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ICE BREAKING FOR



DISCLAIMER

‣ The purpose of this course is not to familiarize you with machine 
learning, neither do I force you to use a classifier in this assignment, 
although it is likely the easiest thing to do.  

‣ Those slides assume sklearn is installed in your (python) environment. 
This may be challenging on Windows (although I do believe it is 
feasible). On my computer it was the matter of running 2 command 
lines (pip3 sklearn, and pip3 joblib)

https://scikit-learn.org/stable/


RUSHING ON 
YOUR FAVORITE 
CLASSIFIER IS 
CERTAINLY EASY, 
LIKELY FRUITFUL, 
… 
BUT MAKES YOU 
ONE OF US…



DATA

WC -L DATA/T*_POSTS.CSV
  128158 data/test_posts.csv 
  512629 data/train_posts.csv 

"long time.. i have been busy with work, school, rehersal, other random crap, and when i do 
have free time, my parents are on the computer. so shaddup! *memories* last night i 
started getting some memorys of my freind david, one of my favorites being the time my 
dog ate his bird. i look back and laugh, but it was pretty sad at the time. speaking of pets, i 
really want the tortoise at the pet store, how cool would that be, a pet tortoise?! and they 
live for hundreds of years, so it would make a great family heirloom, and sice they can do 
whatever to turtle shells so they don't rot (dry them out???) so when it died, that 
generation could still keep the shell. and they would have a reason to keep it, since it is a 
family herloom, it would be encrusted with jewels. horray! unfortunatly, the tortoise costs 
140 bucks, not including food and so on. of course it would not need a coniner, sice it is a 
family heirloom, and i wil teach it to poop a certain place. horray. also, i never had a chance 
to use the self centered idea to find out who joah likes, so im just ganna come clean and 
tell him i like him. ",0

HEAD -N 1 DATA/TRAIN_POSTS.CSV
A BLOG CAN BE QUITE LONG



DATA

MAIN STATISTICS (FOR MORE SEE TP2)

CLASS DISTRIBUTION

train test
<=100 55.10 55.

16<= 200 77.89 77.
84<= 300 87.22 87.
12<= 400 91.65 91.
62avr. 163.0 162

LENGTH DISTRIBUTION

train test
0 35.1 35.1
1 46.9 46.9
2 17.9 17.9



FIRST STEP: DUMMY BASELINE

CAT DATA/TRAIN_POSTS.CSV | DUMMY.PY
#!/usr/bin/env python3 
# dummy.py 

import sys 
import pandas as pd 
from sklearn.dummy import DummyClassifier 
from joblib import dump 

# 1) read stdin 
df = pd.read_csv(sys.stdin, names=[‘blog’, ‘class’]) 

# 2) fit a dummy classifier 
clf = DummyClassifier(strategy=‘most_frequent’) 
clf.fit(df[blog], df[classe]) 

# 3) dump it  
dump(clf, ‘./models/dummy-most.clf’)

ONLY TAKES A FEW SECONDS TO RUN (TIME TO READ THE DATA)

SKLEARN IS YOUR FRIEND



FIRST STEP: DUMMY BASELINE

CAT DATA/TEST_POSTS.CSV | TEST.PY MODELS/DUMMY-MOST.CLF
#!/usr/bin/env python3 
# dummy.py 

import sys, pickle, pandas as pd 
from sklearn.dummy import DummyClassifier 
from joblib import load 

model_name = get_args() # to be written 

# 1) read stdin 
df = pd.read_csv(sys.stdin, names=[‘blog’, ‘class’]) 

# 2) fit a dummy classifier 
clf = load(model_name) 
y = clf.predict(df[blog]) 

# 3) output the predicition 
base = os.path.split(model_name)[1] 
out = f"{out_dir}/{base}.out" 
pickle.dump([clf.classes_,y], open(out, 'wb')) 

GENERATES OUT/DUMMY-MOST.OUT



FIRST STEP: DUMMY BASELINE

CAT DATA/TEST_POSTS.CSV | EVAL.PY OUT/DUMMY-MOST.OUT

OUT/DUMMY-MOST.OUT: 67979 BAD EX OVER 128158 ONES. ACC: 46.96 %

‣ You have to decide which metric(s) to use for evaluating your models 

‣ accuracy is the percentage of correct decisions over the total number of 
decisions to take (#of test examples) 
‣ If the dataset is unbalanced, it can artificially be quite high 

