
The 35th Canadian Conference on Artificial Intelligence

DOI: 0

A working model for textual Membership Query Synthesis

Frédéric Piedboeuf†,*, Philippe Langlais†

† RALI, Université de Montréal, Montréal

*frederic.piedboeuf@umontreal.ca

Abstract
Membership Query Synthesis (MQS) is an active learning paradigm in which one labels generated

artificial examples instead of genuine ones to extend a dataset. Despite prodigious advances in the
power of generative models, an essential component of MQS, the field stays severely under-studied,
especially in the textual domain. We found only one other paper, which selects examples in a latent
space close to the decision boundary and shows good results on a curated dataset of short sentences. We
show that this performs poorly when used on a real dataset. We propose and report better results than
random selection of unlabelled genuine data with random generation of artificial data from a variational
auto-encoder coupled with a simple set of filtering mechanisms. This provides an improvement of
31.1% over the previous MQS state-of-the-art on the SST-2 dataset, and of 2.7% over random active
learning. To the best of our knowledge, this is the first time MQS is reported to work on a textual task
with no constraint on the size of the input sentences.

Keywords: Membership Query Synthesis, Active Learning, Variational Auto-Encoders, Generative

Models

This article is © 2022 by author(s) as listed above. The article is licensed under a Creative Commons Attribution (CC BY
4.0) International license (https://creativecommons.org/licenses/by/4.0/legalcode), except where otherwise indicated with
respect to particular material included in the article. The article should be attributed to the author(s) identified above.

1. Introduction

With the increasing power of deep neural networks and the consequent demand for large datasets,
data acquisition has become a central issue in modern machine learning [1]. However, data can be
costly to acquire [2], especially when considering specialized data such as medical ones [3] or rare
languages for machine translation [4]. To alleviate this problem, solutions have been proposed to
create good performing models with minimal or no annotated training material, such as unsupervised
learning [5], semi-supervised learning [6], or active learning [7]. In this paper, we take a close look
at active learning, and more specifically at a subset of it called membership query synthesis (MQS).

Active learning (AL) is a learning paradigm in which the data points are manually labelled as the
algorithm is training, by selecting at each iteration the most likely relevant data points to annotate.
It is generally categorized in three broad families of techniques: pool-based AL in which one has
access to a pool of unlabelled data, stream-based AL where one receives data points one at the time
and must decide to annotate them or not, and MQS in which one generates the most informative
examples to annotate. MQS is of great theoretical interest since it allows a full exploration of the
classification space, while active learning is restricted to the unlabelled data distribution, which
may be biased or fail to cover adequately the input space [8]. Due to the current limitations of
generative models and therefore the lesser quality of sentences when compared to genuine ones, we
do not expect MQS to beat pool-based AL. We include it in this paper as an upper bound on the
performance of MQS.

Because of the difficulty of implementing a MQS system (see Section 2), as well as the limits
imposed by the generative models, there have been few studies on MQS, especially on textual data.
In fact, positive results have so far been reported only on a curated dataset where long sentences
(longer than 15 words) were removed, and additional data was added from other datasets [9]. We
show in this paper that previous state-of-the-art on MQS for sentence classification does not work
well when limitations on the maximal length of the sentences are removed and no additional data
is added, a situation which rarely fits the annotation scenario in the real world. In this paper, we
propose a simple random sampling strategy coupled with some filtering of the generated examples.
We show that our MQS systems work as well as a naive random pool-based AL system (and in some

2

case surpasses it), thus establishing a new state-of-the-art in MQS for sentence classification. We
overall test three generators, namely a variational auto-encoder (VAE), a conditional VAE (CVAE),
and a semi-supervised VAE (SSVAE), with various seed sizes of the labelled dataset and multiples
strategies for selecting the next point to label. Our contributions are:

(1) Showing that MQS on a realistic textual classification task works,
(2) Showing that MQS on textual data can work better than random pool-based AL,
(3) Providing a new state-of-the-art on textual MQS,
(4) Providing analysis and ideas for the future of the field.

The paper is organized as follows. In section 2, we describe MQS and the related works. We
present the VAE model, which is central to our work, in section 3. Then, sections 4 and 5 present
the experimental protocol and the results. Finally, we analyze our results in section 6 and conclude
in section 7.

2. Membership Query Synthesis and Related Work

In pool-based AL, we have an unlabelled dataset U and a labelled one L in a feature space X , as
well as a classifier F : X → Y trained iteratively, where at each iteration we want to select from U
the most informative instances to label and transfer them to L.1 The challenge of pool-based AL is to
correctly define what "most informative" means, which often is defined based on point distribution
in X [12] or as a lack of confidence of the classifier F [13]. In simpler terms, the goal is to select
from an unlabelled set of data the fewest number of examples to annotate in order to maximize the
performance of the classifier. In a real world application, a human labeller (or oracle) O labels the
examples, but in experiments, this is most often bypassed by using an already labelled dataset and
"hiding" the labels until the example is selected to be added to L.

