
RAIRO-Oper. Res. 42 (2008) 215–228 RAIRO Operations Research

DOI: 10.1051/ro:2008010 www.rairo-ro.org

NEW REPRESENTATION TO REDUCE THE SEARCH
SPACE FOR THE RESOURCE-CONSTRAINED PROJECT

SCHEDULING PROBLEM ∗

Khaled Moumene
1

and Jacques A. Ferland
1

Abstract. This paper describes a new representation for the solu-
tions of the resource-constrained project scheduling problem (RCPSP)
denoted Activity Set List. The most efficient heuristics for the prob-
lem use the activity list representation and the serial SGS method to
construct the corresponding solution (schedule). The activity list may
induce a search space of representations much larger then the space of
schedules because the same schedule can correspond to many different
activity list representations. We indicate how the activity set list rep-
resentation can significantly reduce the search space, and how to move
more efficiently through it. Furthermore, this new representation never
excludes the optimal solution and it has many interesting properties.
An evaluation of the search space reduction induced by this represen-
tation is made for the most used library of instances in the literature.
The activity set list representation may be used to construct a new
category of more efficient solution procedures for the problem.

Keywords. Project scheduling, Resource-constrained project sched-
uling, Activity list representation, Activity set list representation, Heur-
istics and metaheuristics.

Mathematics Subject Classification. 90B35.

Received June 01, 2005. Accepted November 28, 2007.

∗ This research was supported by NSERC grant (OGP 0008312).

1 Dept. Informatique et Recherche Opérationnelle, Université de Montréal, C. P. 6128, Suc-
cursale Centre-Ville, Montréal (Québec), H3C 3J7, Canada; khaled moumene 75@yahoo.com;

ferland@iro.umontreal.ca

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2008

http://dx.doi.org/10.1051/ro:2008010
http://www.rairo-ro.org
http://www.edpsciences.org


216 K. MOUMENE AND J. A. FERLAND

1. Introduction

In a Resource-Constrained Project Scheduling Problem (RCPSP), we consider
a project including a set I = {1, 2, · · · , N} of N activities to be scheduled under
resource and precedence constraints. The time required to complete an activity i
is specified in terms of an integer number di of periods. Note that 1 and N are
used as the starting and ending activities of the project, respectively, and their
duration d1 = dN = 0. It is also assumed that once initiated, any activity is
completed without interruption.

On the one hand, the precedence constraints are induced by technological re-
quirements to impose that any activity i must be scheduled for execution after the
completion of all its immediate predecessors included in a set Pi. On the other
hand, each activity i requires rik units of resource k ∈ R = {1, 2, · · · , K} during
each period of its execution. The resource constraints are specified to limit the
number of units of each resource k ∈ R used to the number Akt of units available
in each period t.

The (RCPSP) is to determine a starting period for each activity in order to
minimize the total duration (makespan) of the project while satisfying the prece-
dence and resource constraints. Note that this problem is denoted as m/cpm/cmax

or PS/prec/Cmax referring to Herroelen et al. [14] and Brucker et al. [7] classifi-
cations, respectively.

Since this problem is known to be a NP-Hard [3], solving problems having
more than 60 activities and 4 different resources with an exact method is very
much time consuming. Several authors have proposed different solution procedures
for the (RCPSP). They can be classified into three categories. The exact meth-
ods [9,12,23,24,27,28] are, essentially, implementation of the branch-and-bound to
solve small problems having less than 60 activities. Using heuristic procedures is
an alternative to deal with larger problems [4,9,11,17,19,20,29]. These methods
are serial or parallel schedule generation schemes. The third category includes
metaheuristics like tabu search [2,25], simulated annealing [5,6,8] and genetic al-
gorithm [1,13,16].

In this paper we introduce a new representation for the solutions of (RCPSP)
called activity set list. The most efficient heuristics for the (RCPSP) are using
activity list representation [18,21] and the serial SGS method [21] to construct the
corresponding solution (schedule). The activity list may induce a search space of
representations much larger then the space of schedules because the same schedule
can correspond to many different activity list representations. We show how the
activity set list representation can considerably reduce the search space and how
to move more efficiently through it. We also show that this new representation
never excludes the optimal solution and that it has many interesting properties.