‣ precision is the % of correct decisions made over the total number of 
decisions taken (<= #test examples) 

‣ recall is the % of correct decisions made over the total number of decisions 
to take (#of test examples) 

‣ f-measure (F1) is often reported (harmonic mean of precision and recall) 

‣ When reporting precision and recall (therefore F1), you need to clarify which 
task is being asked to your classifier. So if for instance you consider  
important to find children, you could frame a task as « finding the authors that 
are children (class 0) », in which case precision and recall are defined as: 
‣ P = #children correctly identified / #identifications 
‣ R = #children correctly identified / #children in the test set



EVAL.PY

THIS BEING UNDERSTOOD, USE SOMETHING LIKE:
from sklearn.metrics import classification_report 
… 
print(classification_report(truth, predicted))

CAT DATA/TEST_POSTS.CSV | EVAL.PY OUT/DUMMY-MOST.OUT

/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/metrics/
classification.py:1437: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in 
labels with no predicted samples. ‘precision', 'predicted', average, warn_for) 
              precision   recall  f1-score   support 

           0       0.00      0.00      0.00     45040 
           1       0.47      1.00      0.64     60179 
           2       0.00      0.00      0.00     22939 

    accuracy                                         0.47    128158 
   macro avg          0.16      0.33      0.21    128158 
weighted avg       0.22      0.47      0.30    128158

WARNS JUST BECAUSE OF THE 
DUMMY CLASSIFIER ALWAYS 

PREDICTS CLASS 1



A REAL BASELINE

VECTORIZER + LOGISTIC REGRESSION
 A vectorizer represents a text into a vector (of fixed size, 

defaulting to the number of different words in your collection). 
There are several of them built-in in sklearn, including: 

- CountVectorizer simply counts the words in a document v[i] is 
the count of the ith word in the document 

- TfidfVectorizer normalize the counts by taking into account the 
frequency of words in the collection (words seen in many 
documents will be discounted)

 LogisticRegression is one of the many classifiers available in 
sklearn. One of its advantage is that it allows to query the 
weights given to features, and when features are discreet (here 
words), it is rather instructive (see later)

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html#sklearn.feature_extraction.text.TfidfVectorizer
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html


A REAL BASELINE: VECTORIZER + LR

CAT DATA/TRAIN_POSTS.CSV | TRAIN.PY …
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer 
from sklearn.linear_model import LogisticRegression 

analyzer, min_df, … = get_args()    # to be implemented 

# a number of options can control a vectorizer, I reckon you investigate them  
vectorizer = TfidfVectorizer(analyzer=analyzer, min_df=min_df, 
                                                   max_df=max_df, max_features=max_features, 
                                                   ngram_range=(ngram_inf,ngram_sup), 
                                                   stop_words=‘english') 

df = pd.read_csv(sys.stdin, names=[‘blog', ‘class’]) 
X_train = vectorizer.fit_transform(df[blog])                                       # isn’t life beautiful ? 

# several meta-parameters can influence the performance of Logit (investigate) 
clf = LogisticRegression(C=5,class_weight='balanced', solver='newton-cg', 
                                              multi_class='multinomial', n_jobs=-1, random_state=40, verbose=1) 
clf.fit(X_train, df[classe])                                                                         # isn’t life beautiful ? 

# dump the vectorizer and the model (for use at test time) 
dump(vectorizer, vec_name) 
dump(clf, clf_name)



A REAL BASELINE: VECTORIZER + LR

ALREADY QUITE SOME VARIANTS TO TEST…
You could represent your text by their words, their chars, 
their bigram of words / chars, etc. 

Each representation can be parametrized 

The classifier has its own meta-parameters  

And we might want to play with other classifiers as well, 
eventually combining several …

I SUGGEST YOU START WITH THE BASICS (DEFAULT SETTINGS), AND THEN EXPLORE AS 
MUCH AS YOU CAN SYSTEMATICALLY (WITHOUT CODING SPECIFICALLY). 