MQS is a variation of that idea where, instead of selecting the most informative examples from
U , one picks the most informative points in X to label. This implies a generator G which transforms
points from the feature space X into readable data, and which is trained on all unlabelled data U .
This also implies that we need a labeller or oracle O, since newly generated points do not come with
a label. For experimentation, however, the oracle can be replaced by a classifier [14]. Two more
important things that need to be taken care of are when to stop, and how many initial labelled data
to use, which we denote as the seed. The seed is used to help the selection algorithm select the next
points, and the stopping point is used to objectively compare several algorithms. In this paper, we
use a labelling budget of 500, which includes the initial labelled data. This means that once we have
labelled 500 data, we stop and train the model.

Because of the constraint that we need to be able to pick any points from X to label, most MQS
systems introduce a continuous latent space z from which points are transformed into readable data.
Overall, a MQS system totals five components, namely the generator (composed of the encoder and
the decoder), the selector, the classifier (the model we want to train), and the labeller, as shown in
Figure 1. Some algorithms modify slightly this pipeline. For example, the authors of [15] use a
GAN on MNIST and CIFAR-10 for MQS, therefore not relying on an encoder. To find which points
to label, they solve an optimization problem, projecting the decision boundary in the latent space
and finding points near this decision boundary.

1We focus here on classification, but active learning systems have also been developed for other kinds of tasks, such as
NER [10] or machine translation [11].

3

Figure 1. A typical MQS pipeline. The selector picks the next point to label based on the distribution
of the dataset in the latent space z. The decoder transforms that point into a readable sentence, which
is labelled by the labeller. Because generated examples are often of lower quality than genuine ones,
we do not use the generated sentences for bootstrapping the generator and only use them to train the
classifier.

As mentioned, MQS for textual data has been less studied due in part to the limits of the genera-
tive models for text. The authors of [16] present a MQS algorithm, but they use it as pool-based AL
method by labelling the closest point in U instead of the selected point. We denote this algorithm
DB, or decision boundary.

The DB algorithm starts by finding a pair of points (one of each class) that should be close to the
boundary decision. To do so, points at mid-distance of the centroids of the two classes are queried
for a fix number of iterations, adding the new points to L and moving the centroids closer to the
boundary decision every time. Then, starting with the two last points of opposite classes found
(x+, x−), it iteratively: 1- generates a vector of magnitude λ midperpendicular to the two points,
2- queries this point to obtain its class yi, 3- replaces the point of the class yi in the pair (x+, x−)
by this new point. This has the effect of moving along the boundary decision, sampling along both
sides. The algorithm, illustrated in Figure 2, is stopped when the labelling budget is reached. In [16]
they use the active version of the algorithm on several medical datasets, as well as binary versions
of MNIST, and show an improvement when compared to other active learning algorithms.

The authors of [9] use the MQS version of the algorithm for directly generating and labelling
the selected point, on a curated dataset of sentiment classification composed of short sentences
(less than 15 words) from SAR14 and SST-2. They compare to random selection and two pool-
based AL techniques (random sampling and least confidence), and report that both MQS techniques
outperform AL when comparing the annotation cost. This is however a fairly unrealistic assumption
in practice. For example, if we look only at the SST-2 dataset, we find that the average length of
sentences when split by white spaces is 19.3, showing that the findings of [9] wouldn’t necessarily
apply to the full dataset.

The only other work we have found on textual MQS is the one of [14], where sentences are
edited to perturb the examples and create new ones. To do so, words are replaced by semantically
near substitutes, and these sentences are then labelled to see if the replacement made them change
the class. While it is technically MQS, we do not compare ourselves to it in our work because
the focus is not on how to best select and create a dataset from a continuous space, but rather on
generating new examples when the pool of unlabelled data is very small.

3. Variational auto encoders

VAEs are stochastic auto-encoders composed of two components: an encoder qϕ(z|x) and a
decoder pθ(x|z). Both are represented using neural networks, with the last layer of the encoder
predicting the parameters of the distribution associated with z, often the µ and σ of a diagonal
Gaussian. While training, we sample from the distribution N (µ, σ) using the reparametrization

4

Figure 2. Selection of the next point in the latent space to transform into a sentence. The algorithm
goes along the boundary decision. In [9], the point is directly queried. In [16], the nearest neighbour
is queried. Image from [16].

trick [17], which samples from z = µ + σϵ, where ϵ ∼ N (0,1). This allows the gradient to flow
back through the sampling step and to the encoder, while keeping the expectation and variance of z
the same as if sampled directly. The training objective is the Evidence Lower Bound (ELBO), which
is a combination of the reconstruction loss and of the KL divergence between the posterior of q and
the prior.

L = Eqϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x)||p(z)) (3.1)
The adaptation of the VAE for textual generation consists in the use of a RNN for both the encoder

and the decoder, but that comes with its own challenges [18]. The main problem is that a powerful
decoder makes it easy for the VAE to collapse the latent distribution to a single point, effectively
ignoring the information from the latent space. Two standard solutions to this are annealing the
strength of the KL divergence in the ELBO from 0 to 1, as well as using word dropout on the decoder.
The first one allows the decoder to learn to rely on the latent space before we start forcing our prior
on it, and the second one forces the decoder to use the information from the latent distribution for
predicting words that are masked. While these two solutions are the ones used in our paper, many
more have been developed [19] and should be explored. A simple modification to this framework
is the CVAE [20], where we model instead p(x|z, c), conditioning on the class of the sentence (in
our case positive/negative). Finally, we present a SSVAE, inspired by [21], which is a variation of
the CVAE where the class is not hard, but a distribution computed by a classifier. In [21] and in
traditional SSVAEs, the real label is given if available, and the label predicted by a classifier is used
otherwise. However, here we want our generator to learn to generate given the confidence of the
classifier, so we always feed it the probability distribution instead.

