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Abstract. In this paper, we introduce a linear mathematical model for the Aggregate
Production Planning problem for a forestry company operating several sawmills. Con-
sidering different types of raw materials, different production parameters, and a group of
sawmills, the industry tries to identify the best levels of production, of subcontracting
production, and of inventory to satisfy the demand for different product families in order
to maximize its revenue. The linear model is solved efficiently with two linear program-
ming software Cplex 8.1 and Xpress-Optimizer 16.10.02, and numerical results indicate
the superiority of the latter.

1 Introduction

The Aggregate Production Planning (APP) model is a mid-term planning tool analyzing
the relationship between the offer and the demand to determine the production levels to
satisfy a demand that is not always completely known. It is useful to determine the levels
of overtime production, of subcontracting production, of inventory, and of hiring/firing
workforce. Using an APP model, it is also possible to determine the proper mix of
resources to realise the production required (Schroeder [10]).

According to Chen et al. [2], the objective of an APP is not limited to maximize
revenue of the company, but it may also be used to maximize the resource utilization, to
minimize the changes in production rate or to minimize the modifications in workforce
level. Hence it is important to specify correctly the objective function on an APP. In some
cases, multiple objective functions are used to obtain a more realistic model for some real
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life situation. For instances, Baykasoglu [1] uses a Tabu search approach to deal with an
APP having 4 objective functions, and Wang et al [12] introduce a linear model having
two objective functions.

Recently, several different approaches have been proposed to deal with APP modeled
as mixed integer linear programs (MILP). Jollayemi et al. [7] use a deterministic approach,
Jain et al. [4], a resource based approach, and Silva et al. [11], a multi criteria approach.
Gnoni et al. [3] hybridize an MILP modeling with a simulation modeling. A probabilistic
linear programming approach is used by Jensen et al. [5], Jiafu et al. [6], and Wang et
al. [13].

In this paper, we extend the model in Pradenas [8, 9] to deal with a problem where
the forestry company operates several sawmills. Hence it includes an additional level of
decision related to the repartition of the overall demand and the raw material among the
different sawmills. Hence we consider an APP model in a multi plants, multi products and
multi periods environment where a company operating a group of sawmills has to satisfy
the demand for several product families using different raw materials. The objective is
to determine levels of production, of subcontracting production, and of inventory at each
sawmill in order to maximize the overall profit of the company.

The paper is organized as follows. The problem is described in Section 2, and in Sec-
tion 3, a model is introduced. In Section 4, six different randomly generated problems
are solved using exact methods, and the numerical results indicate that the Interior Point
Barrier method implemented in Express-Optimizer is more efficient than the Simplex Pri-
mal and the Simplex Dual, and also more efficient than any of these methods implemented
in Cplex.

2 Problem description

In this paper, we analyse the planning problem of a forestry company operating a group
of sawmills. Each sawmill has a specified production capacity, and it can be seen as an
intermittent productive system type batch using four different processes: sawing, drying,
sorting, and sanding. These processes generate green and dry materials that can be used
in further processes generating other products. The production is characterized by the
yield of the tree trunk types producing different product families according to different
ways of cutting the tree trunks.

The problem can be formulated as an Aggregate Production Planning problem for a
forestry company operating several sawmills located in different places, having different
production capacities, and operating with different technologies. At each period of the
planning horizon, the company has to determine how to allocate part of the total demand
and of the raw material (tree trunks) to each sawmill in such a way that accounting for
their operating capacities, the sawmills can produce the proper volumes of the different
product families to satisfy the total demand. Note that it is assumed that back orders are
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not allowed. Accordingly, at each period, each sawmill has to determine its production
level, its subcontracting production level, and its inventory level to satisfy the part of the
demand assigned to it with its allocation of the raw material available.

3 Model formulation

The sawmill APP problem is formulated as a linear programming model. We assume that
the company operates A sawmills to produce K product families using M tree trunk types
and E cut schemes over a horizon including T periods. The following notation is used to
specify the mathematical model.