Computational experiments show the efficiency of the activity set list. An
evaluation of the search space reduction induced by this representation is made for
the most used library of instances in the literature. An analysis of this reduction is
also made according to their complexity level. The activity set list representation



NEW REPRESENTATION TO REDUCE THE SEARCH SPACE FOR THE RCPSP 217

may be used to construct a new category of more efficient solution procedures for
the problem.

The paper is organized as follows. In Section 2, we briefly describe the activity
list representation and then define the activity set list representation. We intro-
duce a powerful property of the new representation in Section 3 together with
some results and procedures related to it. We show in Section 4 how the new
representation can be extended for the backward scheduling mode. Finally, a per-
formance evaluation is made in Section 5 to show the importance of the search
space reduction. The numerical results for all instances in J30, J60, J90 and J120
of the PSPLIB [22] indicate the gain in efficiency when the new representation is
used.

2. Activity Set List Representation

An essential feature of any heuristic solution procedure is the encoding or the
representation of the solution. Note that many different procedures may use the
same representation, but they differ in the way the solution representation are
modified at each iteration. Several representations have been proposed [21], but
one of the most commonly used is the activity list representation or permutation
based representation [18,21] where we use the following vector :

AL = [i1, i2, · · · , iN ]
corresponding to a permutation of the activities satisfying the precedence con-
straints. Hence any activity ij appears in AL after all its immediate predecessors
Pij ; i.e.,

Pij ⊂ {i1, i2, · · · , ij−1}
The activity list AL can be decoded into a unique schedule using the serial SGS

method [21] as follows : activity i1 is scheduled to start in the first period (i.e.,
at time 0). Activity ij is the jth activity scheduled as early as possible after the
completion of all its predecessors in Pij according to the resource availability.

To illustrate the activity list representation, consider the example in Figure 1
where the project includes 10 activities requiring a unique type of resource. As-
sume that A1t = 6 units of resource are available in each period t. With each
activity-node i, we associate the pair (di, ri1). Using the serial SGS method, the
activity list,

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
is decoded into the unique feasible schedule illustrated in Figure 2. It is easy to
verify that this schedule corresponds also to the other activity list,

[1, 2, 5, 3, 4, 6, 8, 7, 9, 10].
This example illustrates the fact that the heuristic procedures working with

this representation may generate several different activity lists corresponding to
the same feasible schedule. Thus, these procedures search in a much larger space
of activity lists than the space of feasible schedules. Now the following activity set
list representation has the advantage of reducing the search space by representing



218 K. MOUMENE AND J. A. FERLAND

Figure 1. Example of (RCPSP).

Figure 2. Example of a schedule.

several activity lists into a unique activity set list. To specify the activity set list
representation we refer to the following definitions.

Definition 1. An activity set list ASL is an ordered list of different non empty
subsets of activities SA1, SA2, · · · , SAp

ASL = [SA1, SA2, · · · , SAp]

such that

• Each activity i ∈ I belongs to a unique subset SAα, α ∈ {1, 2, · · · , p} (i.e.,
the set of subsets SA1, SA2, · · · , SAp is a partition of I);

• If activity i ∈ SAα, then each of its predecessors is either in SA1 or SA2

or · · · or SAα (i.e., Pi ⊂ SA1 ∪ SA2 ∪ · · · ∪ SAα).

It is easy to verify that the activity list AL is an activity set list ASL where
each subset SAj , j = 1, 2, · · · , N , includes a unique activity.



NEW REPRESENTATION TO REDUCE THE SEARCH SPACE FOR THE RCPSP 219

Table 1. Ordered lists generated from SA1 and SA2.

Subsets Sets of ordered lists
SA1 = {1, 2, 3, 4, 5} OS1 = {[1, 2, 3, 4, 5], [1, 2, 3, 5, 4], [1, 3, 2, 4, 5],

[1, 3, 2, 5, 4], [1, 2, 4, 5, 3], [1, 2, 5, 4, 3],
[1, 2, 4, 3, 5], [1, 2, 5, 3, 4]}

SA2 = {6, 7, 8, 9, 10} OS2 = {[7, 6, 8, 9, 10], [6, 7, 8, 9, 10], [6, 8, 7, 9, 10]}

Definition 2. Consider a subset SAα, an element of an activity set list ASL.
• osα denotes an ordered list of activities of SAα satisfying the precedence

constraints (i.e., each activity i ∈ SAα appears in osα after its predecessors
in SAα (Pi ∩ SAα)).