Notes:  

‣ A one-file python notebook is not the best way of investigating many 
variants systematically.  

‣ This kind of meta-parameters investigation requires sane coding 
practices, and should typically be conducted on a validation set and is 
definitely  not green-AI 



A REAL BASELINE: VECTORIZER + LR

LET’S TRAIN A FEW VARIANTS…
cat data/train_posts.csv | train.py —analyzer=word 

34M model-straight-tfidf-analyzerword-ngram1-1-min_df0.0-max_df1.0-
max_featuresNone-512629.vec 

12M model-straight-tfidf-analyzerword-ngram1-1-min_df0.0-max_df1.0-
max_featuresNone-512629.clf 

cat data/train_posts.csv | train.py —analyzer=word —ngram_sup=2 

1,1G model-straight-tfidf-analyzerword-ngram1-2-min_df0.0-max_df1.0-
max_featuresNone-512629.vec 

374M model-straight-tfidf-analyzerword-ngram1-2-min_df0.0-max_df1.0-
max_featuresNone-512629.clf 

84 MIN. TO TRAIN  
+10 MIN. TO SAVE

10 MIN. TO TRAIN



A REAL BASELINE: VECTORIZER + LR

LET’S TRAIN A FEW VARIANTS…

cat data/train_posts.csv | train.py —analyzer=char —ngram_sup=3 

6,8M  model-straight-tfidf-analyzerchar-ngram1-3-min_df0.0-max_df1.0-
max_featuresNone-512629.vec 

2,7M model-straight-tfidf-analyzerchar-ngram1-3-min_df0.0-max_df1.0-
max_featuresNone-512629.clf 

  

15 MIN. TO TRAIN

cat data/train_posts.csv | train.py --ngram_sup=2 --maxfeat=50000



A REAL BASELINE: VECTORIZER + LR

RUNNING A MODEL
#1) parse the command line, prepare filenames to read/save 
model_name, … = get_args()        # to be implemented 

#2) load the vectorizer and the classifier 
vectorizer = load(f’{model_name}.vec') 
clf = load(f’{model_name}.clf’) 

#3) read test data 
df = pd.read_csv(sys.stdin, names=[‘blog’, ‘class’]) 

 X_test = vectorizer.transform(df[blog]) # apply the vectorizer 
 y_test = clf.predict(X_test)                        # run the classifier 

#4) save the predictions 
base = os.path.split(model_name)[1] 
out = f"{out_dir}/{base}.out" 
pickle.dump([clf.classes_,y_test], open(out, 'wb')) 

ex: cat data/test_posts.csv | test.py models/model-straight-tfidf-analyzerword-ngram1-1-min_df0.0-
max_df1.0-max_featuresNone-512629 



A REAL BASELINE: VECTORIZER + LR

EVALUATING A PREDICTION
ex: cat data/test_posts.csv | eval.py out/model-straight-tfidf-analyzerword-ngram1-1-min_df0.0-
max_df1.0-max_featuresNone-512629.out

Config Acc.

1g 68.55

1g - 50k feat 66.16

1,2g 71.92

1,2g-50k feat 65.50

1-3g 63.21

W
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d
C
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r



SO FAR

THE BEST I HAVE (NO EXPLORATION)

              precision    recall  f1-score   support 

           0       0.80      0.79      0.79     45040 
           1       0.73      0.73      0.73     60179 
           2       0.54      0.55      0.55     22939 

   micro avg           0.72      0.72      0.72    128158 
   macro avg          0.69      0.69      0.69    128158 
weighted avg       0.72      0.72      0.72    128158 

[[35441  7602  1997] 
 [ 7292 44005  8882] 
 [ 1593  8617 12729]]



WHY I LOVE LR (OR DECISIONS TREES/STUMPS, ETC.)