4. Experimental Protocol

In this section, we present the protocol and systems we use for our experiments. As mentioned,
the MQS pipeline contains five components, namely the generator (composed of the encoder and of
the decoder), the selector, the classifier, and the labeller.

The selector is the algorithm in charge of selecting the next point to generate in the latent space.
We test three selection algorithms: RANDOM (select randomly from the prior), DB (decision bound-
ary - algorithm from [9], only for the VAE), and CONFIDENCE (generates examples that have low
confidence for the classifier, only for the SSVAE). We report the hyperparameters used for the vari-
ational algorithms in Table 1.

We classify using BERT [22], and more specifically bert-small, which we finetune for 4 epochs
on L once the dataset is assembled. For the SSVAE, since it uses the classifier, we finetune it anew at

5

x0 15
k 0.0025

Batch Size 64
Latent Size 512
Hidden Size 512
Nb Epoch 30
Dropout 0.3

Word dropout 0.6
Nb layers GRU 1

Table 1. Hyperparameters used for the variational algorithms. We use a sigmoid function to anneal
the KL divergence, with x0 referring to the number of epochs where the KL strength is 0.5, and k

controlling the strength of the slope.

each of the 4 iterations, and once more at the end. That way, each method is evaluated in a uniform
way with 4 epochs of finetuning.

Because labelling becomes rapidly expensive when running experiments, we replace what would
normally be a human by a classifier, as was done in [14]. We pick BERT due to the excellent
performances it has shown in recent years, but in order to get it closer to human performance, we
fine-tune it on all labelled data from both the train and test set. In Section 6, we consider the
difference this makes vs both human performance and a BERT trained only on the training set. We
denote this BERT-FULL to differentiate it from the BERT classifier, which has only access to L.

We get a human/BERT-FULL agreement of 92% when testing on 100 sentences generated by the
SSVAE, which means we are here in a case of noisy labelling. Since we want to discard examples
that are neither positive nor negative, we filter out examples that have under 70% (threshold found
experimentally) of certitude by the labeller, but still count those in the labelling budget. This would
correspond to a situation where the human labelling the dataset would look at the sentence and reject
it because of its bad quality. We furthermore apply a filter that checks if the generated example is
already in the labelled dataset, in which case it is not presented to the labeller and not counted in the
labelling budget.

We use the SST-2 dataset [23], which is a sentiment classification dataset of movie reviews.
The dataset is composed of 6920 training examples averaging 19.3 words each, with 3610 positive
examples, the rest being negative. We conduct three sets of experiments with different seed sizes:
10, 50, and 100.

5. Results

In Table 2, we show the results of our experiments with the various generators and selection
strategies, averaged over six runs and with different random seeds and initial data points. We run
two baselines: BERT fine-tuned with only the seed, without annotating any further data, as well
as random sampling with a simple auto-encoder (AE). We also compare ourselves to two active
learning baselines, which provide an experimental upper bound on the results. As mentioned, we
do not hope to surpass the active learning algorithms, since the quality of the sentences generated
by our VAEs is limited when compared to genuine sentences. We use random sampling as well as
confidence active learning, even if the last one has been shown to be somewhat ineffective with deep
neural networks and batch samplings [7].

Unsurprisingly, all algorithms outperform the baseline. Surprisingly, most perform as well as the
active learning strategies, which we established as our upper bound on the performance. We further-
more see a clear difference between the algorithms that perform poorly (AE, VAE-BD, CVAE) and
the ones that perform well (VAE-Random, SSVAE-Random, SSVAE-Confidence). However, due to
the high standard deviation, it is hard to establish with certainty which performs best. This standard
deviation is unfortunately a natural result of several random choices during the training, including
the initial sampling of L and the randomness of the initialization of the classifier layer of BERT. It

6

Algorithm 1 Membership Query Synthesis algorithm for the VAE. For the CVAE, the generator
would be trained only on L (line 7). For the SSVAE, the line 6 to 14 would be encased in a loop of 4
iterations which would also include the fine-tuning of a classifier, and we would generate a quarter
of the examples at each iteration.

1: procedure MEMBERSHIP QUERY SYNTHESIS(L, U):
2: Budget← 500− |L| ▷ L contains [10, 50, 100] randomly selected examples
3: Classifier← BERT
4: Labeller← BERT-FULL ▷ Labeller is already fine-tuned on train+test
5: Generator← VAE
6: Generator.train(U + L)
7: while Budget>0 do
8: example← Generator.generate()
9: label, confidence← Labeller.label(example)

10: if example in L then
11: Continue
12: else if confidence>0.7 then
13: L.append(example, label)
14: Budget← Budget− 1

15: Classifier.finetune(L)

is also interesting to note that the SSVAE seems to have a lower standard deviation than the VAE,
maybe due to the interplay between the classifier and the generator, which may help stabilize the
system.

