
TP1 - IFT6285
QUELQUES OBSERVATIONS
CONCERNANT LE

FELIPE@IFT6285 A2019

REPORT = THE ONLY THING I EVALUATE

REPORT IS IMPORTANT !!!

▸ The presence of code is almost useless (unless clarification
needs to be made).

▸ The abstract should describe what has been done (not just
paraphrasing the subject)

▸ Delivering results is something, analyzing / explaining why
it is so is better

▸ No need to copy the subject or explain KN (unless you use
the description in your analysis)

ABSTRACT

GOOD

CODE

GOOD

CODE

BAD

COMPLAINTS

OK, BUT BUT UP TO A POINT

▸ On the difficulty of installing KenLM on Windows.

▸ I can understand that, although you were many to
manage to make it work

▸ On the impossibility to count words in a (large) corpus

▸ Highly suspicious (do not memorize the corpus)

▸ I was not able to find the option to count words in wc

▸ well…

FROM YOUR ASSIGNMENTS

SOME COOL THINGS

▸ Time / size of the models as a function of the ngram order

▸ Aptitude of the model to predict the next word

▸ on a small subset of sentences

▸ on sampled contexts

▸ Comparing the top-1 prédiction made by kenLM to the one of the iPhone !!!

▸ Analyzing the results further

▸ Variation on POS,

▸ using NER to regroup words,

▸ ppl w/o oov, etc.

DIRTY HANDS

Elements of a solution

COUNTING

% HEAD -N 3 DATA/TRAIN.EN
Resumption of the session

I declare resumed the session of the European Parliament adjourned on Friday 17
December 1999 , and I would like once again to wish you a happy new year in the hope
that you enjoyed a pleasant festive period .

Although , as you will have seen , the dreaded ' millennium bug ' failed to
materialise , still the people in a number of countries suffered a series of natural disasters
that truly were dreadful .

% WC DATA/TRAIN.EN
 4544200 119173686 655160185 Data/train.en

#lines (sentences)

#words (space separated)

#chars

=> 119M occurrences

COUNTING

% CAT DATA/TRAIN.EN | TR ‘ ‘ ‘\N’ | SORT | UNIQ -C | SORT -K1,1NR

Not fast, because of the sort operation, but easily something you
can run while you are doing something else

1833.726u 12.615s 29:34.46 104.0% 0+0k 0+0io 58pf+0w

6631665 the
5462478 ,
4558005 .
3474693 of
3122444 and
2943843 to
2142132 in
… 29 minutes on my laptop

(1,4 GHz Intel Core i7, 16Go)

|V|=860819

WHAT IF I DO NOT LIKE THE SPACE TOKENIZER ?

WELL, USE SPACY / NLTK / WHATEVER YOU LIKE
#!/usr/bin/env python3
felipe@ift6285

a small example for TP1
lancement: cat <text file> | tok.py

import sys
import spacy

nlp = spacy.load("en_core_web_sm", disable=["tagger", "parser",
"ner"])

for line in sys.stdin:
 words = [tok.text for tok in nlp(line.strip())]
 print("\n".join(words))

AND DIVIDE AND CONQUER

YOUR PYTHON PROGRAMS COUD SIMPLY BE COMPONENTS OF A PIPELINE

CAT DATA/TRAIN.EN | TOK.PY | SORT | UNIQ -C | SORT -K1,1NR

TRAIN-KENLM

#!/bin/csh -f
set kenlmpath = ~/myPackages/kenlm/build
set modelpath = ../Data_nobackup/models/kenlm

if ($#argv != 2) then
 echo "usage: $0 <corpus> <order>"
 exit
endif

set corpus = $1
set order = $2

0) decide which file to generate
set model = `basename $corpus`-${order}g
set arpa = ${modelpath}/${model}.arpa
set binary = ${modelpath}/${model}.bin

1) computing an arpa model
$kenlmpath/bin/lmplz -o $order -S 80% -T /tmp < $corpus > $arpa

2) converting arpa into binary
$kenlmpath/bin/build_binary $arpa $binary

3) check
ls -l $arpa $binary

TRAINING

% TIME TRAIN-KENLM DATA/TRAIN.EN 3

114.288u 10.647s 2:11.41 95.0% 0+0k 0+0io 160241pf+0w

-rw-r----- 1 felipe staff 1,5G 29 oct 15:19 train.en-3g.arpa
-rw-r----- 1 felipe staff 972M 29 oct 15:19 train.en-3g.bin

Only 2 min. of my laptop for a 3gram !
(how fast considering counting words took so much time)

% TIME TRAIN-KENLM DATA/TRAIN.EN 2

48.748u 3.217s 0:52.33 99.2% 0+0k 0+0io 22pf+0w

-rw-r----- 1 felipe staff 293M 29 oct 15:24 train.en-2g.arpa
-rw-r----- 1 felipe staff 222M 29 oct 15:24 train.en-2g.bin

Less than a min. for a bigram model …

Quite a lot of space (you actually only
need the binary format)

TIME TO QUERY YOUR MODEL(S) — THE COMMAND LINE WAY

HEAD -N 2 DATA/TEST.EN | QUERY MODELS/TRAIN.EN-2G.BIN

Gutach=838082 1 -8.563082 :=585 1 -2.6727304 Increased=3366 2 -4.638858 safety=434 2 -2.5548968
for=94 2 -1.869487 pedestrians=27530 2 -4.26594 </s>=2 1 -4.1019487 Total: -28.666943 OOV: 0

