DEVOIR 1 — IFT6285

ICE BREAKING FOR

DISCLAIMER

- The purpose of this course is not to familiarize you with machine learning, neither do I force you to use a classifier in this assignment, although it is likely the easiest thing to do.
- Those slides assume <u>sklearn</u> is installed in your (python) environment. This may be challenging on Windows (although I do believe it is feasible). On my computer it was the matter of running 2 command lines (*pip3 sklearn, and pip3 joblib*)

RUSHING ON YOUR FAVORITE **CLASSIFIER IS** CERTAINLY EASY. LIKELY FRUITFUL.

BUT MAKES YOU ONE OF US...

WC -L DATA/T*_POSTS.CSV

128158 data/test_posts.csv 512629 data/train_posts.csv

HEAD -N 1 DATA/TRAIN_POSTS.CSV

A BLOG CAN BE QUITE LONG

"long time.. i have been busy with work, school, rehersal, other random crap, and when i do have free time, my parents are on the computer. so shaddup! *memories* last night i started getting some memorys of my freind david, one of my favorites being the time my dog ate his bird. i look back and laugh, but it was pretty sad at the time. speaking of pets, i really want the tortoise at the pet store, how cool would that be, a pet tortoise?! and they live for hundreds of years, so it would make a great family heirloom, and sice they can do whatever to turtle shells so they don't rot (dry them out???) so when it died, that generation could still keep the shell. and they would have a reason to keep it, since it is a family herloom, it would be encrusted with jewels. horray! unfortunatly, the tortoise costs 140 bucks, not including food and so on. of course it would not need a coniner, sice it is a family heirloom, and i wil teach it to poop a certain place. horray. also, i never had a chance to use the self centered idea to find out who joah likes, so im just ganna come clean and tell him i like him. ",0

MAIN STATISTICS (FOR MORE SEE TP2)

CLASS DIS			
	train	test	
0	35.1	35.1	
1	46.9	46.9	
2	17.9	17.9	

LENGTH DISTRIBUTION		
	train	test
<=100	55.10	55.
<= 200	77.89	77.
<= 300	87.22	87.
<= 400	91.65	91.
avr.	163.0	162

CAT DATA/TRAIN_POSTS.CSV | DUMMY.PY

#!/usr/bin/env python3
dummy.py

import sys import pandas as pd from sklearn.dummy import DummyClassifier from joblib import dump

SKLEARN IS YOUR FRIEND

1) read stdin
df = pd.read_csv(sys.stdin, names=['blog', 'class'])

2) fit a dummy classifier clf = DummyClassifier(strategy='most_frequent') clf.fit(df[blog], df[classe])

3) dump it dump(clf, './models/dummy-most.clf')

ONLY TAKES A FEW SECONDS TO RUN (TIME TO READ THE DATA)

CAT DATA/TEST_POSTS.CSV | TEST.PY MODELS/DUMMY-MOST.CLF

#!/usr/bin/env python3
dummy.py

import sys, pickle, pandas as pd from sklearn.dummy import DummyClassifier from joblib import load

```
model_name = get_args() # to be written
```

```
# 1) read stdin
df = pd.read_csv(sys.stdin, names=['blog', 'class'])
```

```
# 2) fit a dummy classifier
clf = load(model_name)
y = clf.predict(df[blog])
```

```
# 3) output the predicition
base = os.path.split(model_name)[1]
out = f"{out_dir}/{base}.out"
pickle.dump([clf.classes_,y], open(out, 'wb'))
```

GENERATES OUT/DUMMY-MOST.OUT

CAT DATA/TEST_POSTS.CSV | EVAL.PY OUT/DUMMY-MOST.OUT

- You have to decide which metric(s) to use for evaluating your models
 - accuracy is the percentage of correct decisions over the total number of decisions to take (#of test examples)
 - If the dataset is unbalanced, it can artificially be quite high
 - **precision** is the % of correct decisions made over the total number of decisions taken (<= #test examples)</p>
 - recall is the % of correct decisions made over the total number of decisions to take (#of test examples)
 - **f-measure** (F1) is often reported (harmonic mean of precision and recall)
 - When reporting precision and recall (therefore F1), you need to clarify which task is being asked to your classifier. So if for instance you consider important to find children, you could frame a task as « finding the authors that are children (class 0) », in which case precision and recall are defined as:
 - P = #children correctly identified / #identifications
 - R = #children correctly identified / #children in the test set