ACCESS TO THE KIND OF FEATURES FOUND USEFUL
class 0 :  haha, anyways, homework, school, maths, xd, ap, marten, nicki, linds, thats, prom, exun, 
anywho, chem, current song, arv, karan, wad, bye, gunna, mrs, yay, im, awesome, w00t, hahaz, haiz, 
noe, gamespot, lolz, xanga, rosie, lol, current music, lindsey, ur, yea, jumper991, babysitting, soo, info 
link, alright, theres, jackie, laura, kuronue, xbubzx, jonah, idk, heinz, josh, random, ashley, camp, little 
kids, math, affectionately anna, seniors, tk, chemistry, colleges, tmk, abby, den, pointless, g2g, 
hahaha, ppl, gonna, theo, ttyl, boring, hmmn 

class 1 :  apartment, law school, mungo, daf, vlad, ching, semester, baity, posted paul, andrei, india, 
roommates, dena, parents house, internship, abt, holla, killy, fonz, bf, como, office, jax, pia, cyodfs, 
wedding, adolph, fro, urllink mail, undergrad, new wave, thesis, grad school, jonnie, roommate, 
pictures baby, shayne, cara, perth, damo, midterm, dori, darth, drinks, clubbing, high school, coz, 
furze, melbourne, lab, jerel, weekend, rini, boz, kicha, icq, coffee count, shawna, currently listening, 
triumph good, vegas, work, thing necessary, nhl, deane, jb, evil triumph, bless america, bangalore, 
campus, hostel, today msn, prof, professors 

class 2 :  duf, diva, corsair, guam, hubby, ok mm, hal, 2004 non, djs, non girlfriend, shep, daughter, 
venerable, copyright 2004, evermean, eric digest, dog news, dear lei, rick, son, scw, husband, 
tuesday quote, katelyn, katya, giulio, _____, heff, digest, pandyland, jayel, inda, shai, hax, liza, keisha, 
kids, email spanners, spanners, link courtesy, maiko, years, jennie, allot, brook, jp, lei, gethtmlforicon, 
folks, sharky, meds, submissive, leslie, drunkenfish, workout, mean mamma, acentos, greg, vicente, 
ecw, treadmill, mary torres, thanks urllink, dayton, katy, levengals, total far, linktocomments urllink, 
local, keem, peace love, today miles, porkchops, tini, danville, wife, therapist henry newman, kc, love 



ANOTHER BASELINE

WORD2VEC-INFUSED CLASSIFIER

‣ Trained Word2Vec (thanks to gensim) 
on the 512k blogs available 

‣ d=300, window=2, neg=200, 
min_count=10 

‣ A bit of normalisation done in the 
Vectorizer 

‣ Fed the representation into a logistic 
regressor   

            precision    recall  f1-score   support 

           0       0.53      0.58      0.55     45040 

           1       0.54      0.28      0.37     60179 

           2       0.27      0.58      0.37     22939 

    accuracy                                      0.44    128158 

   macro avg       0.45      0.48      0.43    128158 

weighted avg    0.49      0.44      0.43    128158



TEXTE

#1) train and save a model 
cat train_spacy.csv |  
             toVec.py --gensim models/genw2v-size300-window2-neg200-mincount100.w2v |  
             train-from-w2v.py Data_nobackup/models/genw2v-size300-window2-neg200-mincount100.clf 

#2) load the model and apply it to the test  
cat test_spacy.csv |  
             toVec.py --gensim models/genw2v-size300-window2-neg200-mincount100.w2v |  
             test-from-w2v.py Data_nobackup/models/genw2v-size300-window2-neg200-mincount100.clf 

#3) evaluate the produced output 
cat test_spacy.csv | eval.py  out/genw2v-size300-window2-neg200-mincount100.clf.out



TOVEC.PY

#1) read the embeddings 
if trained_with_gensim: 
    w2v_model = Word2Vec.load(model_name) 
else: 
    w2v_model = KeyedVectors.load_word2vec_format(model_name, binary=True) 

#2) read the dataset  
df = pd.read_csv(sys.stdin, names=[blog,classe]) 

#3) transform it  
mean_vec_tr = MeanEmbeddingVectorizer(w2v_model) 
doc_vec = mean_vec_tr.transform(df[blog]) 

#4 ) output in a csv-like format the vector and the class 
arr = np.c_[ doc_vec, df[classe]] 
np.savetxt(sys.stdout.buffer, arr, delimiter=',') 