They=1042 2 -2.1825824 are=327 2 -0.612774 not=233 2 -1.2988738 even=866 2 -2.1322188
100=5921 2 -3.7163234 metres=5923 2 -1.3846334 apart=2758 2 -3.3101661 :=585 2 -3.1149714
On=1549 2 -2.96381 Tuesday=583 2 -2.6911228 ,=18 2 -0.5171114 the=5 2 -1.142501 new=29 2
-2.2626345 B=7616 2 -4.1564455 33=6087 2 -4.359213 pedestrian=29022 1 -5.421015
lights=10349 2 -3.6579065 in=31 2 -1.3908285 Dorfparkplatz=0 1 -8.700969 in=31 1 -2.199971
Gutach=838082 2 -6.850334 became=6042 1 -3.6498296 operational=4463 2 -2.6847038 -=649 2
-2.4236326 within=781 2 -3.2732668 view=967 2 -3.9559016 of=4 2 -0.58965415 the=5 2
-0.5317595 existing=1472 2 -3.108656 Town=24289 1 -5.166059 Hall=21402 2 -0.9881305
traffic=1120 1 -4.900457 lights=10349 2 -1.5967978 .=38 2 -0.9308659 </s>=2 2 -0.03715668 Total:
-97.903275 OOV: 1

Perplexity including OOVs: 1031.755038487236
Perplexity excluding OOVs: 749.6520221763684
OOVs: 1
Tokens: 42
RSSMax:226201600 kB user:0.003488 sys:0.130144 CPU:0.133679 real:0.127912

You may report that, provided you explain it comes
from this program

TIME TO QUERY YOUR MODEL — THE PYTHON WAY

CAT DATA/TEST.EN | TP1.PY MODELS/TRAIN.EN-2G.BIN
#!/usr/bin/env python3
tp1.py

import kenlm
import argparse
import sys

modelName = get_args()
model = kenlm.Model(modelName)

for i,line in enumerate(sys.stdin,1):

 sentence = line.rstrip()
 ppx = model.perplexity(sentence)

I reckon you use this to parse the command
line in your python progs

Do whatever you want with input sentence

to be written

BEYOND PERPLEXITY

MEASURING THE PREDICTION RATE OF WORDS
def do_sentence(sentence, vocab, model):

 state_in = kenlm.State() # define a few states
 state_out = kenlm.State()

 ranks = [] # le rang de chaque mot de la phrase
 model.BeginSentenceWrite(state_in) # model.NullContextWrite(state)
 for w in sentence.split():

 res = [] # 1) argmax over vocab
 for v in vocab:
 s = model.BaseScore(state_in, v, state_out)
 res.append((v, s))

 model.BaseScore(state_in, w, state_in) # reseter state_in

 res.sort(key=lambda x: x[1], reverse=True) # 2) sort the nbest list
 rank = linear_search(lambda x: x[0] == w, res) # get the rank of w
 ranks.append(rank) # store it for stats

 if verbosity:
 print(f"PRED\t{w}\t{rank}\t", res[:5])

 # do stats
 …

 return ranks

vocab is a set of words
that compete

BEYOND PERPLEXITY

HEAD -N 10 DATA/TEST.EN | TP1.PY MODELS/TRAIN.EN-2G.BIN --VOC=VOC.1K --VERBOSITY=2

PRED Gutach 1000 [('The', -0.8539741039276123), ('I',
-1.2894823551177979), ('We', -1.3505849838256836), ('In', -1.384865403175354),
('This', -1.4174968004226685)]
PRED : 15 [('.', -0.5119906067848206), (',', -1.8282580375671387), ('and',
-2.1233713626861572), ('(', -2.304332733154297), ('is', -2.3374271392822266)]
PRED Increased 832 [('the', -1.1898130178451538), ('"',
-1.4203648567199707), ('The', -1.5330532789230347), ('a', -1.7557408809661865), ('/',
-1.8039711713790894)]
…
top<=1: 17.39 % nstop: 8.21 %
top<=2: 24.15 % nstop: 9.18 %
top<=3: 29.47 % nstop: 11.11 %
top<=4: 31.40 % nstop: 12.56 %
top<=5: 33.82 % nstop: 14.49 %
top<=6: 35.27 % nstop: 14.98 %
top<=7: 35.27 % nstop: 14.98 %
top<=8: 37.20 % nstop: 16.43 %
top<=9: 39.61 % nstop: 18.36 %
top<=10: 40.10 % nstop: 18.36 %

the 1000 most frequent words

% of tokens (of test) predicted first

% of tokens predicted in the 10-first positions

With a vocabulary as small as 1k words,
this code is very fast

FINAL NOTE

A NOTEBOOK IS COOL

But decomposing a program into several components (possibly using unix commands) that
deal with specific parts each (ex: tokenization / normalisation / cutoff) allows for:

- Reusability

- Batch processing

- running a script that does many things while you do … something else

- possibly on several computers (if you are lucky)

- without modify one char of a code

- Deployment without tear on platforms like Google Colab

- Less coding

CAT <IN> | TOK.PY | NORMALIZE.PY | CUTOFF.PY 10 | TP1.PY

CODE IS GOOD

BUT WHAT MATTERS IN THE END … IS THE REPORT

10: BE CURIOUS
20: GOTO SLIDE 2