OUT/DUMMY-MOST.OUT: 67979 BAD EX OVER 128158 ONES. ACC: 46.96 %

THIS BEING UNDERSTOOD, USE SOMETHING LIKE:

from sklearn.metrics import classification_report

•••

print(classification_report(truth, predicted))

CAT DATA/TEST_POSTS.CSV | EVAL.PY OUT/DUMMY-MOST.OUT

/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/metrics/ classification.py:1437: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. 'precision', 'predicted', average, warn_for)

precision recall f1-score support

			-
1 0.47 1.00	0.64	60179	7
2 0.00 0.00	0.00	22939	7
accuracy		0.47	128158
macro avg 0.16	0.33	0.21	128158
weighted avg 0.22 (0.47	0.30	128158

WARNS JUST BECAUSE OF THE DUMMY CLASSIFIER ALWAYS PREDICTS CLASS 1

VECTORIZER + LOGISTIC REGRESSION

A vectorizer represents a text into a vector (of fixed size, defaulting to the number of different words in your collection). There are several of them built-in in sklearn, including:

- <u>CountVectorizer</u> simply counts the words in a document v[i] is the count of the ith word in the document
- <u>TfidfVectorizer</u> normalize the counts by taking into account the frequency of words in the collection (words seen in many documents will be discounted)

LogisticRegression is one of the many classifiers available in sklearn. One of its advantage is that it allows to query the weights given to features, and when features are discreet (here words), it is rather instructive (see later)

CAT DATA/TRAIN_POSTS.CSV | TRAIN.PY ...

from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.linear_model import LogisticRegression

```
analyzer, min_df, ... = get_args() # to be implemented
```

```
# a number of options can control a vectorizer, I reckon you investigate them
vectorizer = TfidfVectorizer(analyzer=analyzer, min_df=min_df,
max_df=max_df, max_features=max_features,
ngram_range=(ngram_inf,ngram_sup),
stop_words='english')
```

```
df = pd.read_csv(sys.stdin, names=['blog', 'class'])
X_train = vectorizer.fit_transform(df[blog])
```

isn't life beautiful ?

dump the vectorizer and the model (for use at test time)
dump(vectorizer, vec_name)
dump(clf, clf_name)

ALREADY QUITE SOME VARIANTS TO TEST...

%You could represent your text by their words, their chars, their bigram of words / chars, etc.

% Each representation can be parametrized

The classifier has its own meta-parameters

And we might want to play with other classifiers as well, eventually combining several ...

I SUGGEST YOU START WITH THE BASICS (DEFAULT SETTINGS), AND THEN EXPLORE AS MUCH AS YOU CAN SYSTEMATICALLY (WITHOUT CODING SPECIFICALLY).

Notes:

- A one-file python notebook **is not** the best way of investigating many variants systematically.
- This kind of meta-parameters investigation requires sane coding practices, and should typically be conducted on a validation set and is definitely not green-AI

LET'S TRAIN A FEW VARIANTS...

cat data/train_posts.csv | train.py -analyzer=word

34M model-straight-tfidf-analyzerword-ngram1-1-min_df0.0-max_df1.0-max_featuresNone-512629.vec

12M model-straight-tfidf-analyzerword-ngram1-1-min_df0.0-max_df1.0-max_featuresNone-512629.clf

cat data/train_posts.csv | train.py -analyzer=word -ngram_sup=2

1,1G model-straight-tfidf-analyzerword-ngram1-2-min_df0.0-max_df1.0-max_featuresNone-512629.vec

374M model-straight-tfidf-analyzerword-ngram1-2-min_df0.0-max_df1.0-max_featuresNone-512629.clf

10 MIN. TO TRAIN

LET'S TRAIN A FEW VARIANTS...

cat data/train_posts.csv | train.py -analyzer=char -ngram_sup=3

6,8M model-straight-tfidf-analyzerchar-ngram1-3-min_df0.0-max_df1.0-max_featuresNone-512629.vec