• OSα is defined as the set of all ordered lists osα that can be generated
from SAα.

Definition 3. An activity set list ASL= [SA1, SA2, · · · , SAp] has the permutation
property (or ASL is (PRMT)) if all vectors [os1, os2, · · · , osp] ∈ OS1×OS2×· · ·×
OSp correspond to the same unique schedule.

To illustrate the definitions, consider the example in Figure 1. The activity set
list

[{1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}]
includes the subsets SA1 = {1, 2, 3, 4, 5} and SA2 = {6, 7, 8, 9, 10}. Now, con-
sider the ordered lists os1 = [1, 2, 5, 3, 4] and os2 = [6, 8, 7, 9, 10] satisfying the
precedence constraints. Then the vector [os1, os2] = [1, 2, 5, 3, 4, 6, 8, 7, 9, 10] is an
activity list corresponding to the schedule of Figure 2. It is easy to verify that the
combination of any ordered lists [os1, os2] ∈ OS1 × OS2 in Table 1 is an activity
list corresponding to the same unique schedule of Figure 2 (there are 8 × 3 = 24
possible combinations). Hence, the preceding activity set list is (PRMT). This
example illustrates the advantage of working with activity set lists being (PRMT)
to reduce the search space of a procedure.

Note that Definition 1 includes two conditions for a representation to be an
activity set list. For instance, referring to the Figure 1, the following representation

[{1, 2, 3, 7, 8}, {4, 5, 6, 9, 10}]
is not an activity set list since the predecessors of 7 (4 and 5) belong to the second
subset.

Moreover, all vectors induced by an activity set list can be activity lists but
they may not correspond to the same unique schedule. Such an activity set list
is not (PRMT). For instance, referring to Figure 1, the following activity set list
does not verify the Definition 3 condition.

[{1, 2, 3, 4, 5, 6}{7, 8, 9, 10}]
We can easily verify that all vectors [os1, os2] ∈ OS1×OS2 are activity lists. Now,
consider the activity lists

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]



220 K. MOUMENE AND J. A. FERLAND

• Let AL=[i1, i2, · · · , iN ] the activity list to initialize the procedure.
• For any j = 1, 2, · · · , N , considering the starting period of the previous

activities i1, i2, · · · , ij−1 in AL, denote :
– TP (ij) : The earliest starting period of ij accounting only for the

precedence constraints.
– TPR(ij) : The earliest starting period of ij accounting for both the

precedence and the resource constraints.
1. Initialize the first subset SA1 = {i1}.
2. l = 1.
3. For k = 2 to N do∗

• if (TP (ik) = TPR(ik)) then SAl = SAl ∪ {ik}
• else

– l = l + 1
– Initialize a new subset SAl = {ik}

(1) The activity set list generated is [SA1, SA2, · · · , SAl]

Figure 3. The ConstructASLPRMT procedure.

[1, 2, 3, 4, 6, 5, 7, 8, 9, 10]

from OS1 × OS2. They correspond to different schedules that have makespan of
14 and 16, respectively.

3. Generating Activity Set List being (PRMT)

Next, we propose a procedure to generate activity set list being (PRMT). Start-
ing with an activity list AL, select each activity sequentially. Initialize the first
subset of the partition with the first activity in AL. Considering the starting pe-
riod of the previous activities in AL, if the earliest starting period of the activity
accounting only for the precedence constraints is the same if we account for both
precedence and resource constraints, then the activity is included in the current
subset. Otherwise, a new subset is initialized with this activity. The procedure is
summarized in Figure 3.

Note that the loop * is completed in O(N). Furthermore, the values TP (ij)
and TPR(ij) are evaluated in O(cN2), where c is a positive real number. Thus,
ConstructASLPRMT is completed in polynomial time.

