

A Challenge Set Approach to Evaluating Machine Translation

Pierre Isabelle

With Colin Cherry and George Foster

EMNLP 2017, Copenhagen, 9-11 September 2017

In one slide...

- We propose a Challenge Set for English to French translation
 - Hand-crafted, short, difficult sentences
 - Each exhibiting a specific linguistic issue
 - Feeding a targeted manual evaluation
- Used to evaluate phrase-based and neural systems
- Reveals strengths and weaknesses of neural MT

Motivation

Lots of recent excitement generated by NMT

- We trained up our own English-French system using Nematus
 - We were impressed by the results!
 - Wanted to quantify and track which tricky translation issues had been resolved, and which haven't.

Setting the stage: Phrase-based MT

- Builds a target sentence from left to right
 - Each step translates a phrase in the source, and appends it to a growing target sentence
 - Goal is to cover all source words exactly once
- Translation is very fast
- Uses big human-licensed segments
- Corpus-specific biases are baked in

Setting the stage: Neural MT Over the line ! <eos> Cizgivi gectin ! <eos> Over the line !

Credit: OpenNMT.net

- Essentially a target language model conditioned on the source sentence
- **Encoder** transforms the source sentence into a sequence of source summaries, each focused on a particular word
- Attention (softly) selects the best source summary for the current time step
- Decoder models the next word, given target history and source context
- End-to-end training
- Rich modelling of source and target context
- Can potentially model very long distance dependencies

Previous work: NMT successes

- Lots of recent successes for NMT
 - Many WMT 2016 wins (Bojar et al., 2016)
 - Google's switch to NMT (Wu et al., 2016)

Both accompanied by pairwise human evals

Previous work: Error Analysis

- Bentivogli et al. (2016): look at post-edited IWSLT data
 - Substantial improvements in lexical, morphological and word order errors
- Toral and Sanchez-Cartagena (2017) looked at WMT
 - Similar broad conclusions
 - Marked degradation in NMT as sentence length increased
- Sennrich (2016): pairwise comparisons between two NMT systems on original and corrupted references
 - Character-based model improves generalization on unseen words.
 - Introduces some grammatical errors.

The Challenge Set

Source	The repeated calls from his mother should have alerted us.
Ref	Les appels répétés de sa mère <u>auraient</u> dû nous alerter.
System	Les appels répétés de sa mère <u>devraient</u> nous avoir alertés.
Is the subject-verb agreement correct? (y/n)	

- Each sentence hand-designed to exhibit a *structural divergence* a linguistic structure that does not easily map across these two languages
- Label each sentence with what it is testing evaluate translation in terms of only that specific linguistic phenomenon
- Can provide an alternate view of translation quality designed to complement evaluation on randomly selected "found text"

The Benefits of Targeted Sentences

Source	The repeated calls from his mother should have alerted us.
Ref	Les appels répétés de sa mère <u>auraient</u> dû nous alerter.
System	Les appels répétés de sa mère devraient nous avoir alertés.
Is the subject-verb agreement correct? (y/n) Yes	

- No need to weigh different types of errors against each other.
- Fast to evaluate, high agreement.
- Allows for fine-grained characterization of capabilities.

Constructing the Challenge Set

- Included:
 - Known structural divergences.
 - Weaknesses of phrase-based MT.
- Explicitly didn't test robustness to sparse data
 - All words occur at least 100 times in our training corpus.
 - Would like to eventually ensure that the syntactic patterns we are testing occur frequently in the training data.

Morpho-syntactic divergences

- French is morphologically richer than English:
 - French: 30 verb inflections, English: 5.
 - Person, number, gender information cannot be copied over from source word: need to be recovered from context.
- Can test specific French rules:
 - "the princess, the queen, and the woman" is feminine
 - "the princess, the queen, the king and the woman" is masculine
- Can test robustness to distractors:
 - The repeated calls from his mother should have alerted us.

Lexico-syntactic divergences

 A specific governing word has different requirements on its arguments after translation:

English

Send something **to** someone.

Send someone something.

French

Envoyer qqch à qqun.

[Send something **to** someone]

Envoyer à qqun qqch.

[Send **to** someone something]

Syntactic divergences

- Some syntactic patterns in the source simply aren't available in the target, for example:
- French pronouns are pro-cliticized:
 - He gave it to her.
 - Il le lui a donné. [He it her gave.]
- And you can't get away with stranding prepositions in French (something I always get away with in English)

Morphology to reveal understanding: Who is being arrogant?

- She <u>asked</u> her brother not to be arrogant.
- → Elle a demandé à son frère de ne pas être arrogant.

