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Abstract

This work is in the context of TRANSTYPE, a system that watches over the user as he or she types
a translation and repeatedly suggestscompletionsfor the text already entered. The user may either
accept, modify, or ignore these suggestions. The system’s proposals are selected and scored using a
linear combination of a trigram language model and a translation model. We investigate the issue of
how weights should be assigned to these two models in different contexts.

1 Introduction

TRANSTYPE is part of a project set up to explore an appealing solution to the problem of using
Interactive Machine Translation(IMT) as a tool for professional or other highly-skilled translators.
IMT first appeared as part of Kay’s MIND system (Kay, 1973), where the user’s role was to help the
computer analyse the source text by answering questions about word sense, ellipsis, phrasal attach-
ments, etc. Most later work on IMT, eg (Blanchon, 1991; Brown and Nirenburg, 1990; Maruyama
and Watanabe, 1990; Whitelock et al., 1986), has followed in this vein, concentrating on improving
the question/answer process by having less questions, more friendly ones, etc. Despite progress in
these endeavors, systems of this sort are generally unsuitable as tools for skilled translators because
the user serves only as an advisor, and the MT component has overall control of the translation
process.

TRANSTYPE originated from the conviction that a better approach to IMT for competent trans-
lators would be to shift the focus of interaction from themeaningof the source text to theform of
the target text (Foster et al., 1997). This would relieve the translator of the burden of having to pro-
vide explicit analyses of the source text and allow him to translate naturally, assisted by the machine
whenever possible.

In this idea, a translation emerges from a series of alternating contributions by human and machine.
The machine’s contributions are basically proposals for parts of the target text, while the translator’s
can take many forms, including pieces of target text, corrections to a previous machine contribution,
hints about the nature of the desired translation, etc. In all cases, the translator remains directly in
control of the process: the machine must respect the constraints implicit in his contributions, and he
is free to accept, modify, or completely ignore its proposals.

The above description encompasses a number of interesting scenarios for interaction. In our cur-
rent prototype, we have implemented one of the simplest, where the machine’s task is just to try



to guess what the translator will type next. The translator is given access to the system’s proposed
completions—here limited to a single word or suffix of a word—and can incorporate them into the
target text whenever desired. Completions are generated using a linear combination of separate pre-
dictions from the target text (a trigram language model) and the source text (a translation model). In
this paper, we present a theoretical model of the task addressed by TRANSTYPE and we report on
experiments carried out to explore different ways of combining these two predictive sources.

2 TRANSTYPE and its model

2.1 User Viewpoint

Our interactive translation system is illustrated in figure 1 for English to French translation. It
works as follows: a translator selects a sentence and begins typing its translation. After each character
typed by the translator, the system displays a proposed completion, which may either be accepted
using a special key or rejected by continuing to type. This interface is simple and its performance
may be measured by the proportion of characters or keystrokes saved in typing a translation.

Figure 1: Example of an interaction in TRANSTYPE with the source text in the top half of the screen.
The target text is typed in the bottom half with suggestions given by the menu at the insertion point.

Although this form of translation completion is expected to be useful for translators, we have not
yet verified this conjecture. The goal of this paper is to show that this kind of interaction is within the
reach of current MT technology, and to measure the level of accuracy which is attainable by a simple
system. The user-interface design choices and a more formal evaluation within the global task of
translation will be the subject of another paper.



2.2 System Viewpoint

To complete words, TRANSTYPE relies on two main components: thegeneratorwhich produces
a list of hypotheses that match the current (possibly null) word prefix and theevaluatorwhich ranks
them.

The generator computes for each source segment (usually a sentence), anactive vocabularycon-
sisting of the set of words to which the translation model (see below) assigns the highest probabilities,
along with a static list of frequent words compiled from a training corpus. 90% of the target tokens
of a 30000 word test corpus were covered by this process, with an active vocabulary size of less than
500 words.

The evaluator implements a model which computes an estimate ofp(tj~t; s), the probability of a
target wordt given the preceding target context~t, and a source segments. Creating this model means
finding some decomposition ofp(tj~t; s) in terms of parameters whose values can be estimated from
a training corpus.