10 50 100
Baseline 52.1 (2.1) 53.2 (3.0) 61.6 (2.6)

AE- RANDOM 70.1 (7.4) 75.6 (4.4) 73.5 (6.7)

Random AL 82.5 (1.6) 82.6 (2.3) 82.5 (2.6)
Confidence AL 83.8 (2.1) 80.9 (2.2) 84.7 (1.4)

VAE- RANDOM 82.2 (4.7) 82.5 (4.3) 84.7 (4.1)
VAE- DB 50.8 (3.6) 58.5 (4.1) 65.1 (5.4)

CVAE- RANDOM 51.2 (0.9) 54.5 (4.5) 60.3 (2.6)
SSVAE- RANDOM 83.4 (2.3) 81.9 (2.8) 82.1 (1.0)

SSVAE- CONFIDENCE 81.3 (2.8) 82.0 (1.2) 82.1 (3.5)

Table 2. Results for three seed sizes and a total annotation budget of 500. In parentheses are the
standard deviations calculated through six runs. Bold figures indicate the best performance among the
MQS variants, while underlined scores are the best ones overall.

We show in Table 3 positive and negative sentences as labelled by BERT-FULL, for each algo-
rithm and with a seed size of 100. We can see that both the VAE and SSVAE generates sentences
of a similar quality, while the CVAE generates sentences of poor quality. In the next section we
analyze results for all three algorithms.

6. Analysis

6.1. Performance and limits of the generators

VAE The VAE performs well when random sampling is used, but poorly when the boundary
decision strategy is used. This is because, as shown by Figure 3, the VAE does not consider the class
when organizing its latent space, instead focussing on other factors, such as the length of the sentence

7

Algorithm Generated sentence Polarity

VAE
an authentic and deeply felt work of the worst kind of an artist . Positive
the movie is a desperate miscalculation . Negative

CVAE
it ’ s , and it ’ s , and it ’ s , and it ’ s , and it ’ s , and it ’ s , and it ’ s ,
and it ’ s , and it ’ s , and it ’ s , and it ’ s , and it ’ s , and

Positive

a waste . Negative

SSVAE
as the director ’ s most refreshing and most likeable , the film is a smart
, unforced intimacy .

Positive

in all the way , it ’ s just tediously bad . Negative

Table 3. Examples of generated sentences for a seed size of 100 as well as the polarity as determined
by the labeller.

Figure 3. T-SNE visualization of the dataset encoded in the latent space of the VAE. We can see that
it doesn’t make a distinction between positive examples (red) and negative ones (blue), focussing on
other characteristics of the input sentences instead.

or the words themselves2. This lack of disentanglement is a known issue in the literature, especially
for textual VAE [24]. Nevertheless, we can see from Figure 4 that the VAE is trained correctly, and
that interpolating between two random points in the latent space produces an interpolation between
the two corresponding sentences. One interesting thing to explore in future work is the use of
disentangled VAE, which could help with the class-separation issue in the latent space.

CVAE The CVAE performs poorly due to a lack of data. As a sanity check that it works correctly,
we train it on all data, generate 500 examples of each class, and pass them through the labeller to
verify that they are of the correct class. Doing so, we observe that with enough data it generates
correctly from the given class 83% of the time, but with the limited data we use, it suffers from
KL-collapse and cannot efficiently learn to generate from the latent space.

1 enriched about a devastating indictment of unbridled greed and materalism .
2 enriched , a warm and moving film that is part of the fun .
3 made a devastating , sobering film that is not always a fun .
4 a smart , funny and frequently funny film that is not in the first part .
5 a smart , sassy and exceptionally charming that is funny .

Figure 4. Interpolation between two random points (1 and 5) in the latent space for the VAE.

2We attempted several combinations of hyperparameters, but no matter what we were unable to make the VAE learn to
separate classes in the latent space.

8

Figure 5. Distribution of the confidence of BERT for the training examples when trained with 100
labelled examples.

SSVAE Similarly to the CVAE, we want to check that our SSVAE learns correctly. When all
labelled data is used, we reach an agreement of 76.2%3. Thus, we believe that the reason for which
SSVAE-confidence does not work better than SSVAE-random is because while it learns to generate
sentences according to the confidence of the classifier, our BERT classifier has a tendency to be
overconfident in its predictions.

In fact, if we check the confidence of BERT predictions over the whole dataset, as shown in
Figure 5, we can see that there are very few examples for which BERT is uncertain about. This has
the unfortunate effect that the SSVAE rarely sees examples for which BERT is not very confident,
and therefore when we attempt to generate those examples, the SSVAE does not know what to do.
We attempted to weaken the classifier by lowering the number of training epochs at each of the
four iterations, so it would be less confident in its predictions, but that worsened considerably the
performance4. Another solution we attempted was to introduce a secondary classifier (a logistic
regression based on TF-IDF), to give the probability distribution to the SSVAE instead of BERT.
This did not improve the performance much5, most likely because what is important to the logistic
regression may not be what is important for BERT. Finally, there are several techniques that attempt
to calibrate the confidence of the network so that it matches the accuracy [25], any of which could
help the SSVAE see more uncertain examples.