15 MIN. TO TRAIN

2,7M model-straight-tfidf-analyzerchar-ngram1-3-min_df0.0-max_df1.0-max_featuresNone-512629.clf

cat data/train_posts.csv | train.py --ngram_sup=2 --maxfeat=50000

RUNNING A MODEL

#1) parse the command line, prepare filenames to read/save model_name, ... = get_args() # to be implemented

```
#2) load the vectorizer and the classifier
vectorizer = load(f'{model_name}.vec')
clf = load(f'{model_name}.clf')
```

```
#3) read test data
df = pd.read_csv(sys.stdin, names=['blog', 'class'])
```

X_test = vectorizer.transform(df[blog]) # apply the vectorizer y_test = clf.predict(X_test) # run the classifier

```
#4) save the predictions
base = os.path.split(model_name)[1]
out = f"{out_dir}/{base}.out"
pickle.dump([clf.classes_,y_test], open(out, 'wb'))
```

ex: cat data/test_posts.csv | test.py models/model-straight-tfidf-analyzerword-ngram1-1-min_df0.0max_df1.0-max_featuresNone-512629

EVALUATING A PREDICTION

ex: cat data/test_posts.csv | eval.py out/model-straight-tfidf-analyzerword-ngram1-1-min_df0.0-max_df1.0-max_featuresNone-512629.out

	Config	Acc.
	1g	68.55
Word	1g - 50k feat	66.16
	1,2g	71.92
	1,2g-50k feat	65.50
Char	1-3g	63.21

THE BEST I HAVE (NO EXPLORATION)

	precis	sion re	ecall f	1-score	supp	ort
0	0.	80 0	.79	0.79	45040)
1	0.	73 0	.73	0.73	60179	?
2	0.	54 0	.55	0.55	22939	?
micro	avg	0.7	⁷ 2 0	.72	0.72	128158
macro	b avg	0.6	59 0	.69	0.69	128158
weighte	ed avg	0.7	72 0	.72	0.72	128158

[[35441 7602 1997] [7292 44005 8882] [1593 8617 12729]]

ACCESS TO THE KIND OF FEATURES FOUND USEFUL

class 0 : haha, anyways, homework, school, maths, xd, ap, marten, nicki, linds, thats, prom, exun, anywho, chem, current song, arv, karan, wad, bye, gunna, mrs, yay, im, awesome, w00t, hahaz, haiz, noe, gamespot, lolz, xanga, rosie, lol, current music, lindsey, ur, yea, jumper991, babysitting, soo, info link, alright, theres, jackie, laura, kuronue, xbubzx, jonah, idk, heinz, josh, random, ashley, camp, little kids, math, affectionately anna, seniors, tk, chemistry, colleges, tmk, abby, den, pointless, g2g, hahaha, ppl, gonna, theo, ttyl, boring, hmmn

class 1 : apartment, law school, mungo, daf, vlad, ching, semester, baity, posted paul, andrei, india, roommates, dena, parents house, internship, abt, holla, killy, fonz, bf, como, office, jax, pia, cyodfs, wedding, adolph, fro, urllink mail, undergrad, new wave, thesis, grad school, jonnie, roommate, pictures baby, shayne, cara, perth, damo, midterm, dori, darth, drinks, clubbing, high school, coz, furze, melbourne, lab, jerel, weekend, rini, boz, kicha, icq, coffee count, shawna, currently listening, triumph good, vegas, work, thing necessary, nhl, deane, jb, evil triumph, bless america, bangalore, campus, hostel, today msn, prof, professors

class 2 : duf, diva, corsair, guam, hubby, ok mm, hal, 2004 non, djs, non girlfriend, shep, daughter, venerable, copyright 2004, evermean, eric digest, dog news, dear lei, rick, son, scw, husband, tuesday quote, katelyn, katya, giulio, _____, heff, digest, pandyland, jayel, inda, shai, hax, liza, keisha, kids, email spanners, spanners, link courtesy, maiko, years, jennie, allot, brook, jp, lei, gethtmlforicon, folks, sharky, meds, submissive, leslie, drunkenfish, workout, mean mamma, acentos, greg, vicente, ecw, treadmill, mary torres, thanks urllink, dayton, katy, levengals, total far, linktocomments urllink,

