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REPORT = THE ONLY THING I EVALUATE

REPORT IS IMPORTANT !!!

▸ The presence of code is almost useless (unless clarification 
needs to be made).  

▸ The abstract should describe what has been done (not just 
paraphrasing the subject) 

▸ Delivering results is something, analyzing / explaining why 
it is so is better 

▸ No need to copy the subject or explain KN (unless you use 
the description in your analysis)



ABSTRACT

GOOD



CODE

GOOD



CODE

BAD



COMPLAINTS

OK, BUT BUT UP TO A POINT

▸ On the difficulty of installing KenLM on Windows.  

▸ I can understand that, although you were many to 
manage to make it work 

▸ On the impossibility to count words in a (large) corpus  

▸ Highly suspicious (do not memorize the corpus) 

▸ I was not able to find the option to count words in wc 

▸ well…



FROM YOUR ASSIGNMENTS

SOME COOL THINGS 

▸ Time / size of the models as a function of the ngram order 

▸ Aptitude of the model to predict the next word 

▸ on a small subset of sentences 

▸ on sampled contexts  

▸ Comparing the top-1 prédiction made by kenLM to the one of the iPhone !!! 

▸ Analyzing the results further 

▸ Variation on POS,  

▸ using NER to regroup words,  

▸ ppl w/o oov, etc.



DIRTY HANDS

Elements of a solution



COUNTING

% HEAD -N 3 DATA/TRAIN.EN
Resumption of the session 

I declare resumed the session of the European Parliament adjourned on Friday 17 
December 1999 , and I would like once again to wish you a happy new year in the hope 
that you enjoyed a pleasant festive period . 

Although , as you will have seen , the dreaded &apos; millennium bug &apos; failed to 
materialise , still the people in a number of countries suffered a series of natural disasters 
that truly were dreadful .

% WC DATA/TRAIN.EN
 4544200       119173686      655160185       Data/train.en 

#lines (sentences)

#words (space separated)

#chars

=> 119M occurrences



COUNTING

% CAT DATA/TRAIN.EN | TR ‘ ‘ ‘\N’ | SORT | UNIQ -C | SORT -K1,1NR 

Not fast, because of the sort operation, but easily something you 
can run while you are doing something else

1833.726u 12.615s 29:34.46 104.0% 0+0k 0+0io 58pf+0w 

6631665 the 
5462478 , 
4558005 . 
3474693 of 
3122444 and 
2943843 to 
2142132 in 
… 29 minutes on my laptop  

(1,4 GHz Intel Core i7, 16Go)

|V|=860819 



WHAT IF I DO NOT LIKE THE SPACE TOKENIZER ?

WELL, USE SPACY / NLTK / WHATEVER YOU LIKE
#!/usr/bin/env python3 
# felipe@ift6285 
# 
# a small example for TP1 
# lancement: cat <text file> | tok.py 

import sys 
import spacy 

nlp = spacy.load("en_core_web_sm", disable=["tagger", "parser", 
"ner"]) 

for line in sys.stdin: 
    words = [tok.text for tok in nlp(line.strip())] 
    print("\n".join(words)) 

AND DIVIDE AND CONQUER

YOUR PYTHON PROGRAMS COUD SIMPLY BE COMPONENTS OF A PIPELINE 

CAT DATA/TRAIN.EN  | TOK.PY | SORT | UNIQ -C | SORT -K1,1NR



TRAIN-KENLM

#!/bin/csh -f 
set kenlmpath = ~/myPackages/kenlm/build 
set modelpath = ../Data_nobackup/models/kenlm 

if ($#argv != 2) then 
  echo "usage: $0 <corpus> <order>" 
  exit 
endif 

set corpus = $1 
set order = $2 

# 0) decide which file to generate 
set model = `basename $corpus`-${order}g 
set arpa = ${modelpath}/${model}.arpa 
set binary = ${modelpath}/${model}.bin 

# 1 ) computing an arpa model 
$kenlmpath/bin/lmplz -o $order -S 80% -T /tmp < $corpus > $arpa 

# 2) converting arpa into binary  
$kenlmpath/bin/build_binary $arpa $binary 

# 3) check 
ls -l $arpa $binary



TRAINING

% TIME TRAIN-KENLM DATA/TRAIN.EN 3

114.288u 10.647s 2:11.41 95.0% 0+0k 0+0io 160241pf+0w 

-rw-r-----  1 felipe  staff   1,5G 29 oct 15:19 train.en-3g.arpa 
-rw-r-----  1 felipe  staff   972M 29 oct 15:19 train.en-3g.bin 

Only 2 min. of my laptop for a 3gram ! 
(how fast considering counting words took so much time)

% TIME TRAIN-KENLM DATA/TRAIN.EN 2

48.748u 3.217s 0:52.33 99.2% 0+0k 0+0io 22pf+0w 

-rw-r-----  1 felipe  staff   293M 29 oct 15:24 train.en-2g.arpa 
-rw-r-----  1 felipe  staff   222M 29 oct 15:24 train.en-2g.bin 

Less than a min. for a bigram model …

Quite a lot of space (you actually only 
need the binary format)



TIME TO QUERY YOUR MODEL(S) — THE COMMAND LINE WAY

HEAD -N 2 DATA/TEST.EN | QUERY MODELS/TRAIN.EN-2G.BIN

Gutach=838082 1 -8.563082 :=585 1 -2.6727304 Increased=3366 2 -4.638858 safety=434 2 -2.5548968 
for=94 2 -1.869487 pedestrians=27530 2 -4.26594 </s>=2 1 -4.1019487 Total: -28.666943 OOV: 0 