They are many ways of accomplishing this, of which the most obvious is the classical noisy chan-
nel method. One drawback of a noisy channel approach is that it requires a complex decoding
strategy. Although recent methods for efficient dynamic-programming (Tillman et al., 97; Niessen et
al., 98) and stack-based (Wang and Waibel, 97; Wang and Waibel, 98) decoders have been proposed,
we consider these strategies still too expensive for TRANSTYPE (recall that a completion must be
generated after each keystroke).

Thus, for reasons of search efficiency we chose to use separate models to capture predictions from
the target and source texts, then combine them into a single global prediction. Our basic method is a
linear combination of source and target text models, using some weighting factors� (see equation 1).
Linear combination is a weak technique because it tends to average out the strengths and weaknesses
of its components. It always performs at least as well as best of the two, but in practice it usually
does not perform much better. For this reason, we investigated weights which depend on the context:

p(tj~t; s) = �(�(~t; s)) p(tj~t) + (1� �(�(~t; s))) p(tjs) (1)

where�(~t; s) stands for any function which maps~t,s into a set of equivalence classes. Intuitively,
�(�(~t; s)) should be high whens is more informative than~t and low otherwise.

An advantage of this approach is that there are well-established modeling techniques for both
distributions in this equation. Currently, the first distribution is approximated by an interpolated
trigram model for French, of the type commonly used in speech recognition (Jelinek, 1990), and
the second distribution derives from an IBM-style statistical translation model (1&2) (Brown et al.,
1993). Both have been trained on a large portion of the Canadian Hansard corpus (a large collection
of texts of Canadian parliamentary debates). Details of the training procedure are given in (Foster et
al., 1997).

3 The experimental protocol

The modeling strategy we devised, although easy to implement, raises the problem of defining
which information in the target prefix~t and in the source texts could serve as a good predictor of the



relative strength of the two models. This is the problem we address in the following. More specifi-
cally, we investigated the usefulness of different functions�(~t; s), some extracting information from
the target words already validated by the translator, others depending on simple intrinsic properties
of the source segment under translation.

As suggested by the linear form of equation 1, we used the EM algorithm to estimate optimal
weighting coefficients for each candidate mapping�(~t; s), maximizing in an iterative process the
probability assigned byp to a training corpus.

3.1 The EM-corpus

To estimate the weighting coefficients, we randomly extracted a hundred pairs of files of the
Hansard corpus. These pairs of texts were automatically aligned to the sentence level, using the
program described in (Langlais and El-B`eze, 97)1. Then we filtered out all non one-to-one pairs
and removed those containing sentences longer than 40 words. We call this bitext theEM-corpus, to
distinguish it from the much larger corpus used to train the translation and language models.

3.2 The test corpus

The test corpus consists of three automatically aligned texts not used for training; two coming
from different periods of the Hansard corpus, and one from an unrelated corpus (a text on the com-
petitiveness of the Canadian milk and dairy products industry), as shown in table 1.

Corpus Segments English tokens French tokens 1-1 pairs

EM-corpus 154559 2820549 3017942 100 %
A (Hansard-1986) 786 19457 21130 93 %
B (Hansard-1992) 1140 29886 32138 87.7 %
C (non-Hansard) 594 18881 21303 93.9 %

Table 1: Characteristics of the corpora used in this study in terms of number of segments, number
of source and target tokens. The last column indicates the percentage of pairs in which one source
sentence has been aligned to one target sentence by our automatic aligner.

3.3 Evaluation

We evaluated the performance of different methods for contextual model weighting by measuring
the theoretical performance of TRANSTYPE over a pair of translated texts. More precisely we mea-
sured the number of keystrokes saved by a hypothetical user producing the target text as a translation
of the source text, typing each sentence from left to right. A completion is proposed automatically
by the system after each keystroke. The user then has two choices: 1) acceptaing the completion
by typing an acceptance key, or 2) ignoring the completion by typing the next character of the word
under translation. We assumed that a translator carefully observes each completion proposed by the
system and accepts it as soon as it is correct.