Decision variables

Ykta : production level of product family k in period t at sawmill a (m3).
Xmeta : amount of tree trunk type m processed with scheme e in period t at the

sawmill a (m3).
Skta : Quantities of product family k subcontracted in period t at sawmill a (m3).
Ikta : Inventory levels of product family k in period t at sawmill a (m3).
Dkta : Demands of product family k in period t assign to sawmill a (m3).

Parameters

DGkt : global demand of product family k in period t (m3).
Pkt : selling price of product family k in period t ($/m3).
Cmta : cost per m3 of tree trunk type m in period t for sawmill a.
Okta : production cost per m3 of product family k in period t at sawmill a.
SUkta : subcontracting cost per m3 of product family k in period t for sawmill a.
CIkta : inventory cost per m3 of product family k in period t at sawmill a.
Lmt : volume of tree trunks type m available in period t (m3).
Rmeka : yield of tree trunk type m processed with cutting plan e to produce the

family product k at sawmill a.
Vkta : consumption of productive capacity for product family k in period t at

sawmill a (h/m3).
Capta : production capacity available in period t at sawmills a (h).

where k = 1, . . . , K,m = 1, . . . ,M, e = 1, . . . , E, t = 1, . . . , T, and a = 1, . . . , A.

The model can be summarized as follows:

max Z =
T∑

t=1

K∑
k=1

PktDGkt−
T∑

t=1

A∑
a=1

M∑
m=1

Cmta

E∑
e=1

Xmeta−
T∑

t=1

A∑
a=1

K∑
k=1

(OktaYkta+SUktaSkta+CIktaIkta)

Subject to:
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A∑
a=1

Dkta = DGkt ;∀k, ∀t (1)

Ykta + Skta − Ikta ≥ Dkta − Ikt−1a ;∀k, ∀t, ∀a (2)
A∑

a=1

E∑
e=1

Xmeta ≤ Lmt ;∀m, ∀t (3)

Ykta ≤
M∑

m=1

E∑
e=1

RmekaXmeta ; ∀k, ∀t, ∀a (4)

K∑
k=1

VktaYkta ≤ Capta ;∀t, ∀a (5)

Ik0a is known ; ∀k, ∀a

Xmeta, Ykta, Skta, Ikta, Dkta ≥ 0 ; ∀k, ∀m, ∀e, ∀t, ∀a

The first term of the objective function corresponds to the total revenue from the sales
of the products accounting for the fact that all the demand must be satisfied at each period.
The second and the third terms are associated with the cost of the raw materials, and
the total cost of production, subcontracting production and inventory, respectively. The
constraints (1) allocate the demand among sawmills. The constraints (2) are inventory
balance relations ensuring that that the full demand is satisfied at each period (no back
orders allowed) relying on subcontracting production if necessary. The availability of
the raw material and its allocation among sawmills is specified in constraints (3). The
constraints (4) are balance relations between the yield for each product family and the
tree trunk types processed by the different schemes at each sawmill during each period.
Finally, the capacity limiting the production at each sawmill is specified by constraints
(5).

This linear programming model is deterministic because we make the assumption that
the demand for each product family is known exactly. Furthermore, we assume that these
demands are fully satisfied (no back orders allowed) relying on subcontracting production
and inventory if necessary. In our model, we do not impose any capacity constraints on
the sawmill inventory levels, but in some real context such constraints may be required
inducing additional constraints in the model. Similarly, there is no limit specified on the
subcontracting production levels, but there is no lost of generality since subcontracting is
in general very expensive (more expensive than producing or having to handle inventory)
inducing a low subcontracting production level.
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We argue that we can assume that the yield Rmeka of tree trunk type m processed
with cut scheme e to produce the family product k at sawmill a is the same for all
periods because the technology can be assumed to be quite stable in a mid-term planning
horizon. Furthermore, the values of these yields can be specified to account for some
specific situations. For instance, if the company knows that some sawmill a′ is not able
to reach the quality standard required for some product family k′, then specifying a value
0 for the corresponding yields ( i.e., Rmek′a′ = 0 ∀m, ∀e ) induces that the sawmill a′ is
not producing product family k′. Similarly we can account for the technology issue where
some sawmill a′ is not able to handle some tree trunk type m′ by fixing the corresponding
yields to 0 (i.e., Rm′eka′ = 0 ∀e, ∀k ).