6.2. Seed size and labelling budget

Until now, we have considered a fixed labelling budget of 500 for all our experiments, which
allowed us to compare efficiently the various algorithms. We have also experimented with three
seed sizes, namely 10, 50, and 100, but with a large labelling budget that drowned out the genuine
examples in artificial ones. In this section, however, we consider and analyze various seed sizes as
well as various labelling budgets.

Figure 6 shows the results of our experiments, for a random selection of the latent space of
the VAE. We observe that it is very difficult to determine which version works consistently better,
especially considering the high standard deviation. It is not surprising that the seed size has no
impact on the final performance, given that we use random selection which doesn’t use the seed to

3We classify it this time with the classifier and not the labeller, since the goal of the SSVAE is to learn to generate data
according to the confidence of the classifier.
4Reducing the number of epoch of the classifier to 2, we obtained 79.4%, 81.4%, and 79.8% on the three seed sizes.
5Using a logistic regression as a secondary classifier, we obtain 82.1%, 80.4%, and 82.7% on the three seed sizes.

9

start the MQS process, but it does show that no matter how big the labelling budget and how many
new generated sentences we add, they stay as informative as genuine ones.

Figure 6. Accuracy vs labelling budget for various seed sizes. When the labelling budget is smaller
than the seed, we randomly sample from it, which corresponds in that case to random active learning.
Each point is the average over six experiments with the given seed size and labelling budget.

Another interesting case is the use of MQS to extend the training set after its initial collection.
It has been shown on text that data augmentation can be inefficient when the size of the dataset is
large enough [26], so MQS could be an alternative solution for that. Running experiments with the
full dataset as the seed and adding 150006 examples, we obtain an accuracy of 91.0%. When we
train BERT on the seed only, we obtain 90.5%. While the MQS gain may seem small, especially
considering the human labelling cost in a real setting, there are many domains where even a small
augmentation is worth the cost, such as medical diagnostics. As a point of comparison, we use
EDA [27], a popular data augmentation technique for sentences based on word edition (substitutions,
swapping, insertion, and deletions of words) to generate 15000 new data points, and we obtain
89.7%, showing that it is definitively not an ideal solution for large datasets.

Finally, our experiments raise the question of what proportion of the generated examples are
identical to examples present in U . Taking 5000 generated examples, we find only 50 that are
present in U . They correspond to very short sentences, averaging 5.4 words. Examples include
"thumbs down .", "there is greatness here .", and "... bibbidy-bobbidi-bland .".

6.3. Limits of BERT as a labeller

While we reached a 92% human / BERT-FULL agreement with the SSVAE, the decrease of
performance while using the CVAE highlights some shortcomings of replacing the human labeller
with a BERT system, namely that it has a tendency to label examples that are unintelligible with
high confidence, such as a repetition of ", and", which gets labelled as positive.

As a final sanity check, we run one experiment using 100 initial examples, a total budget of
500, the VAE, and a random sampling, and compare the performance of a BERT-FULL, a human
labeller, and a BERT fine-tuned only on the training set. With a human labeller, we get a performance
of 86.5%, while using BERT-FULL on the same sentences gives a performance of 82.5%. Finally,
using BERT fine-tuned only on the training set as a labeller gives a performance of 80.0%. That
implies that the performances we report in Table 2 are probably underestimated, and that the real

6Because of the diminishing return obtained by adding new examples as the dataset size grows, we chose to add a lot of new
data, more than tripling the size of it.

10

performance of MQS is better than random pool-based AL. While we only use random sampling of
the latent space, this is most likely due to the fact that the generated examples are "more difficult",
since they are less grammatically sound than examples produced by a human, which provides a sort
of regularization as the dataset is created.

Overall, there are several limitations to the use of BERT-FULL as a labeller. First and foremost,
as we have just shown, the use of BERT-FULL to simulate the human labeller is limited, since it
is noisy. Furthermore, we cannot expect the classifier to outperform the labeller, so replacing the
human component upper bounds the final performance.

Closely related to that is the fact that we count here a uniform budget for all examples, but
labelling artificial examples has a higher cost than labelling genuine ones, due to their lower quality.

Finally, there exists some key differences in the way BERT-FULL and a human will label exam-
ples. Mostly, the examples that are skipped because of labelling uncertainty differ. For example, we
labelled "the movie is a lumbering load of hokum and a storyline, and an old vision." as negative,
while BERT skipped it. Similarly, we skipped "the movie’s narrative gymnastics and its point view
of view, but it’s also a nice to watch the target practice of the year.", while BERT labelled it as
positive.

These differences limit the analysis that can be done on the generated examples, since labelling
is not the same as what a human would do.

7. Future Work and Conclusion

Membership query synthesis is often understudied because of the cost associated with labelling
new data points. In this paper, we circumvent this issue by using a labeller trained on both train and
test sets as our oracle, and show that using MQS to artificially create new datapoints can reach per-
formances equal to Random Active Learning on a real task. We also show, although not rigorously,
that the use of such an oracle provides a lower bound on the performance with a human labeller.

There is much work that remains to be done in MQS. For example, given that our best strategy
remains random sampling with a VAE, an interesting approach to evaluate would be to see if using
top-k sampling with a large pretrained generative model to generate examples that would be labelled
would beat this strategy, similarly to what is done in data augmentation [28]. Recently, a VAE-GPT
has also been proposed [29], which would provide an interesting avenue since it would theoreti-
cally increase the quality of the sentences while allowing us to keep sampling randomly from the
distribution.