- She <u>promised</u> her brother not to be arrogant.
- → Elle a promis à son frère de ne pas être arrogante.

Evaluation Systems: Data

- Challenge set is 108 hand-crafted sentences:
 - At least 3 sentences per divergence.
 - All words are frequent in training corpus.
- Systems trained on LIUM shared-task subset of the WMT 2014 corpora (12.1M sentences).
- We calculate BLEU on the WMT14 test set (3K sentences) for calibration.

Evaluation Protocol

Linguistic issue: Morpho-Syn 1: S-V agreement, across distractors

Question: Is subject-verb agreement correct? (Possible interference distractors between the subject's head and the verb).

Source: Their repeated failures to report the problem [should] have alerted us.

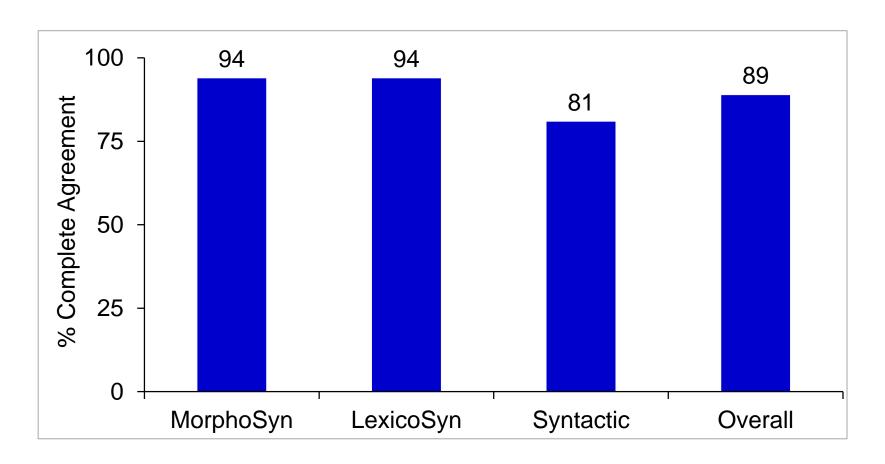
Reference: Leurs échecs répétés à signaler le problème [auraient] dû nous alerter.

r1

Leur échec répété à signaler le problème aurait dû nous alerter.

- Three bilingual evaluators judged system outputs:
 - Answered yes-no questions.
 - Judged only the phenomenon of interest other errors were ignored.
 - Blind to system identity.
- Provided a question and an example reference.
- We used CrowdFlower to quickly build an interface
 - in-house annotators (but not the authors)

Annotator Agreement



Evaluation Systems: Phrase-based (PBMT)

- Strong Portage phrase-based system:
 - 2 word alignments.
 - NNJM (Devlin et al., 2014).
 - Hierarchical reordering model (Galley and Manning 2008).
 - 10K sparse features (Cherry, 2013).
 - Batch-lattice MIRA tuning (Cherry and Foster, 2012).
- Two variants:
 - PBMT1: LM built only on parallel data (data equivalent to NMT)
 - PBMT2: adds LM built on 15.1M sentences of monolingual text

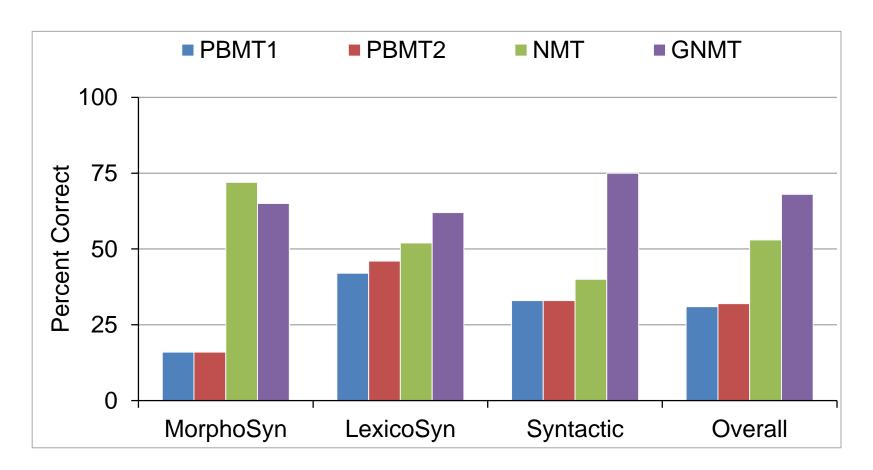
Evaluation Systems: In-house Neural (NMT)

- Nematus model (single layer, GRU)
- 90K source- and target-word vocabularies built with joint byte-pair encoding (Sennrich et al., 2016)
- 512-d embeddings, 1024-d states
 - 172M parameters total
- Adadelta with gradient clipping for optimization
- Decoding with AmuNMT with a beam size of 4