4 Numerical results

Six different randomly generated problems are used in our numerical experimentation.
They are summarized in Table 1. They include 2 to 6 periods, 8 to 12 sawmills, 40
product families, 32 tree trunk types, and 18 cutting schemes. The largest problem
includes 52992 variables and 6264 constraints.

Table 1. Test problems

Number of Number of

Problem K M E T A variables constraints

1 40 32 18 2 8 11776 1440

2 40 32 18 4 8 23552 2880

3 40 32 18 8 8 35328 4320

4 40 32 18 2 12 17664 2088

5 40 32 18 4 12 35328 4176

6 40 32 18 8 12 52992 6264

The problems are solved with three different exact methods (the Simplex Primal, the Sim-
plex Dual, and the Interior Point Barrier Method) implemented in two different softwares:
Cplex 8.1 and Xpress-Optimizer 16.10.02. The numerical tests have been completed us-
ing a 1.6 GHz Pentium M computer having 512 MB of Ram. The CPU time in second
required by each method and each software to solve each problem, is reported in Table 2.
The last column of the table includes the values of the optimal solutions.
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Table 2. Test problems results

CPU time (seconds)

Simplex primal Simplex dual Barrier method

Problem Cplex Xpress Cplex Xpress Cplex Xpress Obj. Fct.($)

1 3.48 1.66 2.59 1.77 4.20 1.30 3.358× 107

2 9.06 8.93 16.87 8.39 62.0 3.35 6.399× 107

3 124.61 25.51 82.79 23.31 74.26 9.32 9.627× 107

4 6.84 2.87 5.66 3.44 4.86 1.84 5.119× 107

5 94.07 19.14 96.76 17.79 155.55 5.28 9.744× 107

6 373.45 47.01 336.76 52.94 443.63 16.39 1.474× 108

The Cpu time reported in Table 2 includes the time for each of the three operations re-
quired to read the data, to create the model, and to solve the problem. The numerical
results indicate that Xpress-Optimizer is more efficient than Cplex to solve these prob-
lems. Indeed, considering the average solution time to solve the six problems, the average
solution time using Cplex is equal to 2.87, 2.41, and 13.81 the average solution timeusing
Xpress-Optimizer for the Primal Simplex , the Dual Simplex, and the Barrier method,
respectively. This large difference in efficiency is probably due to the fact that Cplex uses
57% of its Cpu time to create the model while this operation requires only 0.63% of the
total Cpu time in the Xpress-Optimizer.

In Table 3, we indicate for each problem and each software the best method and the
corresponding Cpu time. It is interesting to note that the Barrier method is always the
best method for Xpress-Optimizer. Furthermore, considering the average solution time
required by Cplex even when using the best method, Xpress-Optimizer (using the Barrier
method) remains 7.95 times faster. Again, the superiority of Xpress-Optimizer can be
explained by the fact that it requires less time to create the model. It is also interesting
to note that the Barrier method is always the best one for Xpress-Optimizer. This is
consistent with the fact that the Interior Point method is known to work well when the
constraint matrix is sparse. Indeed, this is the case for our test problems.
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Table 3. Best results for the test problems

Cplex Xpress

Problem Method Time [s] Method Time [s]

1 Simplex D. 2.59 Barrier 1.30

2 Simplex P. 9.06 Barrier 3.35

3 Barrier 74.26 Barrier 9.32

4 Barrier 4.86 Barrier 1.84

5 Simplex P. 94.07 Barrier 5.28

6 Simplex D. 336.76 Barrier 16.39

5 Conclusion

In this paper, we formulate a mathematical model for the Aggregate Production Plan-
ning problem for a forestry company operating several sawmills to determine the levels of
production, of subcontracting production, and of inventory at each sawmill during each
period in order to satisfy completely the demand and to maximize the profit. The nu-
merical results indicate the superiority of the Interior Point Barrier method implemented
in Xpress-Optimizer over Cplex.
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