
Processing Hansard Documents with Portage

George Foster

November 12, 2010

1 Introduction

The House of Commons translation task involves handling documents that are tran-
scriptions of parliamentary sessions (Hansard) or of the proceedings of various par-
liamentary committees. The documents are in XML, and generally contain parts
where the source language is English, and parts where it is French. The desired
output is a set of similarly-formatted XML documents containing both the original
passages and their translations.

This task poses several problems for automatic processing with Portage: using
specialized models for different sub-genres (eg Finance Committee proceedings
versus Hansard), running translation in diffferent directions for different parts of
a document, and preserving XML structure across translation. The last of these
problems is particularly hard when XML markup occurs within a sentence, because
it may be difficult or impossible to identify a corresponding marked-up segment in
Portage’s output.

This document describes the processing strategy that was used in the Transla-
tion Bureau trials of September 2010, and refined shortly afterwards. This includes
the translation process only; it does not deal with model training, offline adaptation,
or exploiting document structure to improve translation, for instance.

The processing strategy used for this task can be divided into parts that are
Hansard specific, and parts that could be re-used in other settings. The rest of this
document reflects this division: section 2 describes the overall strategy and how
the two parts fit together; section 3 describes Hansard-specific steps, and section 4
describes general processing steps.

1

OPPL

XML IN

FR SRC

XML OUTPortage

EN SRC

FR SRC OUT

EN SRC OUT

OPPL

OPPL

OPPL

Figure 1: Overview of Hansard Processing

2 Overview

Figure 1 shows the complete processing strategy, with Hansard-specific steps in-
dicated by dashed lines, and general steps by solid lines. The input XML doc-
ument is first parsed to extract English-source and French-source segments, in
one-paragraph-per line (OPPL) format, possibly containing intra-sentence XML
markup. This is translated by Portage into a similar output format, which is then
inserted into an output XML file, using the input file as a guide. Finally, the output
XML file is split up and converted into a set of XML files in a slightly different
final format.

All scripts for performing the Hansard-specific steps are in the directory
/home/portage/corpora/Hansard-HOC-2009/collect/scripts
(note that this directory also contains pre-processing scripts for training, which
are not discussed here). All other scripts and programs are part of the normal
Portage source code, mostly in the preprocessing module. The entire chain
in figure 1 is carried out by the script hanstrans.sh, which calls the script
run-portage.sh to perform the steps indicated with solid lines.

3 Hansard-Specific Processing

This section describes the script hanstrans.sh in general terms; for more spe-
cific help, do hanstrans.sh -h.

The input to hanstrans.sh is an XML file in “NRC” format, which es-
sentially consists of a global header that identifies the session by date and kind
(Hansard or specific committee), followed by a sequence of triples. Each triple
consists of a header that contains information about the speaker, source language,
etc., followed by three text segments—Original, PreTranslated, and Translated—
which corresond to a transcription of an original speech, a partial translation for
certain entities derived from a database, and the translation to be completed (ini-
tially empty). The text in the Original segment is usually a small number of para-
graphs, roughly a speech or a segment of a speech by a single speaker. Each para-

2

<Original>
<Intervention ToC="No"><Content><ParaText>It is a fundamental breach
of the <Affiliation DbId="78738" Type="1">Prime Minister</Affiliation>’s
duty to be accountable to the elected representatives of the Canadian
people.</ParaText><ParaText>As the former House leader of my party,
Stanley Knowles, is quoted as saying in the second edition of the
<I>House of Commons Procedure and Practice</I>, on page 677, "Debate
is not a sin, a mistake, an error or something to be put up with in
parliament. Debate is the essence of parliament". I make this request
in that spirit.</ParaText></Content></Intervention>

</Original>
<PreTranslated>

<Intervention ToC="No"><Content><ParaText /></Content></Intervention>
</PreTranslated>
<Translated />

Figure 2: Example of a triple from an NRC format XML file (minus header infor-
mation).

It is a fundamental breach of the <Affiliation DbId="78738" Type="1">Prime
Minister</Affiliation>’s duty to be accountable to the elected representatives
of the Canadian people.
As the former House leader of my party, Stanley Knowles, is quoted as saying in
the second edition of the <I>House of Commons Procedure and Practice</I>, on
page 677, "Debate is not a sin, a mistake, an error or something to be put up
with in parliament. Debate is the essence of parliament". I make this request
in that spirit.