Evaluation Systems: Google Neural (GNMT)

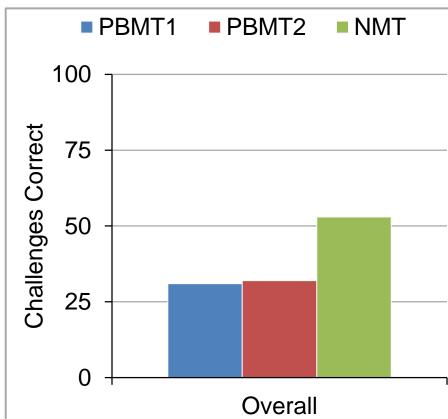
- Google recently went neural (Wu et al., 2016).
- 8 layers for both encoder and decoder.
- Residual connections.
- Data is "two to three decimal orders of magnitude bigger than the WMT corpora".

Challenge Set Performance



Challenge Set vs BLEU





But what about our examples?

Source	The repeated calls from his mother should have alerted us.	
Ref	Les appels répétés de sa mère <u>auraient</u> dû nous alerter.	
Is the subject-verb agreement correct? (y/n)		
PBMT	Les appels répétés de sa mère <u>aurait</u> dû nous a alertés.	K
NMT	Les appels répétés de sa mère devraient nous avoir alertés	
GNMT	Les appels répétés de sa mère <u>auraient</u> dû nous alerter	

Subject-verb agreement across distractors

NMT Strengths: Morpho-Syntactic 16% (PBMT) => 72% (NMT)

Most cases of complex S-V agreement correctly handled

- Agreement features correctly passed across distractors
 - As in previous example.
- Agreement features correctly distributed across coordinated verb phrases
 - The woman was very tall and extremely strong.
 La femme [F-S] était très grande [F-S] et très forte [F-S]
- Assign correct agreement features to most coordinated subjects
 - The cow and the hen must be fed.
 La vache [F-S] et la poule [F-S] doivent [P] être nourries [F-P].
- Past Participle agreement (notoriously complex rules) is mostly correct
 - John sold the car that he had won [F-P] in a lottery.
 John a vendu la voiture [F-S] qu'il avait gagnée [F-S] à la loterie.

NMT Strengths: Lexico-Syntactic 42% (PBMT) => 52% (NMT) => 62% (GNMT)

Correctly handles double object constructions:

John told the kids a nice story. -> John a raconté **aux** enfants une belle histoire. (John told **to** the kids a nice story.)

Correctly discriminates overlapping subcat frames:

Paul knows this story.

Paul connaît cette histoire.

Paul knows this story is — Paul **sait** que cette histoire est difficile à croire.

Better handling of infinitival → finite complements:

She wanted her mother —> Elle voulait que sa mère la laisse partir. to let her go. (that her mother let [SUBJ-PRES] her go)

NMT Strengths: Purely Syntactic 33% (PBMT) => 40% (NMT) => 75% (GNMT)

Yes/No question syntax handled correctly

Have the kids ever watched —> Les enfants **ont-ils** déjà regardé ce film? [The kids have-they ever watched that movie?]

 Pronouns are mostly pro-cliticized correctly (i.e. attached to the left of the main verb, reflecting the person/number/case of the complement)

He gave it to her. → II le lui a donné. [He it her gave.]

He did not talk to **them** very often. —> II ne **leur** a pas parlé très souvent. [He not them talked very often.]

GNMT Additional Strengths (purely syntactic)

English tag questions

She was perfect tonight, wasn't she?

- → Elle était parfaite ce soir, **n'est-ce pas**? [... is this not?]
- « Inalienable possession » construction (most cases)

I brushed my teeth.

- → Je **me** suis brossé **les** dents. [I brushed the teeth to myself].
- Stranded (or dangling) prepositions

Zoom in on dangling prepositions

Source	The city that he is arriving from is dangerous.
Ref	La ville <u>d'où</u> [from where] il arrive est dangereuse.
PBMT	La ville qu' [that] il est arrivé de [from] est dangereuse.
NMT	La ville qu' [that] il est en train d'arriver est dangereuse.
GNMT	La ville d'où [from where] il vient est dangereuse

NMT Weaknesses

- Big advantage of the challenge set is it can help pinpoint specific weaknesses
- Sure NMT is "strong for morphology" but are there morphological cases it still can't get?
- One weakness you won't see in this survey:
 - degradation with sentence length
 - a blind spot for our strategy because we use short sentences