1For a recent comparison of different alignment techniques, see the ARCADE exercise (Langlais et al., 98)



We do not suggest that this fully automatic evaluation is an accurate reflection of the labour saved
by TRANSTYPE. We are currently investigating a user evaluation of our prototype, and will present
a comparison of these two evaluation procedures in another paper.

For sake of comparison we report the performance rate obtained by the model described in (Foster
et al., 1997). It belongs to the familly of models described by equation 1; where any coefficient
� is set to a single value regardless of the context. This value has been chosen as to optimize the
completion performance over a test corpus, that is�(�(~t; s)) = 0:6. This is thebaselinemodel we
considered in this work.

4 Experiments

To gauge how well we can perform by appropriately mixing the language model and the translation
model predictions within our linear framework, we ran a fake completion session where the identity
of each word under completion was known. The completion proposed after each keystroke for the
expected current wordte was set tote if either of the models ranked it first, otherwise to the best
tokent̂ according to the baseline model:

t̂ =

(
te; if argmaxt p(tjs) = te or argmaxt p(tj~t) = te
argmaxt 0:6p(tjs) + 0:4p(tj~t); else

(2)

This experiment indicated that the global performance of TRANSTYPE can be improved by a
maximum of approximately 3.7% over the baseline. This represents a reduction of 12.3% in the
number of keystrokes, with better predictions (shorter prefixes required) for 19% of words. Having
better predictions for a fifth of all words is an improvement that seems very likely to be noticeable to
a user of TRANSTYPE, although we have not yet run tests to establish this.

4.1 Frequency-based functions

The target words already validated by the translator may serve as a predictor of the weights to
assign to both models. The first set of functions we looked at extract the frequency—as counted in
the corpus used to train the language model—of the two last completed target tokens (t0; t00). This
idea is widely used to smooth the distribution of unseen or rare trigrams using the conditioning
bigram and unigram frequencies (Chen and Goodman, 1996).

�f2 and�cf2 extract the frequency of the bigram conditioning the token under completiont, while
�f1 and�cf1 focus on the unigram frequency.�cf2 and�cf1 cluster the frequency on a logarithmic
scale. More precisely, iff(x) stands for the frequency (as measured in the training corpus) of the
eventx, andInt for the function returning the integer part of its argument, then:

�cf1(~t; s) = Int(10� log10f(t
00)) �f1(~t; s) = f(t00)

�cf2(~t; s) = Int(10� log10f(t
0t00)) �f2(~t; s) = f(t0t00)

From the results presented in table 6, we can make several observations: a) the best of these
four functions do not improve much the results obtained with the baseline; b) clustered frequency
functions always outperform their non clustered counterparts; and c) unigram frequency information
seems a slightly better predictor than bigram frequency.



The first observation is unfortunatly a constant in our experiments: improving the baseline eval-
uator is not an easy task. Actually, the present situation differs slightly from a smoothing problem
as the two components we want to combine behave differently. The language model captures local
grammatical constraints, but displays a high degree of lexical uncertainty, while the translation mod-
el has a good idea of which words should appear in the target text but a poor notion of where to put
them.

As pointed out in (Foster et al., 1997), we are faced with a local consistency problem. Lowering
the weight on the language model in a specific context may introduce ungrammatical sequences. The
eighth line 8 in table 3 (see section 4.2) shows such a situation. The weight given to the language
model to complete a word after the high-entropy French bigramet les(and the) is almost null, which
reflects the fact that many words may follow the bigram. Thus, the prediction relies mostly on the
translation model whose first hypothesis is the wordet, the correct translation of the wordand in
Minister and Hon.. This leads to a totally non grammatical target sequenceet les et.

Conversely, raising the language model weight will favour the tokens that more frequently follow,
in the training corpus, the conditioning context, even if there are overwelming evidences from the
source part against them. An illustration of this can be seen in the twelveth line of table 3 where the
weight given to the translation model in order to predict the word following the source sequences’
intéressent̀a (are interested in) is almost null. This favours the language model’s prediction (l’ , which
is incorrect) at the expense of the expected one (ces) that was correctly proposed by the translation
model.