Given our hypothesis that MQS brings a regularization factor by creating more difficult sentences,
it would also be interesting to see if mixing pool-based AL and MQS would work better than us-
ing only one strategy. Finally, further fine-tuning with the SSVAE could be done, for example by
introducing reinforcement learning.

References

[1] C. Sun, A. Shrivastava, S. Singh, and A. Gupta. “Revisiting Unreasonable Effectiveness of Data in Deep
Learning Era”. In: 2017 IEEE International Conference on Computer Vision (ICCV). ISSN: 2380-7504.
Oct. 2017, pp. 843–852. DOI: 10.1109/ICCV.2017.97.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “ImageNet classification with deep convolutional neural
networks”. In: Communications of the ACM 60.6 (May 2017), pp. 84–90. ISSN: 0001-0782. DOI: 10.
1145/3065386. URL: https://doi.org/10.1145/3065386 (visited on 01/01/2022).

[3] S. Budd, E. C. Robinson, and B. Kainz. “A survey on active learning and human-in-the-loop deep learn-
ing for medical image analysis”. en. In: Medical Image Analysis 71 (July 2021), p. 102062. ISSN: 1361-
8415. DOI: 10.1016/j.media.2021.102062. URL: https://www.sciencedirect.
com/science/article/pii/S1361841521001080 (visited on 01/02/2022).

https://doi.org/10.1109/ICCV.2017.97
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1016/j.media.2021.102062
https://www.sciencedirect.com/science/article/pii/S1361841521001080
https://www.sciencedirect.com/science/article/pii/S1361841521001080

11

[4] I. Feldman and R. Coto-Solano. “Neural Machine Translation Models with Back-Translation for the
Extremely Low-Resource Indigenous Language Bribri”. In: Proceedings of the 28th International Con-
ference on Computational Linguistics. Barcelona, Spain (Online): International Committee on Compu-
tational Linguistics, Dec. 2020, pp. 3965–3976. DOI: 10.18653/v1/2020.coling-main.351.
URL: https://aclanthology.org/2020.coling-main.351 (visited on 01/02/2022).

[5] D. P. Kingma, D. J. Rezende, S. Mohamed, and M. Welling. “Semi-supervised learning with deep gener-
ative models”. In: Proceedings of the 27th International Conference on Neural Information Processing
Systems - Volume 2. NIPS’14. Cambridge, MA, USA: MIT Press, Dec. 2014, pp. 3581–3589. (Visited
on 02/04/2022).

[6] J.-C. Su, Z. Cheng, and S. Maji. “A Realistic Evaluation of Semi-Supervised Learning for Fine-Grained
Classification”. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
ISSN: 2575-7075. June 2021, pp. 12961–12970. DOI: 10.1109/CVPR46437.2021.01277.

[7] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, B. B. Gupta, X. Chen, and X. Wang. “A Survey of Deep
Active Learning”. In: ACM Computing Surveys 54.9 (Oct. 2021), 180:1–180:40. ISSN: 0360-0300. DOI:
10.1145/3472291. URL: https://doi.org/10.1145/3472291 (visited on 02/04/2022).

[8] M. Hopkins, D. Kane, S. Lovett, and G. Mahajan. “Point Location and Active Learning: Learning Half-
spaces Almost Optimally”. In: 2020 IEEE 61st Annual Symposium on Foundations of Computer Science
(FOCS). ISSN: 2575-8454. Nov. 2020, pp. 1034–1044. DOI: 10.1109/FOCS46700.2020.00100.

[9] R. Schumann and I. Rehbein. “Active Learning via Membership Query Synthesis for Semi-Supervised
Sentence Classification”. In: Proceedings of the 23rd Conference on Computational Natural Language
Learning (CoNLL). Hong Kong, China: Association for Computational Linguistics, Nov. 2019, pp. 472–
481. DOI: 10.18653/v1/K19-1044. URL: https://www.aclweb.org/anthology/K19-
1044 (visited on 03/05/2020).

[10] Y. Shen, H. Yun, Z. Lipton, Y. Kronrod, and A. Anandkumar. “Deep Active Learning for Named Entity
Recognition”. In: Proceedings of the 2nd Workshop on Representation Learning for NLP. Vancouver,
Canada: Association for Computational Linguistics, Aug. 2017, pp. 252–256. DOI: 10.18653/v1/
W17-2630. URL: https://aclanthology.org/W17-2630 (visited on 02/04/2022).

[11] G. Haffari, M. Roy, and A. Sarkar. “Active learning for statistical phrase-based machine translation”.
en. In: Proceedings of Human Language Technologies: The 2009 Annual Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics on - NAACL ’09. Boulder, Colorado:
Association for Computational Linguistics, 2009, p. 415. ISBN: 978-1-932432-41-1. DOI: 10.3115/
1620754.1620815. URL: http://portal.acm.org/citation.cfm?doid=1620754.
1620815 (visited on 01/27/2022).