WORD2VEC-INFUSED CLASSIFIER

precision recall f1-score support

Trained Word2Vec (than	Trained Word2Vec (thanks to gensim)	0 0.5	0.58	0.55	450)40
	on the 512k blogs available	1 0.5	64 0.28	0.37	601	79
	d=300, window=2, neg=200, min_count=10	2 0.2	27 0.58	8 0.37	229	939
	A bit of normalisation done in the Vectorizer	accuracy			0.44	128158
	Fed the representation into a logistic regressor	macro avg	0.45	0.48	0.43	128158
		weighted avg	0.49	0.44	0.43	128158

#1) train and save a model
cat train_spacy.csv |
toVec.py --gensim models/genw2v-size300-window2-neg200-mincount100.w2v |
train-from-w2v.py Data_nobackup/models/genw2v-size300-window2-neg200-mincount100.clf

#2) load the model and apply it to the test
cat test_spacy.csv |
 toVec.py --gensim models/genw2v-size300-window2-neg200-mincount100.w2v |
 test-from-w2v.py Data_nobackup/models/genw2v-size300-window2-neg200-mincount100.clf

#3) evaluate the produced output cat test_spacy.csv | eval.py out/genw2v-size300-window2-neg200-mincount100.clf.out

```
#1) read the embeddings
if trained_with_gensim:
    w2v_model = Word2Vec.load(model_name)
else:
    w2v_model = KeyedVectors.load_word2vec_format(model_name, binary=True)
```

```
#2) read the dataset
df = pd.read_csv(sys.stdin, names=[blog,classe])
```

```
#3) transform it
mean_vec_tr = MeanEmbeddingVectorizer(w2v_model)
doc_vec = mean_vec_tr.transform(df[blog])
```

```
#4 ) output in a csv-like format the vector and the class
arr = np.c_[ doc_vec, df[classe]]
np.savetxt(sys.stdout.buffer, arr, delimiter=',')
```

MEANEMBEDDINGVECTORIZER ADAPTED FROM <u>HTTPS://GITHUB.COM/</u> TOMLIN/PLAYGROUND/BLOB/MASTER/04-MODEL-COMPARISON-WORD2VEC-DOC2VEC-TFIDFWEIGHTED.IPYNB

```
#1) read the matrix from stdin
arr = np.loadtxt(sys.stdin.buffer, delimiter=',')
```

```
x = arr[::,:-1] # tout sauf la derniere colonne
y = arr[::,-1].astype('int') # juste la derniere colonne (label, en int)
```

3) save it dump(clf, model_name)

```
# 1) read the w2v vectors and the class
arr = np.loadtxt(sys.stdin.buffer, delimiter=',')
x = arr[::,:-1] # tout sauf la derniere colonne
y = arr[::,-1].astype('int') # juste la derniere colonne (label, en int)
```

```
# 2) load the classifier
clf = load(model_name)
```

```
#3) run the prediction
y_test = clf.predict(x)
```

```
#4) output a result
base = os.path.split(model_name)[1]
out = f"{out_dir}/{base}.out"
pickle.dump([clf.classes_, y_test], open(out, 'wb'))
```

WORD2VEC-INFUSED CLASSIFIER (TAKE 2)

precision recall f1-score support

Also considered the pre-						
trained embeddings distributed by Google	0	0.50	0.60	0.55	4504	40
Google news - 3M words	1	0.54	0.24	0.33	6017	79
Performance slightly worse	2	0.26	0.56	0.36	2293	39
	accurac	ÿ			0.42	128158
	macro a	vg	0.44	0.46	0.41	128158

weighted avg 0.48 0.42 0.41 128158

WHAT ELSE CAN BE DONE ?

WELL...

- Investigating preprocessing
- Investigating metapameters
- Testing other feature-based models
 - XGBoost is currently very popular
 - Consider as well SVM, random Forest, etc.
- Deep Learning
 - Stacking a softmax on top of an RNN encoder should give you a boost (expect +2% accuracy), and if not, just pretend the data is too small.
 - Buy a GPU first, or use a platform like <u>Colab</u>.
- Using rules (why not?)
- Analyze the failure of your best strategy

HOW DOES IT FEEL ?