MEANEMBEDDINGVECTORIZER  
ADAPTED FROM HTTPS://GITHUB.COM/
TOMLIN/PLAYGROUND/BLOB/MASTER/04-
MODEL-COMPARISON-WORD2VEC-
DOC2VEC-TFIDFWEIGHTED.IPYNB

https://github.com/TomLin/Playground/blob/master/04-Model-Comparison-Word2vec-Doc2vec-TfIdfWeighted.ipynb
https://github.com/TomLin/Playground/blob/master/04-Model-Comparison-Word2vec-Doc2vec-TfIdfWeighted.ipynb
https://github.com/TomLin/Playground/blob/master/04-Model-Comparison-Word2vec-Doc2vec-TfIdfWeighted.ipynb
https://github.com/TomLin/Playground/blob/master/04-Model-Comparison-Word2vec-Doc2vec-TfIdfWeighted.ipynb


TRAIN-FROM-W2V.PY

#1) read the matrix from stdin 
arr = np.loadtxt(sys.stdin.buffer, delimiter=',') 

x = arr[::,:-1]  # tout sauf la derniere colonne 
y = arr[::,-1].astype('int')   # juste la derniere colonne (label, en int) 

#2) train a model 
clf = LogisticRegression(C=5.0,class_weight='balanced', solver='newton-cg', 
                             multi_class='multinomial', n_jobs=-1, random_state=40, verbose=1) 
clf.fit(x, y) 

# 3) save it 
dump(clf, model_name) 



TEST-FROM-W2V.PY

# 1) read the w2v vectors and the class 
arr = np.loadtxt(sys.stdin.buffer, delimiter=',') 
x = arr[::,:-1]  # tout sauf la derniere colonne 
y = arr[::,-1].astype('int')   # juste la derniere colonne (label, en int) 
  
# 2) load the classifier 
clf = load(model_name) 

#3) run the prediction 
y_test = clf.predict(x) 

#4) output a result 
base = os.path.split(model_name)[1] 
out = f"{out_dir}/{base}.out" 
pickle.dump([clf.classes_, y_test], open(out, 'wb'))



ANOTHER BASELINE

WORD2VEC-INFUSED CLASSIFIER (TAKE 2)

‣ Also considered the pre-
trained embeddings 
distributed by Google 

‣  Google news - 3M words 

‣ Performance slightly worse 

              precision    recall  f1-score   support 

           0       0.50      0.60      0.55     45040 

           1       0.54      0.24      0.33     60179 

           2       0.26      0.56      0.36     22939 

    accuracy                                        0.42    128158 

   macro avg          0.44      0.46      0.41    128158 

weighted avg       0.48      0.42      0.41    128158



WHAT ELSE CAN BE DONE ?

WELL… 

‣ Investigating preprocessing 

‣ Investigating metapameters 

‣ Testing other feature-based models 

‣ XGBoost is currently very popular 

‣ Consider as well SVM, random Forest, etc. 

‣ Deep Learning 

‣ Stacking a softmax on top of an RNN encoder should give you a boost (expect 
+2% accuracy ), and if not, just pretend the data is too small. 

‣ Buy a GPU first, or use a platform like Colab. 

‣ Using rules (why not?)  

‣ Analyze the failure of your best strategy

https://colab.research.google.com/notebooks/welcome.ipynb#recent=true


HOW DOES IT 
FEEL ? 
 



TESTS: 34 GROUPS SUBMITTED A REPORT

‣ Some did not submitted their results to the mystere test set 

‣ Emmanuel, Charles 

‣ Some did submit a test file, but with bad number of lines 

‣ Marie-Ève (8149) 
‣ Zachary (110000) 
‣ Elyes (10000) 

‣ Format was (somehow) underspecified 

‣ Some reported text without csv encoding as the first column 

‣ With or without header (my fault)  

‣ Did accommodate all this 

‣ removing headers manually, safely removing first column  

‣ some potential issues (but I do not think so)



ACCURACY

Elyes-Lamouchi 5482 32.80 FFN
Philippe-Lelièvre 5184 36.46 BERT

David-Ferland 4778 41.43 LR

Marie-Ève-Malette-Campeau 3724 54.35 LR

Fanny-Salvail-Bérard 3375 58.63 XLNet

Daniel-Galarreta-Piquette  
Jean-Sebastien-Grondin

3219 60.54 NB?