[12] S. Dasgupta and D. Hsu. “Hierarchical sampling for active learning”. en. In: Proceedings of the 25th in-
ternational conference on Machine learning - ICML ’08. Helsinki, Finland: ACM Press, 2008, pp. 208–
215. ISBN: 978-1-60558-205-4. DOI: 10.1145/1390156.1390183. URL: http://portal.
acm.org/citation.cfm?doid=1390156.1390183 (visited on 07/03/2019).

[13] M. Ravanbakhsh, T. Klein, K. Batmanghelich, and M. Nabi. Uncertainty-Driven Semantic Segmentation
through Human-Machine Collaborative Learning. Tech. rep. Publication Title: arXiv e-prints ADS Bib-
code: 2019arXiv190900626R Type: article. Sept. 2019. URL: https://ui.adsabs.harvard.
edu/abs/2019arXiv190900626R (visited on 02/04/2022).

[14] J. Zarecki and S. Markovitch. “Textual Membership Queries”. en. In: vol. 3. ISSN: 1045-0823. July
2020, pp. 2662–2668. DOI: 10.24963/ijcai.2020/369. URL: https://www.ijcai.org/
proceedings/2020/369 (visited on 02/04/2022).

[15] J.-J. Zhu and J. Bento. “Generative Adversarial Active Learning”. In: (Feb. 2017).
[16] L. Wang, X. Hu, B. Yuan, and J. Lu. “Active learning via query synthesis and nearest neighbour search”.

en. In: Neurocomputing. Advances in Self-Organizing Maps Subtitle of the special issue: Selected Papers
from the Workshop on Self-Organizing Maps 2012 (WSOM 2012) 147 (Jan. 2015), pp. 426–434. ISSN:
0925-2312. DOI: 10.1016/j.neucom.2014.06.042. URL: http://www.sciencedirect.
com/science/article/pii/S0925231214008145 (visited on 02/29/2020).

[17] D. P. Kingma and M. Welling. “Auto-Encoding Variational Bayes”. In: arXiv:1312.6114 [cs, stat] (May
2014). arXiv: 1312.6114. URL: http://arxiv.org/abs/1312.6114 (visited on 04/10/2020).

[18] S. R. Bowman, L. Vilnis, O. Vinyals, A. Dai, R. Jozefowicz, and S. Bengio. “Generating Sentences
from a Continuous Space”. In: Proceedings of The 20th SIGNLL Conference on Computational Natural
Language Learning. Berlin, Germany: Association for Computational Linguistics, Aug. 2016, pp. 10–

https://doi.org/10.18653/v1/2020.coling-main.351
https://aclanthology.org/2020.coling-main.351
https://doi.org/10.1109/CVPR46437.2021.01277
https://doi.org/10.1145/3472291
https://doi.org/10.1145/3472291
https://doi.org/10.1109/FOCS46700.2020.00100
https://doi.org/10.18653/v1/K19-1044
https://www.aclweb.org/anthology/K19-1044
https://www.aclweb.org/anthology/K19-1044
https://doi.org/10.18653/v1/W17-2630
https://doi.org/10.18653/v1/W17-2630
https://aclanthology.org/W17-2630
https://doi.org/10.3115/1620754.1620815
https://doi.org/10.3115/1620754.1620815
http://portal.acm.org/citation.cfm?doid=1620754.1620815
http://portal.acm.org/citation.cfm?doid=1620754.1620815
https://doi.org/10.1145/1390156.1390183
http://portal.acm.org/citation.cfm?doid=1390156.1390183
http://portal.acm.org/citation.cfm?doid=1390156.1390183
https://ui.adsabs.harvard.edu/abs/2019arXiv190900626R
https://ui.adsabs.harvard.edu/abs/2019arXiv190900626R
https://doi.org/10.24963/ijcai.2020/369
https://www.ijcai.org/proceedings/2020/369
https://www.ijcai.org/proceedings/2020/369
https://doi.org/10.1016/j.neucom.2014.06.042
http://www.sciencedirect.com/science/article/pii/S0925231214008145
http://www.sciencedirect.com/science/article/pii/S0925231214008145
http://arxiv.org/abs/1312.6114

12

21. DOI: 10.18653/v1/K16-1002. URL: https://www.aclweb.org/anthology/K16-
1002 (visited on 03/19/2020).

[19] A. B. Dieng, Y. Kim, A. M. Rush, and D. M. Blei. “Avoiding Latent Variable Collapse with Gener-
ative Skip Models”. en. In: Proceedings of the Twenty-Second International Conference on Artificial
Intelligence and Statistics. ISSN: 2640-3498. PMLR, Apr. 2019, pp. 2397–2405. URL: https://
proceedings.mlr.press/v89/dieng19a.html (visited on 02/12/2022).

[20] X. Yan, J. Yang, K. Sohn, and H. Lee. “Attribute2Image: Conditional Image Generation from Visual
Attributes”. en. In: Computer Vision – ECCV 2016. Ed. by B. Leibe, J. Matas, N. Sebe, and M. Welling.
Vol. 9908. Series Title: Lecture Notes in Computer Science. Cham: Springer International Publishing,
2016, pp. 776–791. ISBN: 978-3-319-46492-3 978-3-319-46493-0. DOI: 10.1007/978-3-319-
46493-0_47. URL: http://link.springer.com/10.1007/978-3-319-46493-0_47
(visited on 02/12/2022).