NMT Weaknesses: Agreement through control verbs

Source	She promised her brother not to be arrogant.	
Ref	Elle a promis à son frére de ne pas être arrogante.	
Is the sub	Is the subject-verb agreement correct? (y/n)	
PBMT	Elle a promis son frère à ne pas être <u>arrogant</u> .	
NMT	Elle a promis à son frère de ne pas être <u>arrogant</u> .	
GNMT	Elle a promis à son frère de ne pas être <u>arrogant</u> .	X

NMT Weaknesses: Lexically triggered exceptions

- French is a SVO language, like English, but "to miss" triggers a rare subject-object inversion:
 - Mary misses Jim.
 - Jim manque à Mary.
- You cannot "swim across something" in French, instead, you "cross something by swimming"
 - Same for other movement words (i.e.: run)
- What do these have in common?
 - A large change triggered by a small set of words

NMT Weaknesses: Idioms

Source	You are putting the cart before the horse.	
Ref	Vous mettez la charrue [plow] devant les bœufs [oxen].	
Is the English idiomatic expression correctly rendered with a suitable French idiomatic expression?		
PBMT	Vous pouvez mettre la charrue avant les bœufs.	
NMT	Vous mettez la charrue [plow] avant le cheval [horse].	X
GNMT	Vous mettez le chariot [cart] devant le cheval [horse].	X

NMT Weaknesses: Incomplete Generalizations

- Several cases where NMT appears to have captured a linguistic rule, but fails to generalize in unexpected ways, i.e.:
- The French subjunctive mood is triggered lexically:
 - NMT is good at this in general.
 - But some common triggers ("provided that") seem not to have been captured.
- French makes some implicit noun-phrase relations explicit:
 - Knows that a water filter [→ filtre à eau] is for filtering water
 - Knows that a *metal filter* [→ *filtre en métal*] is made out of metal
 - But thinks a paper filter [→ filtre à papier] is for filtering paper!
- Would like to develop methods to find how these errors relate to characteristics of the NMT engine's training data.

Conclusions

- Presented a challenge set methodology for MT evaluation and error analysis:
 - Provides insight into how NMT improves over PBMT
 - Also into where NMT needs to improve
- Not intended to replace automatic or manual evaluation on found text, but supplement it:
 - It's not enough to get a good challenge set score.
- Full dataset is available in human and machine-readable formats, along with system outputs and human judgments.

Future Work

- Use the challenge set to evaluate and characterize any differences that come with new architectures (i.e.: fairseq):
 - the challenge set should grow as MT evolves
- Find instances of challenge set phenomena in our training text
- Automate the construction of the challenge set
 - how to automatically detect a structural divergence?
- Remove or expedite the human evaluation process
- Improve MT performance on the remaining difficult cases
 - specially designed curriculum to address incomplete generalizations
 - architecture changes to aid capturing failed generalizations

Epilogue: DEEPL Machine Translation Vs our Challenge Set

Pierre Isabelle Medium post, 20 Sept. 2017

https://medium.com/@pisabell/deepl-machine-translation-vsour-challenge-set-e872ef12c910

Addendum: the Buzz about DEEPL

- A buzz recently emerged about a system (impressively) said to be significantly better than GNMT: DEEPL (based on Linguee corpus).
- Great opportunity for us to check the power of our challenge set approach in assessing such a buzz.
- Overall success rates:

System	Score
PBMT-1	31%
PBMT-2	32%
NMT	53%
GNMT	68%
DEEPL	84%

Success Rates on the Challenge Set

System	Score
PBMT-1	31%
PBMT2	32%
NMT	51%
GNMT	68%
DEEPL	84%

DEEPL's error reduction relative to GNMT: 16/32 = 50 %!

About DEEPL's Performance

- Stronger on many of GNMT weak points:
 - Fewer incomplete generalizations.
 - Somewhat better with subject control, argument switch, manner-of-movement, etc.
 - > But only marginally better with idioms!
- Source of gains is still uncertain:
 - Probably not structure of NN model
 - Probably not training data size
 - Perhaps training data quality?
- So good that... our CS may already have become too easy!
- But we know how to make it harder...

The Hardest Problems for MT

- Common sense reasoning may be needed any time
- Example 1: Pronoun reference and translation:

The city councillors refused the women a demonstration permit

```
because \left\{\begin{array}{l} \text{they } (\rightarrow \text{ils}) \text{ feared} \\ \text{they } (\rightarrow \text{elles}) \text{ advocated} \end{array}\right\} violence.
```

Example 2: Word sense disambiguation

Il a payé ses études en vendant de l'assurance.

→ ... by selling insurance.

Il a réglé la note en finissant son café.

→ ... while finishing his coffee.

Questions?