In the following, we refer to these local consistency problems assequence breaks. The two last
points we observed from the results may be seen as a side effect of the remark we just made: the more
contexts we consider, the more probable sequence breaks become. In this respect, we can see this
problem as an over-training one that is largely avoided with the baseline model, as only one weight
is assigned globally to balance the two prediction sources.

Looking more closely at the coefficients estimated by the EM algorithm, we observe several inter-
esting things. In the EM-corpus, there are more than 443,000 different bigrams whose frequencies
determine a set of more than 3500 values (vs51 in the clustered version). A small portion of very
frequent bigrams are fully identified by the number of times they occurred in the training corpus. For
instance the bigramnil1nil2, the one indicating the beginning of a sentence, is the only one in the
training corpus to occur 1,619,682 times (in fact, the number of sentences used to train the language
model).

A few of these are reported in table 2 with the estimated weight that should be given to the trans-
lation model for the next completion. We observe that high-entropy bigrams tend to favour the
translation model. For instance to complete a word at the very beginning of a sentence, weighting
the translation model highly seems the best strategy. The language model, in this situation, always
predicts the most frequent word of the training corpus, that is,le (the). Conversely, in a low entropy
context such asMonsieur le, which is followed 99% of the time by the wordPrésidentin our EM-
corpus, TRANSTYPE will rely mostly on the language model, even if there is overwhelming evidence
against it from the source segment.



Frequency EM-frequency � associated bigram following forms
1619682 154559 0.91 nil1 nil2 2093
176609 11479 0.88 de l’ 951
121127 8839 0.55 le gouvernement 784
127511 12602 0.89 nil2 le 872
120753 11528 0.43 nil2 je 315
109648 7267 5.78e-05 monsieur le 12
105923 7492 0.99 nil2 m. 695
85646 7531 0.92 de loi 767
83799 7331 0.01 projet de 72

Table 2: Relation between some high bigram frequencies, and the weight assigned to the translation
model after few EM iterations. The last column indicates the number of the different forms that
follow the bigram in the EM-corpus.

It is less obvious how to interpret directly the contexts defined by frequencies that characterize
many bigrams. We can however observe from our data that the less frequent a conditioning bigram is
(especially for those occurring less than 500 times), the less weight is given to the translation model
(� < 0:3).

4.2 Target token based functions

Instead of reducing the knowledge carried by a conditioning context to just its frequency, we can
make the weighting function consider the tokens directly. We tried two functions that consider,
respectively, the conditioning bigram and unigram:�bi(~t; s) = t0t00, and�uni(~t; s) = t00.

As can be seen from table 6 these contexts give slightly worse results than their frequency counter-
part and never outperform the baseline. This confirms the remark we made in the previous section:
the more contexts we consider, the more sequence breaks are likely to occur.

We also report in table 6 the performance of a function (pos), that was set up to handle more
simply the special situation of completions at the beginning of a sentence, by considering the number
of tokens already completed:�pos(~t; s) = j~tj.

4.3 Contexts based on POS

A way of reducing the number of different contexts, and thus lowering the number of potential
sequence breaks, without losing all the linguistic information of the target text already validated is
to consider part-of-speech (POS) information. Although there are obviously better ways to integrate
the POS information in TRANSTYPE2, we tried to gauge its potential within the linear combination
currently used in TRANSTYPE.

We first tried to make the interpolation coefficient of equation 1 dependent on the POS tag of the
word being considered for completion. For obvious reasons, we can’t assume that equation 1 still
sums up to 1 over all French words3. We used a statistical tagger described in (Foster, 1991), but
reduced its set of tags to 15 macro-classes by removing information such as gender or number.