Figure 3: OPPL text extracted from the XML triple in figure 2. Each line corre-
sponds to a paragraph, and there are two (wrapped) lines.

graph is aligned across languages. Figure 2 shows an example.
Given this input, hanstrans.sh calls the script

extract-trans-from-hoc-xml.py to extract the original paragraphs (ig-
noring pre-translations) and record their source language. The extraction procedure
“flattens” and preserves selected sub-sentential markup as shown in figure 3. (Flat-
tened elements are: I, B, Sub, Affiliation, Document, and Query.) The procedure
also filters out <Sup> elements from French source segments. These are used to
indicate superscript formatting, eg 146^e, which is not preserved
in translation to English, eg 146th. The result is two files, one English and one
French, in OPPL format.

After extracting these two OPPL files, hanstrans.sh calls run-portage.sh
to translate each direction concurrently, using genre-specific models that are se-

3

C’est une violation fondamentale du <Affiliation DbId="78738" Type="1">
premier ministre </Affiliation> sur son obligation de rendre des comptes
aux représentants élus de la population canadienne.
Comme l’ancien leader parlementaire de mon parti, Stanley Knowles, est
cité dans la deuxième édition de la <I> procédure et les usages de la
Chambre </I>, à la page 677, " le débat n’est ni un péché, ni une faute,
ni une erreur, ni quelque chose dont il faut s’au Parlement. Le débat est
l’essence même du Parlement ". Je fais cette demande dans cet esprit.

Figure 4: OPPL-format translation of the XML triple in figure 3. Each line corre-
sponds to a paragraph, and there are two (wrapped) lines.

lected on the basis of the Meta OrganizationAcronym attribute in the global
XML header. The results are two output OPPL files with contents like the example
in figure 4. Note that these files preserve sub-sentential markup from the input.

The next step is to insert the contents of the translated OPPL files back into the
original XML document, within the appropriate <Translated> elements. This
is done by the replace-trans-in-hoc-xml.py script, which follows es-
sentially the same steps as extract-trans-from-hoc-xml in order to track
the correct paragraphs in both OPPL files for insertion into the current <Translated>
element. Text inserted into <Translated> elements is “deepened” so any intra-
sentence XML structure will be correctly interpreted as such (rather than being es-
caped) when the final XML structure is written to the output file. A post-processing
step also aims to re-insert <Sup> elements in French, eg 146 e becomes
146^e. Figure 5 shows an example of the contents of the output
NRC-format XML file from this stage.

The last step is to convert the output NRC-format XML file into a set of RTA
(French: ATD) XML files. Each RTA file contains a unit of work destined for
a translator, who is supposed to post-edit Portage’s translations. In addition to
the original and translated text, the RTA files contain formatting instructions for
displaying the original and translated segments in an editor. The NRC to RTA
conversion is performed by the nrc2rta.pl script, which uses the output NRC
file to fill in the Translated segments in a set of input RTA files, writing one output
RTA for each input RTA.

4

<Original>
<Intervention ToC="No"><Content><ParaText>It is a fundamental breach
of the <Affiliation DbId="78738" Type="1">Prime Minister</Affiliation>’s
duty to be accountable to the elected representatives of the Canadian
people.</ParaText><ParaText>As the former House leader of my party,
Stanley Knowles, is quoted as saying in the second edition of the
<I>House of Commons Procedure and Practice</I>, on page 677, "Debate
is not a sin, a mistake, an error or something to be put up with in
parliament. Debate is the essence of parliament". I make this request
in that spirit.</ParaText></Content></Intervention>

</Original>
<PreTranslated>

<Intervention ToC="No"><Content><ParaText /></Content></Intervention>
</PreTranslated>
<Translated><Intervention ToC="No"><Content><ParaText>C’est une violation

fondamentale du <Affiliation DbId="78738" Type="1"> premier ministre
</Affiliation> sur son obligation de rendre des comptes aux représentants
élus de la population canadienne.</ParaText><ParaText>Comme l’ancien leader
parlementaire de mon parti, Stanley Knowles, est cité dans la deuxième
édition de la <I> procédure et les usages de la Chambre </I>, à la page 677,
" le débat n’est ni un péché, ni une faute, ni une erreur, ni quelque chose
dont il faut s’au Parlement. Le débat est l’essence même du Parlement ".
Je fais cette demande dans cet esprit.</ParaText></Content></Intervention>

</Translated>

Figure 5: A triple in an output NRC XML file, corresponding to the example in
figure 2.

5

4 Translating Paragraphs Containing XML

This section describes the run-portage.sh script in general terms; for more
specific help, do run-portage.sh -h.

As described above, this stage is completely independent of Hansard. Input
is OPPL raw text, possibly containing sub-sentential XML markup, as shown in
figure 3; and output is also raw OPPL text, line-aligned to the input, with XML
tags at the appropriate positions, as shown in figure 4. The problem of translating
OPPL text with XML poses many difficulties for the standard Portage pipeline:

1. Paragraphs, rather than sentences, need to be preserved through translation.

2. The tokenizing and sentence-splitting procedure is not designed to work with
embedded XML. Should XML tags be treated as separate tokens, or as if they
weren’t there, or as implicit whitespace?