The procedure can induce less computational effort if AL has to be decoded.
Indeed to generate the corresponding schedule, the activities in AL have to be
selected sequentially and the values TP (ij) and TPR(ij) have to be evaluated.
Hence, testing the if TP (ij) is equal to TPR(ij) for each selected activity ij to
determine its subset, is the only additional computation effort.



NEW REPRESENTATION TO REDUCE THE SEARCH SPACE FOR THE RCPSP 221

Referring to the example of Figure 1, it is easy to verify that starting with the
activity list

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
the procedure ConstructASLPRMT generate the following activity set list being
(PRMT)

[{1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}]
It is easy to show that ConstructASLPRMT generates an activity set list being

(PRMT) when initiated with an activity list. The basic argument relies on the
fact that once the first activity of the subset is scheduled, then the rest of the
activities in it are scheduled at the earliest period as if there were no resources
constraints. As a consequence, it follows that if an activity set list generated
with ConstructASLPRMT has a unique subset, then the optimal schedule can be
obtained with the CPM method. Finally, since Kolisch [18], Sprecher et al. [26]
have proved that if the (RCPSP) has an optimal schedule, there always exists
an activity list corresponding to an optimal schedule when using the serial SGS
method, than it follows that if the ConstructASLPRMT procedure is initiated
with this activity list, then it generates an activity set list (PRMT) corresponding
to the same optimal schedule.

4. Activity Set List Representation for the backward

scheduling mode

So far, we have used the (forward) serial SGS introduced in Section 2 to decode
an activity list into a schedule. Accordingly, we have introduced the notion of
activity set list representation in reference with this scheduling mode. But an
activity list can also be decoded into another schedule using a backward scheduling
mode. This is also a serial SGS method where the last activity iN is first scheduled.
Activity iN−j+1 is the jth activity scheduled as late as possible to be completed
before starting its successors according to the resource availability.

Referring to the example of the Figure 1, the backward scheduling mode decodes
the activity list

[1, 2, 5, 3, 6, 8, 4, 7, 9, 10]
into the schedule illustrated in Figure 4 which is different from the schedule, ob-
tained with the forward mode, in Figure 5.

The notion of activity set list representation being (PRMT) can be extended in
reference with the backward scheduling mode. To specify this new representation,
we refer to the definitions 1 and 2 in Section 2, but we modify Definition 3 as
follows :

Definition 4. An Activity Set List ASL = [SA1, SA2, · · · , SAp] has the backward
permutation property (or ASL is (PRMTb)) if all vectors [os1, os2, · · · , osp] ∈
OS1×OS2×· · ·×OSp correspond to the same unique schedule when the backward
scheduling mode is used.



222 K. MOUMENE AND J. A. FERLAND

Figure 4. Schedule with the backward mode.

Figure 5. Schedule with the forward mode.

Similarly, the ConstructASLPRMT procedure can be adapted into the Con-
structASLPRMTb procedure to generate an ASL being (PRMTb) starting with
an activity list AL = [i1, i2, · · · , iN ]. It can be summarized as follows. Initialize
the first subset SA1 of the partition with iN . Considering the starting period of
the following activities ij+1, ij+2, · · · , iN , if the latest starting period LP (ij) of
activity ij accounting only for the precedence constraints is the same as LPR(ij)
if we account for both precedence and resource constraints, ij is included in the
current subset. Otherwise, if LPR(ij) < LP (ij), a new subset is initialized with ij.
A similar result as for ConstructASLPRMT holds. Any activity set list, generated
by ConstructASLPRMTb,

[SAl, SAl−1, · · · , SA1]
is (PRMTb).



NEW REPRESENTATION TO REDUCE THE SEARCH SPACE FOR THE RCPSP 223

If we initialize the ConstructASLPRMTb procedure with the activity list
[1, 2, 5, 3, 6, 8, 4, 7, 9, 10], it is easy to verify that the activity set list generated is

[{1, 2, 5}{3, 6, 8, 4, 7, 9, 10}]
Note that this activity set list (PRMTb) is different from the activity set list
(PRMT)

[{1, 2, 5, 3, 6, 8}{4, 7, 9, 10}]
generated with ConstructASLPRMT initialized with the same activity list. Thus,
associated with the same activity list, we can generate different schedules and
different activity set list according to the scheduling mode used.