2for instance a word-class mechanism such as:p(tj~t; s) =
P

c
p(tjc;~t; s) p(cj~t; s) is a more appealing one

3Indeed, we verified that the sum ofp(tj~t; s) over the French vocabulary of the EM-corpus is slightly less than unity



� oracle prefix prediction TM first LM first
1 0.91 Je + /Je Je Le
2 0.43 sais + /sais que ne
3 0.034 que + /que que que
4 0.42 la la+ /le l/es ministre le
5 0.81 ministre + /ministre ministre chambre
6 0.41 et + /et ministre a
7 0.47 les le+ /ministre l/e le/s et le
8 0.96 députés d+ /et d/´eputés et autres
9 0.39 s’ s’+ /de s/ont d´eputés de

10 0.02 intéressent in+ /en i/l in/t´eressent d´eputés en
11 0.01 à + /à ces à
12 0.03 ces ce+ /l’ c/ette ce/s ces l’
13 0.74 questions q+ /ces q/uestions ces gens
14 0.63 pratiques pr+ /ces p/ratique pr/atiques ces et
15 0.40 . .+ /qui pratiques qui

Table 3: A sample completion session for the English source sentenceI know that the Minister and
Hon. Members are interested in these practical issues.. The first column contains the translation
model weight, the second one the French target sentence; the third, the prefix typed by the translator;
the fourth, the record of the successive proposals for each token, with a slash separating the prefix
from the proposed completion. The two last columns indicate the best hypotheses made respectively
by the translation model (TM) and the language model (LM) alone.

Table 4 reports the coefficients assigned to the translation model by the EM algorithm. As expect-
ed, the translation model is weaker on frequent function words such as articles (Dete), prepositions
(Prep), pronouns (Pron) or even punctuation (Punc). It is stronger on quantities (Quan, Ordi) and
proper names (NomP). As can be seen on table 5, a small excerpt of the translation matrix associated
to model 1, high-entropy wordse, such asthe, are characterized by a flat probability distribution
p(f je), wheref stands for any French word.

We did not run any performance tests with this way of extracting POS information, as in our
prototype computing the tag of each word candidate is a time consuming process4 that would make
the interface impractical. Instead, we considered the non-optimal function�cl which computes the

4Especially when the word expected by the translator is not in the active vocabulary.

POS � nb POS � nb POS � nb
Dete 0.11 193315 Pron 0.29 107514 Ltre 0.39 588
Prep 0.13 117198 AdjQ 0.31 61423 NomC 0.45 245199
Verb 0.25 184980 ConC 0.38 22200 Quan 0.59 32732
ConS 0.27 32131 Inte 0.39 1483 Ordi 0.62 2500
Punc 0.28 128762 Adve 0.39 63891 NomP 0.64 28447

Table 4: Relation between the POS tag of the token under completion and the translation weighting
coefficient.nb is the number of observations of each POS tag in the EM-corpus.



most likely POS tag, given the preceding two last tokenst0t00 validated by the translator, that is:

�cl(~t; s) = argmax c p(cjc0c00) p(c0c00jt0t00)

As can be observed in table 6, this is the function that gives the best results on text B.

source 5-best target associations(word; probability)

canada canada 0:62 du 0:11 au 0:11 le 0:05 pays 0:02

give donner 0:26 aux 0:07 de 0:05 à 0:05 accorder 0:04

safety sécurité 0:64 la 0:23 de 0:04 matière 0:02 des 0:01

say dire 0:36 que 0:21 dit 0:05 dis 0:04 disent 0:03

take prendre 0:17 de 0:08 pour 0:08 . 0:04 le 0:03

the le 0:17 la 0:15 de 0:11 l’ 0:07 les 0:06

Table 5: Excerpt of the translation matrix. The five most likely French words are reported eith their
associated association probability.

4.4 Source based functions

A way to reduce the sequence breaks rate is to consider information contained in the source seg-
ment under translation. It is however not obvious how to define a function that would be useful for
our combination task without including information that could be handled in a more satisfactory way
directly by the translation model.

We made several simple trials that we briefly comment upon. A first function we looked at is the
length (counted in tokens) of the source text under translation (namelylg in table 6). The intuition
behind this choice is that the translation model may be less accurate for predicting target words when
faced with long sentences. As a matter of fact, when assigning the probabilityp(tijs) to a target
tokenti, knowing the source segments, the weighted contribution of each source word is summed
up to give the final estimation :

p(tijs) =
SX

j=0

p(tijsj) a(jji; S; T ) (3)

where in model 1, the weightsa(jji; S; T ) are uniformly distributed over the number of source
tokens, and therefore are equal to1=(S + 1)5, while in model 2,a(jji; S; T ) is higher wheni andj
are closer.