3. The standard lowercase transformation is also not designed to work with
XML. Ideally, this should not should not affect the contents of XML tags.

4. The decoder currently has an XML-like language for specifying translation
rules; how should this interact with “foreign” XML?

5. The XML needs to be somehow passed through translation without affecting
translation or language-model probabilities.

6. Ideally, source tokens that are bracketed by a tag pair should be translated
into a contiguous sequence of target tokens. In general, for an arbitrary se-
quence of source tokens, there is no guarantee that this will happen: the
corresponding target sequence may be discontinuous, or it may have bound-
aries that do not align with those of the source sequence (for example, if
translation makes use of a phrase that spans the source sequence boundary).

7. The truecasing step is not designed to work with embedded XML. It needs
to avoid modifying the case of text within texts, and also ignore tags when
computing cased token-sequence probabilities.

8. The detokenizing step is not designed for XML either. Should tag pairs be
placed adjacent to the tokens they bracket or separated with whitespace?
Should punctuation that immediately precedes or follows a tagged sequence
be made adjacent to the tags?

The following sections describe the solutions to these problems implemented
in run-portage.sh.

6

4.1 Problem 1: Handling OPPL

Problem 1 is quite easy to solve. The tokenizer (utokenize.pl) currently op-
tionally accepts OPPL text, and will enforce hard sentence boundaries at paragraph
boundaries, and split sentences within paragraphs. The original paragraph bound-
aries can be remembered by inserting <para> tags on separate lines between the
original paragraphs, eg:

First sentence. Second sentence.
<para>
Third sentence. Fourth sentence.

becomes:

First sentence .
Second sentence .
<para>
Third sentence .
Fourth sentence .

These tags form their own sentences, and go through the decoder without modi-
fication, so they can be used to convert output one-sentence-per-line (OSPL) text
from the decoder into the desired OPPL format.

4.2 Problem 2: Tokenizing with XML

The solution to problem 2 should ideally depend on the nature of the XML markup,
which in general can apply at, below, or above the level of tokens. However,
since the goal is to pass it through translation intact, and since translation cur-
rently doesn’t operate below the token level, we assume that markup cannot be
incorporated within a single token, as in extraordinary. To enforce
this, a space character is added before and after each tag in a pre-processing step
prior to tokenization. This prevents the tokenizer from concatenating a tag with
any adjacent plain-text token. (Note that there is nothing that prevents sub-token
markup from being used. It will just not be handled correctly, eg
extraordinary will turn into extra ordinary .)

The intention in separating tags with blanks is to have the resulting sequence of
plain-text tokens be exactly the same as if all tags had been stripped and replaced by
single space characters. In order to ensure this property, the tokenizer was modified
to add XML tags to the list of tokens that are ignored for the purposes of full-stop
detection, so that, eg:

7

... end of sentence. </tag> New sentence ...

gives:

... end of sentence . </tag>
New sentence ...

as desired, rather than leaving the original sequence as is. Notice that the tokenizer
also correctly includes </tag> at the end of the first sentence.

The modifications to the tokenizer for handling XML markup are incomplete.
Although there are no known violations of the property that tokenization decisions
are identical whether tags are stripped and replaced with blanks or left in and sepa-
rated with blanks, there are cases where introducing blanks interferes with correct
decisions. Eg, in:

end of sentence. </x>) Another sentence ...

sentence. is incorrectly treated as an abbreviation, and the sentence boundary
is not detected. If </x> and the surrounding spaces are removed, this doesn’t
happen.

Another problem is markup that causes tokenization errors, such as the follow-
ing, which occurs frequently in the Hansard:

<Affiliation...> President </Affiliation> ’s initiative

Due to the space before ’s, this is tokenized as:

<Affiliation...> President </Affiliation> ’ s initiative

rather than retaining the original correct form. Fortunately, since this problem also
occurs in the training corpus, the system learns how to fix it in most cases, and
the resulting translation is not affected (although BLEU scores might be, due to
incorrect tokenization in the reference).

4.3 Problem 3: Lowercasing XML

This was handled by adding a switch to utf8 casemap to tell it not to lowercase
any text between < and > characters.

8

4.4 Problems 4, 5, and 6: Decoding with XML

The most thorough solution to the problem of preserving XML markup through
translation would probably be to make the decoder aware of it. This would re-
quire extensions to canoe’s existing rule syntax, and modifications to the scoring
procedure to make markup transparent to the LM, TM, etc. By itself, this would
also not solve the problems of discontinuous translations or non-aligned boundaries
mentioned above.