Soheila-Kiani 3133 61.60 CNN

Francis-de-Ladurantaye 3069 62.38 BERT

Michel-Ma 2978 63.50 SVM or LR

Zachary-Barillaro 2956 63.77 NB

Gustavo-Alonso-Patino-Ramirez 2940 63.96 Doc2vec + ?

Luis-Dos-Santos 2922 64.18 LR

Kodjine-Dare 2677 67.19 ???

Martin-Weyssow 2614 67.96 ???

Hubert-Corriveau 2528 69.01 ???

Khalil-Slimi 2491 69.47 LR

Lucas-Pages 2391 70.69 kenLM

Amini-Mohammad 2327 71.48 ???

Olivier-Salaün 2269 72.19 ???

Yan-Zeng 2261 72.28 ???

Philippe-Gagné Chafouleas-Genevieve 2235 72.60 SVM?

Jean-Pierre-Thach 2233 72.63 LR

Aboubaker-Aden-Houssein 2222 72.76 DL (unclear)

Lu-Yuchen 2123 73.98 fastText

Tianjian-Gao 2016 75.29 SVC

Adrien-Mainka 1991 75.59 biGRU?

Nithin-Anchuri_ 1958 76.00 SVM

Leila-Camille-Hanis-Fabing 1936 76.27 FastText? 

Yutao-Zhu 1916 76.51 BERT

Khalil 1914 76.54 tf-idf++

Simon-Pelletier 1899 76.72 BERT++



PRECISION, RECALL AND F-MEASURE ON CLASS-2 (>=30)

P R FM

Olivier-Salaün 0.48 0.31 0.38 ???

Aboubaker-Aden-Houssein 0.44 0.37 0.40 DL (unclear)

Michel-Ma 0.29 0.62 0.40 SVM or LR

Lucas-Pages 0.35 0.50 0.41 kenLM

Amini-Mohammad 0.39 0.47 0.43 ???

Hubert-Corriveau 0.34 0.59 0.43 ???

Tianjian-Gao 0.50 0.37 0.43 SVC

Leila-Camille-Hanis-Fabing 0.52 0.38 0.44 fastText

Philippe-Gagné 0.47 0.41 0.44 SVM?

Khalil-Slimi 0.35 0.65 0.45 LR

Nithin-Anchuri 0.50 0.41 0.45 SVM

Yan-Zeng 0.43 0.47 0.45 ???

Adrien-Mainka 0.54 0.42 0.47 biGRU?

Khalil 0.50 0.45 0.47 LR-tfidf++

Simon-Pelletier 0.57 0.41 0.47 BERT++

Yutao-Zhu 0.57 0.40 0.47 BERT



SENSITIVITY TO SHORT TEXTS ? blog<100 
1285

blog<500 
3934

Yutao-Zhu 62.57 71.86 BERT

Olivier-Salaün 62.88 68.02 ???

Lu-Yuchen 63.04 69.52 fastText

Khalil 63.50 72.17 LR++

Aboubaker-Aden-Houssein 63.66 69.19 DL(unclear)

Adrien-Mainka 64.05 70.74 biGRU?

Simon-Pelletier 64.51 71.84 BERT++

Tianjian-Gao 65.29 71.58 SVC

Leila-Camille-Hanis-Fabing 65.76 72.32 fastText

Nithin-Anchuri 66.07 71.91 SVM



COOL VIZUALISATION (MERCI MARTIN)

‣ K-means on Doc2vec 

‣ Some cleaning would 
have been better 

‣ Would be interesting to 
see clusters per class



LACKING TIME, BUT SO FAR … 

‣Quite impressed by what was done by some groups 

‣Not analyzing the best solution is disappointing 

‣Normalisation does not seem to help 

‣ LR is a good system to start (or even end) with 

‣ Some variation among groups on this 

‣ BERT seems the best solution 

‣What about BERT-large ? 

‣Not necessarily easy to make it work 