A similar result to the one derived for the forward scheduling mode holds for
the backward mode. If the activity set list being (PRMTb) generated with Con-
structASLPRMTb includes a unique subset, the optimal schedule can be obtained
with the CPM method.

In [15], Klein introduces the notion of bidirectional planning mode where each
activity is either scheduled with the forward or with the backward mode. An
extension of the activity set list representation may be explored for this mode.

5. Numerical advantages of using Activity Set List

Representation

Consider any local search technique where neighbour activity lists of AL are
generated by selecting an activity and moving it to different positions between its
latest predecessor and its earliest successor in AL in order to satisfy the precedence
constraints. Now, referring to the corresponding activity set list generated by the
ConstructASLPRMT procedure initialized with AL,

ASL = [SA1, SA2, · · · , SAp]
it follows that AL corresponds to a vector

V0 = [os1, os2, · · · , osp]
for some ordering os1, os2, · · · , osp ∈ OS1×OS2×· · ·×OSp. If the selected activity
belongs to SAj , then moving it to any other position within SAj to maintain the
precedence constraints satisfied, corresponds to generate a different osj ∈ OSj ,
but the (PRMT) property induces that this neighbour activity list correspond to
the same schedule. It follows that this activity list is not an interesting neighbour
to reduce the value of the objective function. Hence the effort can be reduced
since the (PRMT) property allows to know beforehand that such an activity list
should not be generated and decoded to evaluate its makespan.

To illustrate the reduction in computational effort, consider the first instance of
J30 in the PSPLIB library [22] having 30 non dummy activities, and the activity
list in Figure 6 generated with the MINSLK (Minimum Job Slack) priority rule [10].
Note that the first and the last activities 1 and 32, are dummy starting and ending
activities.

The corresponding activity set list generated with the ConstructASLPRMT
procedure is illustrated in Figure 7.



224 K. MOUMENE AND J. A. FERLAND

[1, 4, 10, 16, 2, 9, 11, 21, 26, 5, 15, 6, 3, 13, 18, 20, 25, 7, 8, 27, 28, 31, 19, 29, 12,
14, 17, 22, 23, 24, 30, 32]

Figure 6. Activity list generated with MINSLK rule considering
the first instance of J30.

{1, 4*, 10, 16, 2, 9, 11, 21, 26}{5, 15}{6}{3, 13}{18, 20, 25, 7, 8}{27, 28, 31, 19}
{29, 12, 14*}{17, 22, 23, 24, 30, 32}

Figure 7. Activity set list generated with the activity list in Figure 6.

Suppose that the activity 9 is selected. It can be moved to any position after
4 and before 14 to maintain the precedence constraints satisfied (“*” denotes the
first and the last positions where activity 9 can be moved). Hence 22 different
neighbour activity lists can be generated according to these modifications. But
moving activity 9 between activities 4 and 5 (i.e., within its subset SA1) generates
different order lists in OS1 inducing 6 different activity lists corresponding to the
same schedule. Hence, 27% of the 22 neighbour activity lists are useless since they
correspond to the same schedule and do not have to be generated and decoded.

Additional tests have been completed with instances of the PSPLIB library as
follows : for each instance of the sets J30, J60, J90 (including 30, 60 and 90 non
dummy activities, respectively),

1. One hundred different activity lists have been generated randomly accord-
ing to the RAN priority rule (activities are selected randomly to construct
valid activity lists);

2. For each activity list, the experimentation with an activity selected ran-
domly is repeated 100 times;

3. For each selected activity, the percentage of useless neighbour activity lists
has been evaluated.

A percentage of useless neighbour activity lists is evaluated for each instance.
Referring to [22], recall that each instance of PSPLIB is generated according
to parameter settings (network complexity NC, resource factor RF and resource
strength RS) that reflect its ”complexity”. Each set J30, J60 and J90 includes 48
different groups of 10 instances generated with the same parameter settings. We
calculate an average percentage of useless neighbour activity lists for each of these
groups. The results are summarized in Table 2. The column Avg. per params
includes the average of the percentage of useless neighbours over the three sets of
instances J30, J60 and J90. To simplify the analysis, we have sorted the results in
a decreasing order of the values in Avg. per params.