TESTS: 34 GROUPS SUBMITTED A REPORT

Some did not submitted their results to the mystere test set

- Emmanuel, Charles
- Some did submit a test file, but with bad number of lines
 - Marie-Ève (8149)
 - Zachary (110000)
 - Elyes (10000)
- Format was (somehow) underspecified
 - Some reported text without csv encoding as the first column
 - With or without header (my fault)
- Did accommodate all this
 - removing headers manually, safely removing first column
 - some potential issues (but I do not think so)

	Elyes-Lamouchi	5482	32.80	FFN
	Philippe-Lelièvre	5184	36.46	BERT
ACCURACY	David-Ferland	4778	41.43	LR
	Marie-Eve-Malette-Campeau	3724	54.35	LR
	Fanny-Salvail-Bérard	3375	58.63	XLNet
	Daniel-Galarreta-Piquette	3219	60.54	NB?
	Soheila-Kiani	3133	61.60	CNN
	Francis-de-Ladurantaye	3069	62.38	BERT
	Michel-Ma	2978	63.50	SVM or LR
	Zachary-Barillaro	2956	63.77	NB
	Gustavo-Alonso-Patino-Ramirez	2940	63.96	Doc2vec + ?
	Luis-Dos-Santos	2922	64.18	LR
	Kodjine-Dare	2677	67.19	???
	Martin-Weyssow	2614	67.96	???
	Hubert-Corriveau	2528	69.01	???
	Khalil-Slimi	2491	69.47	LR
	Lucas-Pages	2391	70.69	kenLM
	Amini-Mohammad	2327	71.48	???
	Olivier-Salaün	2269	72.19	???
	Yan-Zeng	2261	72.28	???
	hilippe-Gagné Chafouleas-Genevieve	2235	72.60	SVM?
	Jean-Pierre-Thach	2233	72.63	LR
	Aboubaker-Aden-Houssein	2222	72.76	DL (unclear)
	Lu-Yuchen	2123	73.98	fastText
	Tianjian-Gao	2016	75.29	SVC
	Adrien-Mainka	1991	75.59	biGRU?
	Nithin-Anchuri_	1958	76.00	SVM
	Leila-Camille-Hanis-Fabing	1936	76.27	FastText?
	Yutao-Zhu	1916	76.51	BERT
	Khalil	1914	76.54	tf-idf++
	Simon-Pelletier	1899	76.72	BERT++

PRECISION, RECALL AND F-MEASURE ON CLASS-2 (>=30)

	Р	R	FM	
Olivier-Salaün	0.48	0.31	0.38	???
Aboubaker-Aden-Houssein	0.44	0.37	0.40	DL (unclear)
Michel-Ma	0.29	0.62	0.40	SVM or LR
Lucas-Pages	0.35	0.50	0.41	kenLM
Amini-Mohammad	0.39	0.47	0.43	???
Hubert-Corriveau	0.34	0.59	0.43	???
Tianjian-Gao	0.50	0.37	0.43	SVC
Leila-Camille-Hanis-Fabing	0.52	0.38	0.44	fastText
Philippe-Gagné	0.47	0.41	0.44	SVM?
Khalil-Slimi	0.35	0.65	0.45	LR
Nithin-Anchuri	0.50	0.41	0.45	SVM
Yan-Zeng	0.43	0.47	0.45	???
Adrien-Mainka	0.54	0.42	0.47	biGRU?
Khalil	0.50	0.45	0.47	LR-tfidf++
Simon-Pelletier	0.57	0.41	0.47	BERT++
Yutao-Zhu	0.57	0.40	0.47	BERT

SENSITIVITY TO SHORT TEXTS ?	blog<100	blog<500	
	1285	3934	
Yutao-Zhu	62.57	71.86	BERT
Olivier-Salaün	62.88	68.02	???
Lu-Yuchen	63.04	69.52	fastText
Khalil	63.50	72.17	LR++
Aboubaker-Aden-Houssein	63.66	69.19	DL(unclear)
Adrien-Mainka	64.05	70.74	biGRU?
Simon-Pelletier	64.51	71.84	BERT++
Tianjian-Gao	65.29	71.58	SVC
Leila-Camille-Hanis-Fabing	65.76	72.32	fastText
Nithin-Anchuri	66.07	71.91	SVM

Figure 2: Wordclouds de certains clusters pour k=20

- K-means on Doc2vec
- Some cleaning would have been better
- Would be interesting to see clusters per class

- Quite impressed by what was done by some groups
- Not analyzing the best solution is disappointing
- Normalisation does not seem to help
- LR is a good system to start (or even end) with
 - Some variation among groups on this
- BERT seems the best solution
 - What about BERT-large ?
 - Not necessarily easy to make it work