[21] W. Xu, H. Sun, C. Deng, and Y. Tan. “Variational Autoencoders for Semi-supervised Text Classifica-
tion”. en. In: arXiv:1603.02514 [cs] (Nov. 2016). arXiv: 1603.02514. URL: http://arxiv.org/
abs/1603.02514 (visited on 10/10/2020).

[22] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. “BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding”. In: Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers). Minneapolis, Minnesota: Association for Computational Linguistics, June
2019, pp. 4171–4186. DOI: 10.18653/v1/N19-1423. URL: https://aclanthology.org/
N19-1423 (visited on 11/10/2021).

[23] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and C. Potts. “Recursive Deep Models
for Semantic Compositionality Over a Sentiment Treebank”. In: Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Processing. Seattle, Washington, USA: Association for
Computational Linguistics, Oct. 2013, pp. 1631–1642. URL: https://aclanthology.org/
D13-1170 (visited on 11/18/2021).

[24] V. Balasubramanian, I. Kobyzev, H. Bahuleyan, I. Shapiro, and O. Vechtomova. “Polarized-VAE: Prox-
imity Based Disentangled Representation Learning for Text Generation”. en. In: Proceedings of the 16th
Conference of the European Chapter of the Association for Computational Linguistics: Main Volume.
Online: Association for Computational Linguistics, 2021, pp. 416–423. DOI: 10.18653/v1/2021.
eacl-main.32. URL: https://aclanthology.org/2021.eacl-main.32 (visited on
02/12/2022).

[25] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. “On Calibration of Modern Neural Networks”. en. In:
Proceedings of the 34th International Conference on Machine Learning. ISSN: 2640-3498. PMLR, July
2017, pp. 1321–1330. URL: https://proceedings.mlr.press/v70/guo17a.html (visited
on 03/02/2022).

[26] X. Dai and H. Adel. “An Analysis of Simple Data Augmentation for Named Entity Recognition”. In:
Proceedings of the 28th International Conference on Computational Linguistics. Barcelona, Spain (On-
line): International Committee on Computational Linguistics, Dec. 2020, pp. 3861–3867. DOI: 10.
18653/v1/2020.coling- main.343. URL: https://aclanthology.org/2020.
coling-main.343 (visited on 11/10/2021).

[27] J. Wei and K. Zou. “EDA: Easy Data Augmentation Techniques for Boosting Performance on Text
Classification Tasks”. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP). Hong Kong, China: Association for Computational Linguistics, Nov. 2019, pp. 6382–6388.
DOI: 10.18653/v1/D19-1670. URL: https://aclanthology.org/D19-1670 (visited on
11/08/2021).

[28] V. Kumar, A. Choudhary, and E. Cho. “Data Augmentation using Pre-trained Transformer Models”. In:
Proceedings of the 2nd Workshop on Life-long Learning for Spoken Language Systems. Suzhou, China:
Association for Computational Linguistics, Dec. 2020, pp. 18–26. URL: https://aclanthology.
org/2020.lifelongnlp-1.3 (visited on 11/09/2021).

[29] K. Zhao, H. Ding, K. Ye, and X. Cui. “A Transformer-Based Hierarchical Variational AutoEncoder
Combined Hidden Markov Model for Long Text Generation”. en. In: Entropy 23.10 (Sept. 2021),
p. 1277. ISSN: 1099-4300. DOI: 10.3390/e23101277. URL: https://www.mdpi.com/1099-
4300/23/10/1277 (visited on 01/03/2022).

https://doi.org/10.18653/v1/K16-1002
https://www.aclweb.org/anthology/K16-1002
https://www.aclweb.org/anthology/K16-1002
https://proceedings.mlr.press/v89/dieng19a.html
https://proceedings.mlr.press/v89/dieng19a.html
https://doi.org/10.1007/978-3-319-46493-0_47
https://doi.org/10.1007/978-3-319-46493-0_47
http://link.springer.com/10.1007/978-3-319-46493-0_47
http://arxiv.org/abs/1603.02514
http://arxiv.org/abs/1603.02514
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://doi.org/10.18653/v1/2021.eacl-main.32
https://doi.org/10.18653/v1/2021.eacl-main.32
https://aclanthology.org/2021.eacl-main.32
https://proceedings.mlr.press/v70/guo17a.html
https://doi.org/10.18653/v1/2020.coling-main.343
https://doi.org/10.18653/v1/2020.coling-main.343
https://aclanthology.org/2020.coling-main.343
https://aclanthology.org/2020.coling-main.343
https://doi.org/10.18653/v1/D19-1670
https://aclanthology.org/D19-1670
https://aclanthology.org/2020.lifelongnlp-1.3
https://aclanthology.org/2020.lifelongnlp-1.3
https://doi.org/10.3390/e23101277
https://www.mdpi.com/1099-4300/23/10/1277
https://www.mdpi.com/1099-4300/23/10/1277

	1. Introduction
	2. Membership Query Synthesis and Related Work
	3. Variational auto encoders
	4. Experimental Protocol
	5. Results
	6. Analysis
	6.1. Performance and limits of the generators
	6.2. Seed size and labelling budget
	6.3. Limits of BERT as a labeller

	7. Future Work and Conclusion
	References
	References