Table 2 indicates how the ASL can be useful to reduce the size of the neighbor-
hood. The percentage of useless neighbours varies between 14.99% and 86.49%.
The average value of this percentage is equal to 48.22%, 46.61% and 46.33% for
J30, J60 and J90, respectively. Hence, neither the average value nor the per-
centage of useless neighbours for any parameter settings in Table 2 seem to vary
significantly with the size of the problem.



NEW REPRESENTATION TO REDUCE THE SEARCH SPACE FOR THE RCPSP 225

Table 2. Percentage of useless neighbours per parameter com-
bination for J30, J60 and J90.

NC RF RS J30 % J60 % J90 % Avg. per params. %
2.10 1.00 1.00 86.49 82.82 80.98 83.43
2.10 0.25 1.00 85.64 82.31 81.03 82.99
2.10 0.50 1.00 85.95 81.74 81.25 82.98
2.10 0.75 1.00 85.30 82.12 81.39 82.94
1.80 1.00 1.00 82.62 79.92 80.54 81.03
1.80 0.75 1.00 81.97 80.74 80.20 80.97
1.80 0.50 1.00 81.41 80.05 80.64 80.70
1.80 0.25 1.00 81.65 79.93 80.13 80.57
1.50 0.50 1.00 78.54 78.36 78.57 78.49
1.50 0.75 1.00 79.68 77.87 77.28 78.28
1.50 1.00 1.00 78.41 77.73 78.33 78.16
1.50 0.25 1.00 77.23 78.49 76.96 77.56
2.10 0.25 0.70 59.71 53.03 54.06 55.60
1.80 0.25 0.70 54.36 52.54 49.11 52.01
2.10 0.50 0.70 53.47 50.28 50.33 51.36
2.10 0.25 0.50 59.15 45.38 45.66 50.06
2.10 0.75 0.70 45.51 49.41 48.88 47.94
2.10 1.00 0.70 46.62 48.29 48.47 47.79
1.80 0.50 0.70 47.14 49.67 46.23 47.68
1.80 1.00 0.70 43.11 47.04 48.44 46.19
1.50 0.25 0.70 45.99 45.55 46.54 46.03
1.80 0.75 0.70 45.82 45.54 46.26 45.87
1.80 0.25 0.50 51.38 42.92 41.83 45.38
1.50 1.00 0.70 40.86 44.35 44.80 43.34
1.50 0.50 0.70 43.22 42.97 42.82 43.01
1.50 0.75 0.70 39.23 42.47 42.98 41.56
2.10 0.50 0.50 46.54 38.29 38.31 41.05
1.50 0.25 0.50 41.80 37.82 36.00 38.54
2.10 0.75 0.50 40.15 36.17 38.41 38.25
1.80 0.50 0.50 40.34 36.26 35.05 37.22
2.10 1.00 0.50 35.98 35.82 37.18 36.33
1.80 1.00 0.50 36.35 36.64 35.91 36.30
1.80 0.75 0.50 36.79 33.97 36.09 35.62
2.10 0.25 0.20 40.68 34.66 30.79 35.37
1.50 0.75 0.50 32.76 32.90 33.41 33.02
1.80 0.25 0.20 40.36 30.85 27.83 33.01
1.50 0.50 0.50 32.55 33.37 32.74 32.88
1.50 1.00 0.50 30.89 33.57 33.58 32.68
1.50 0.25 0.20 31.08 27.30 23.98 27.45
2.10 0.50 0.20 25.72 22.31 22.33 23.45
1.80 0.50 0.20 24.71 21.92 20.66 22.43
1.50 0.50 0.20 20.05 19.42 18.97 19.48
1.80 0.75 0.20 17.58 18.52 19.21 18.43
2.10 0.75 0.20 17.07 18.64 18.05 17.92
2.10 1.00 0.20 16.34 16.96 18.10 17.14
1.80 1.00 0.20 16.03 17.07 18.18 17.09
1.50 0.75 0.20 14.99 17.25 17.51 16.58
1.50 1.00 0.20 15.43 16.28 18.03 16.58