The solution implemented in run-portage.sh is much simpler: remove
the XML markup before translation, and re-insert it afterwards, using phrase-
alignment information to try to determine correct placement. This is accomplished
by the separate program markup canoe output. In cases where the translation
of a region bracketed by a pair of tags is continuous, and where phrase boundaries
are aligned with the boundaries of the region, the placement of tags in the out-
put will be perfect. When these conditions don’t hold, markup canoe output
relies on a set of heuristics to guess the best positions. These heuristics involve
word-aligning phrase pairs using cognate information, bias toward the diagonal,
and a small specialized dictionary and anti-dictionary currently heavily tuned for
the Hansard (most likely harmless elsewhere). Although the heuristics work fairly
well, the ideal approach would be to combine the use of markup canoe output
with decoder rules like Moses’ zone feature that force or strongly encourage XML-
tagged regions of source text to translate as a unit (unfortunately these don’t exist
yet in Portage).

The requirement to strip then re-insert XML markup affects the standard Portage
pipeline. Figure 6 shows what needs to happen, starting with an OSPL source file
containing XML that has been tokenized and lowercased as described in the pre-
ceding sections (labelled tok,lc,xml in the figure). In general, this file will
contain two kinds of XML markup: elements to be preserved through translation,
as discussed above, and tags that are to be treated as part of the text, for instance
the <para> markers required to handle OPPL.1 The strip xml procedure removes
the first kind of XML, but leaves in the second.2

The next step in the standard pipeline is to add rules for translating dates, num-
bers, etc. Although this is shown in figure 6 as taking lowercased, tokenized text
as input, it is likely that it will need access to earlier stages in the pipleline (for
instance, uppercase text) as well. It will also need access to the original file con-
taining XML if it is to add zone-type rules to ensure that XML-tagged regions

1These could actually be treated either way, but they are a handy example, because
run-portage.sh treats them as ordinary text tokens.

2In run-portage.sh, stripping is actually performed earlier in the pipeline for convenience,
but the effect is the same.

9

tok, lc, xml

tok, lc tok, lc, rule out, lc

canoerules markup_canoe_output

out, lc, xml

palstrip xml

Figure 6: Pipeline for Handling XML during Decoding.

are translated contiguously and with phrase-aligned boundaries. Another function
of this step is to escape XML that is to be treated as normal text, eg <para>
⇒ \<para\>. Currently this is all it does, as we do not yet have rules for En-
glish/French translation.

The next step in the pipeline is translation with canoe. This works as usual,
except that it needs to generate an optional phrase-alignment file (labelled pal in
the figure).

The final step is using markup canoe output to add XML from the origi-
nal tok,lc,xml file to canoe’s output. As described above, this uses information
from the phrase alignment to determine the correct placement of tags in the out-
put file. One subtlety is that it also needs to know which markup was left in the
tok,lc file to be treated as ordinary text by canoe. This information is provided
by specifying an explicit list of element names. For instance, if para is in this list,
then all tags of the form <para...> or </para> will be treated as plain text
tokens.3 This solution is somewhat less flexible than canoe’s escaping procedure,
but it should work in most cases. Note that ill-formed XML, or elements that span
multiple sentences are ignored, which is perhaps not ideal behaviour.

4.5 Problem 7: Truecasing with XML

Truecasing poses a similar problem to decoding, in that having markup be ignored
by the truecasing model would be difficult to implement.

As shown in figure 7, run-portage.sh’s strategy for truecasing is very
similar to the strategy for decoding. First, the plain output from canoe (out,lc
in the figure) is truecased as usual. Then markup canoe output inserts markup
into this truecased file in the same places as in the lowercased version out,lc,xml,
created in the previous step by transferring XML from the source file. The “pal”
file used in this step just specifies a word-for-word alignment between out,lc and

3More precisely, all whitespace-delimited parts of these tags are treated as tokens.

10

out,lc

truecase

out,lc,xml

markup_canoe_output

pal

out,tc out,tc,xml

Figure 7: Pipeline for Truecasing XML.

out,tc, which of course leads to XML in exactly the same places in out,lc,xml
and in the final output file out,tc,xml.

4.6 Problem 8: Detokenizing with XML.

Due to uncertainty about the desired conventions for detokenizing XML markup,
the detokenization step was not modified for XML. In general, this means that
tags (or whitespace-delimited parts of tags) are treated as ordinary tokens: they
are concatenated with punctuation when called for, but otherwise left alone. For
example:

(<x> some element </x> , ...

becomes:

(<x> some element </x>,

11