They=1042 2 -2.1825824 are=327 2 -0.612774 not=233 2 -1.2988738 even=866 2 -2.1322188 
100=5921 2 -3.7163234 metres=5923 2 -1.3846334 apart=2758 2 -3.3101661 :=585 2 -3.1149714 
On=1549 2 -2.96381 Tuesday=583 2 -2.6911228 ,=18 2 -0.5171114 the=5 2 -1.142501 new=29 2 
-2.2626345 B=7616 2 -4.1564455 33=6087 2 -4.359213 pedestrian=29022 1 -5.421015 
lights=10349 2 -3.6579065 in=31 2 -1.3908285 Dorfparkplatz=0 1 -8.700969 in=31 1 -2.199971 
Gutach=838082 2 -6.850334 became=6042 1 -3.6498296 operational=4463 2 -2.6847038 -=649 2 
-2.4236326 within=781 2 -3.2732668 view=967 2 -3.9559016 of=4 2 -0.58965415 the=5 2 
-0.5317595 existing=1472 2 -3.108656 Town=24289 1 -5.166059 Hall=21402 2 -0.9881305 
traffic=1120 1 -4.900457 lights=10349 2 -1.5967978 .=38 2 -0.9308659 </s>=2 2 -0.03715668 Total: 
-97.903275 OOV: 1 

Perplexity including OOVs: 1031.755038487236 
Perplexity excluding OOVs: 749.6520221763684 
OOVs: 1 
Tokens: 42 
RSSMax:226201600 kB user:0.003488 sys:0.130144 CPU:0.133679 real:0.127912

You may report that, provided you explain it comes 
from this program



TIME TO QUERY YOUR MODEL — THE PYTHON WAY

CAT DATA/TEST.EN | TP1.PY MODELS/TRAIN.EN-2G.BIN
#!/usr/bin/env python3 
# tp1.py 

import kenlm 
import argparse 
import sys 
   
modelName = get_args() 
model = kenlm.Model(modelName) 

for i,line in enumerate(sys.stdin,1): 

    sentence = line.rstrip() 
    ppx = model.perplexity(sentence) 

I reckon you use this to parse the command 
line in your python progs

Do whatever you want with input sentence

to be written



BEYOND PERPLEXITY

MEASURING THE PREDICTION RATE OF WORDS
def do_sentence(sentence, vocab, model): 

    state_in = kenlm.State()    # define a few states 
    state_out = kenlm.State() 

    ranks = [] # le rang de chaque mot de la phrase 
    model.BeginSentenceWrite(state_in) # model.NullContextWrite(state) 
    for w in sentence.split(): 
      
        res = []                                                                                        # 1) argmax over vocab 
        for v in vocab: 
            s = model.BaseScore(state_in, v, state_out) 
            res.append((v, s)) 

        model.BaseScore(state_in, w, state_in) #  reseter state_in 
  
        res.sort(key=lambda x: x[1], reverse=True)                       # 2) sort the nbest list 
        rank = linear_search(lambda x: x[0] == w, res)                 #      get the rank of w 
        ranks.append(rank)                                                                 #      store it for stats 
  
        if verbosity: 
            print(f"PRED\t{w}\t{rank}\t", res[:5]) 

        # do stats 
        … 

     return ranks 
 

vocab is a set of words 
that compete



BEYOND PERPLEXITY

HEAD -N 10  DATA/TEST.EN | TP1.PY  MODELS/TRAIN.EN-2G.BIN --VOC=VOC.1K --VERBOSITY=2

PRED Gutach 1000  [('The', -0.8539741039276123), ('I', 
-1.2894823551177979), ('We', -1.3505849838256836), ('In', -1.384865403175354), 
('This', -1.4174968004226685)] 
PRED : 15  [('.', -0.5119906067848206), (',', -1.8282580375671387), ('and', 
-2.1233713626861572), ('(', -2.304332733154297), ('is', -2.3374271392822266)] 
PRED Increased 832  [('the', -1.1898130178451538), ('&quot;', 
-1.4203648567199707), ('The', -1.5330532789230347), ('a', -1.7557408809661865), ('/', 
-1.8039711713790894)] 
… 
top<=1: 17.39 % nstop: 8.21 % 
top<=2: 24.15 % nstop: 9.18 % 
top<=3: 29.47 % nstop: 11.11 % 
top<=4: 31.40 % nstop: 12.56 % 
top<=5: 33.82 % nstop: 14.49 % 
top<=6: 35.27 % nstop: 14.98 % 
top<=7: 35.27 % nstop: 14.98 % 
top<=8: 37.20 % nstop: 16.43 % 
top<=9: 39.61 % nstop: 18.36 % 
top<=10: 40.10 % nstop: 18.36 %

the 1000 most frequent words

% of tokens (of test) predicted first 

% of tokens predicted in the 10-first positions

With a vocabulary as small as 1k words, 
this code is very fast



FINAL NOTE

A NOTEBOOK IS COOL

But decomposing a program into  several components (possibly using unix commands) that 
deal with specific parts each (ex: tokenization / normalisation / cutoff) allows for: 

- Reusability 

- Batch processing 

- running a script that does many things while you do … something else 

- possibly on several computers (if you are lucky) 

- without modify one char of a code 

- Deployment without tear on platforms  like Google Colab 

- Less coding 

CAT <IN> | TOK.PY | NORMALIZE.PY | CUTOFF.PY 10 | TP1.PY 



CODE IS GOOD

BUT WHAT MATTERS IN THE END … IS THE REPORT

10: BE CURIOUS 
20: GOTO SLIDE 2