Furthermore, on the one hand the results in Table 2 indicate that the percentage
of the useless neighbours does not seem to vary significantly with the complexity
factor NC or with the resource factor RF but quite significantly with the resource
strength factor RS. On the other hand, the Table 3 allows also to evaluate more
clearly the impact of the three parameters. This table includes the average value
(columns Avg. Useless. Mov.) of the Avg. per params values in Table 2 for each
value of the parameters NC, RF and RS. The results in Table 3 indicate that this
value increases with the value of NC and RS and decreases with the value of RF.



226 K. MOUMENE AND J. A. FERLAND

Table 3. Average percentages of useless neighbours for NC, RF
and RS values.

NC Avg. Useless Mov. % RF Avg. Useless. Mov. % RS Avg. Useless. Mov.%
1.5 43.98 0.25 52.05 0.2 22.08
1.8 47.53 0.50 46.73 0.5 38.11
2.1 49.66 0.75 44.78 0.7 47.36

1 44.67 1 80.67

The significant impact if the parameter RS can be explained by the fact that
this parameter measures the relationship between the resource demand of the
activities and the resource availability [22]. Hence when the resource availabilities
increase with regards to the activity demands, then the size of the subsets in a
ASL increases and the number of alternate positions where any activity can be
moved outside its subset decreases.

Note that the restriction of moving an activity only at positions outside of its
subset eliminates many useless movements but not necessarily all of them. Indeed,
such a movement may also induce a new activity list corresponding to the same
schedule.

6. Conclusion

We present a new Activity Set List representation for (RCPSP). The most
efficient heuristics for the problem are based on the activity list representation.
We indicate that the Activity Set List can be seen as a generalization of the activity
list, and that the same Activity Set List can be associated with several different
activity lists corresponding to a same unique schedule. This property allows to
specify a new category of heuristics that are searching in a reduced feasible set.

A performance evaluation is completed with PSPLIB, the most used library
of instances in the literature. The results indicate clearly how the search space
induced by activity lists can be significantly reduced, and hence how interesting
solutions can be more quickly reached with procedures using this new representa-
tion.

Further investigations are required to explore more completely the impact of
this new representation on heuristic procedures.

References

[1] J. Alcaraz and C. Maroto, A Robust Genetic Algorithm for Resource Allocation in Project
Scheduling, Ann. Oper. Res. 102 (2001) 83–109.

[2] T. Baar, P. Brucker and S. Knust, Tabu-search algorithms for the resource-constrained
project scheduling problem, Metaheuristics : Advances and Trends in Local Search
Paradigms for Optimisation, Kluwer (1997) 1–18.

[3] J. Blazewicz, J.K. Lenstra, A.H.G. and Rinnooy Kan, Scheduling projects to resource con-
straints : Classification and complexity, Disc. Appl. Math. 5 (1983) 11–24.



NEW REPRESENTATION TO REDUCE THE SEARCH SPACE FOR THE RCPSP 227

[4] F.F. Boctor, Some effcient multi-heuristic procedures for resource-constrained project sched-
uling, Eur. J. Oper. Res. 49 (1990) 3–13.

[5] F.F. Boctor, Resource-constrained project scheduling by simulated annealing, Int. J. Prod.
Res. 34 (1996) 2335–2351.

[6] M. Bouleimen, H. Lecocq, A new efficient simulated annealing algorithm for the resource-
constrained project scheduling problem and its multiple version, Eur. J. Oper. Res. 149
(2003) 268–281.

[7] P. Brucker, A. Drexl, R. Mohring, K. Neumann, Resource-constrained project scheduling :
Notation, classification, models and methods, Eur. J. Oper. Res. 112 (1999) 3–41.

[8] J.-H. Cho, Y.-D. Kim, A simulated annealing algorithm for resource-constrained project
scheduling problems, J. Oper. Res. Soc. 48 (1997) 735–744.

[9] E.W. Davis, G.E. Heidorn, An algorithm for optimal project scheduling under multiple
resource constraints, Manage. Sci. 27 (1971) B803–B816.