As can be seen in table 6,lg gives better results on text C which is the only non-Hansard corpus,
but provides worse performances on A and B. Our first thought is however confirmed. Looking at
figure 2 we do see a relation between the weight assigned by the EM-algorithm to the translation
model and the number of tokens of the source segment. Note that very short sentences (less than
4 words) are mostly titles which occur frequently and should be better considered as single units in
TRANSTYPE.

5S + 1 because of the tokens0 added to handle insertion events.
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Figure 2: Translation weight as a function of the source segment length (counted in tokens).

The last approach we considered, with the hope of improving the completion accuracy at the
beginning of sentences, consisted in two functions, namelyfirst1 andfirst2, which respectively
associate with any context (~t; s), the first source token and the first two source tokens. Both functions
slightly improve the baseline performance.

5 Results

Table 6 summarizes the performance of the functions we have described. Results for the non-
Hansard text C are substantially worse than for either of the two Hansard texts. This may be seen as
a lower bound on TRANSTYPE’s performance when faced with texts unrelated to the ones used for
the training stage, especially if we consider that none of the models used in the current version of the
prototype have any capacity to adapt dynamically.

The results are discussed individually in the previous section. Figure 3 provides more clues about
how TRANSTYPE performs. The left plot reports the average number of choices that the evaluator
has to rank, as a function of the length of the prefix typed by the translator. Without any prefix typed,
the system has to select a word among 492 ones (actually the average size of the active vocabulary
associated to a given segment), when the translator types the first character, the number of choices
falls to around 35. The right figure plots the percentage of words that have been completed (using the
baseline model) versus the prefix length. 21% of words are successfully completed by TRANSTYPE

without any prefix, 55% with a prefix less than two characters.

6 Conclusion

We have described experiments for assigning context-dependent weights to the translation model
and the language model within an interpolated combination used for TRANSTYPE. It turns out
there are only a few sources of information which are reliable indicators of relative performance
and which can also be extracted efficiently. Chief among them is the fact that, at the beginning of
a sentence, the translation model achieves better completions. None of the combinations we tried
yielded significant improvements despite an estimated maximum potential gain of 3.7%. Interesting



A B C
Context nb % nb % nb %
tm 54961 58.121 84298 57.0186 53030 49.8196
lm 64823 68.5501 100386 67.9004 64751 60.831
bi 66256 70.0655 102437 69.2877 66033 62.0354
f2 66332 70.1458 102837 69.5582 66217 62.2083
uni 66454 70.2748 102955 69.6381 66312 62.2975
f1 66476 70.2981 103024 69.6847 66404 62.384
lg 66454 70.2748 103035 69.6922 66540 62.5117

base 66547 70.3732 103105 69.7395 66444 62.4216
cf2 66471 70.2928 103140 69.7632 66501 62.4751

first2 66499 70.3224 103109 69.7422 66545 62.5164
cf1 66501 70.3245 103160 69.7767 66579 62.5484

first1 66511 70.3351 103149 69.7693 66642 62.6076
pos 66516 70.3404 103161 69.7774 66661 62.6254
cl 66522 70.3468 103234 69.8268 66611 62.5784

Table 6: Completion results for different contexts. Results are presented in increasing order of
keystrokes saved (absolute counts and percentages) in the three corpora (A, B, and C). The baseline
performance is indicated in bold, the contexts which outperform the baseline on a given corpus are
indicated in italics.
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features have however been observed and discussed.

There are numerous ways of extending the current capabilities of TRANSTYPE. We are currently
working on two main avenues. The first one consists in modeling the translation and the language
sources with a maximum entropy approach. This should provide a principled way to mix the transla-
tion and the language sources. We are also attacking the completion of unit larger than a singe word,
a challenging issue that should reveal more of the potential of our approach. We conducted a first
encouraging experiment that will be integrated into the demonstration prototype we intend to present
at the conference.
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