonotes
 - Curiously not much interest in measuring NER in an out-domain setting (the one that matters)
- Distant supervision can help (to improve upon strong models)
- Multi-tasking may help as well

Thanks Questions?