[10] E.W. Davis, J.H. Patterson, A comparison of heuristic and optimal solutions in resource-
constrained project scheduling, Manage. Sci. 21 (1975) 944–955.

[11] E. Demeulemeester, W. Harroelen, New benchmarking results for the resource constrained
project scheduling problem, Manage. Sci. 43 (1995) 1485–1492.

[12] E. Demeulemeester, W. Herroelen, A branch-and-bound procedure for multiple resource-
constrained project scheduling problem, Manage. Sci. 38 (1992) 1803–1818.

[13] S. Hartmann, A competitive genetic algorithm for resource-constrained project scheduling,
Nav. Res. Logist. 456 (1998) 733–750.

[14] W. Herroelen, B. Reyck, E. Demeulemeester, Resource-constrained project scheduling : A
survey of recent developments, Computers and Operations Research 4 (1998) 279–302.

[15] R. Klein, Bidirectional planning : improving priority rule-based heuristics for scheduling
resource-constrained projects, Eur. J. Oper. Res. 127 (2000) 619–638.

[16] U. Kohlmorgen, H. Schmeck, K. Haase, Experiences with fine-grained parallel genetic algo-
rithms, Ann. Oper. Res. 90 (1999) 203–219.

[17] R. Kolisch, A. Drexel, Adaptative search for solving hard project scheduling problem, Nav.
Res. Logist. 43 (1996) 23–40.

[18] R. Kolisch, Serial and Parallel resource-constrained project scheduling methods revisited:
Theory and computation, Eur. J. Oper. Res. 90 (1996) 320–333.

[19] R. Kolisch, Efficient priority rules for the resource-constrained project scheduling problem,
J. Oper. Manage. 14 (1996) 179–192.

[20] R. Kolisch, A. Drexl, Adaptative search for solving hard project scheduling problems, Nav.
Res. Logist. 43 (1996) 23–40.

[21] R. Kolisch, S. Hartmann, Heuristic algorithms for solving resource-constrained project
scheduling problem : Classification and computation analysis, in : Project Scheduling :
Recent Models, Algorithms and Applications, edited by J. Weglarz, Kluwer Academic Pub-
lisher, Boston 1999, 147–178.

[22] Kolisch R., Sprecher A., Drexel A., Characterization and generation of general class of
resource-constrained project scheduling problems, Manage. Sci. 41 (1995) 1693–1703.

[23] A. Mingozi, V. Maniezzo, S. Ricciardelli, L. Bianco, An exact algorithm for project sched-
uling with resource constraints based on a new mathematical formulation, Manage. Sci. 44
(1998) 714–729.

[24] J.H. Patterson, R. Sowinski, F.B. Talbot, J. Weglarz, An algorithm for a general class of
precedence and resource constrained scheduling problems, in : Advances in project schedul-
ing, edited by R. Sowinski, J. Weglarz, Elsevier, Amsterdam 1989, 3–28.

[25] E. Pinson, C. Prins, F. Rullier, Using tabu search for solving the resource-constrained project
scheduling problem, in: Proceedings of the 4th International Workshop on Project Manage-
ment and Scheduling, Leuven, Belgium 1994, 102–106.

[26] A. Sprecher, R. Kolisch, A. Drexel, Semi-Active, active and non-delay schedules for resource-
constrained project scheduling problem, Eur. J. Oper. Res. 80 (1995) 94–102.

[27] J.P. Stinson, E.W. Davis, B.M. Khumawala, Multiple resource-constrained scheduling using
branch-and-bound, AIIE Transactions 10 (1978) 252–259.



228 K. MOUMENE AND J. A. FERLAND

[28] B. Talbot, J.H. Patterson, An efficient integer programming algorithm with network cuts
for solving resource-constrained scheduling problem, Manage. Sci. 24 (1978) 1163–1174.

[29] A. Thesen, Heuristic scheduling of activities under resource and precedence restrictions,
Manage. Sci. 23 (1976) 412–422.


	Introduction
	Activity Set List Representation 
	Generating Activity Set List being (PRMT) 
	Activity Set List Representation for the backward scheduling mode 
	Numerical advantages of using Activity Set List Representation 
	Conclusion
	References

