
Proceedings of the 4th EACL Workshop on Statistical Machine Translation , pages 242–249,
Athens, Greece, 30 March – 31 March 2009. c©2009 Association for Computational Linguistics

Stabilizing Minimum Error Rate Training

George Foster and Roland Kuhn
National Research Council Canada
first.last@nrc.gc.ca

Abstract

The most commonly used method for
training feature weights in statistical ma-
chine translation (SMT) systems is Och’s
minimum error rate training (MERT) pro-
cedure. A well-known problem with Och’s
procedure is that it tends to be sensitive
to small changes in the system, particu-
larly when the number of features is large.
In this paper, we quantify the stability
of Och’s procedure by supplying different
random seeds to a core component of the
procedure (Powell’s algorithm). We show
that for systems with many features, there
is extensive variation in outcomes, both on
the development data and on the test data.
We analyze the causes of this variation and
propose modifications to the MERT proce-
dure that improve stability while helping
performance on test data.

1 Introduction

Most recent approaches in SMT, eg (Koehn et al.,
2003; Chiang, 2005), use a log-linear model to
combine probabilistic features. Minimum Error-
Rate Training (MERT) aims to find the set of log-
linear weights that yields the best translation per-
formance on a development corpus according to
some metric such as BLEU. This is an essen-
tial step in SMT training that can significantly
improve performance on a test corpus compared
to setting weights by hand. MERT is a difficult
problem, however, because calculating BLEU as a
function of log-linear weights requires decoding,
which is an expensive operation. Moreover, be-
cause this function is not differentiable, efficient
gradient-based optimization algorithms cannot be
used.

Och’s procedure is the most widely-used ver-
sion of MERT for SMT (Och, 2003). To reduce

computational cost, it relies on the key technique
of optimizing weights over n-best lists of transla-
tion hypotheses rather than over all possible hy-
potheses. This allows the most probable hypoth-
esis under a given set of weights—and the corre-
sponding BLEU score—to be found by enumer-
ating n-best entries rather than decoding. Some
variant on Powell’s algorithm (Press et al., 2002)
is typically used to maximize BLEU in this set-
ting. The n-best lists are constructed by alternat-
ing decoding and BLEU maximization operations:
decoding adds new hypotheses to the current lists,
then BLEU is maximized over the lists to find new
best weights for the subsequent decoding step, etc.
This process continues until no new hypotheses
are found.

Och’s procedure works well in practice, usually
converging after 10–20 calls to the decoder, far
fewer than would be required to maximize BLEU
directly with a general-purpose optimization algo-
rithm. However, it tends to be sensitive to small
changes in the system, particularly for large fea-
ture sets. This is a well-known problem with
Och’s procedure (Och et al., 2004). It makes it
difficult to assess the contribution of features, be-
cause the measured gain in performance due to a
new feature can depend heavily on the setting of
some apparently unrelated parameter such as the
size of n-best list used. Features with the poten-
tial for statistically significant gains may be re-
jected because Och’s procedure failed to find good
weights for them.

In this paper we attempt to quantify the stabil-
ity of Och’s procedure under different conditions
by measuring the variation in test-set scores across
different random seeds used with Powell’s algo-
rithm. We show that there is extensive variation
for large feature sets, and that it is due to two main
factors: the occasional failure of Och’s procedure
to find a good maximum on the development set,
and the failure of some maxima to generalize to

242

the test set. We analyze the causes of each of these
problems, and propose solutions for improving the
stability of the overall procedure.

2 Previous Work

One possible approach to estimating log-linear
weights on features is to dispense with the n-best
lists employed by Och’s procedure and, instead,
to optimize weights by directly accessing the de-
coder. The disadvantage of this approach is that
far more iterations of decoding of the full devel-
opment set are required. In (Zens and Ney, 2004)
the downhill simplex method is used to estimate
the weights; around 200 iterations are required for
convergence to occur. However, each iteration is
unusually fast, because only monotone decoding
is permitted (i.e., the order of phrases in the tar-
get language mirrors that in the source language).
Similarly, Cettolo and Federico (2004) apply the
simplex method to optimize weights directly using
the decoder. In their experiments on NIST 2003
Chinese-English data, they found about 100 iter-
ations of decoding were required. Although they
obtained consistent and stable performance gains
for MT, these were inferior to the gains yielded
by Och’s procedure in (Och, 2003). Taking Och’s
MERT procedure as a baseline, (Zens et al., 2007)
experiment with different training criteria for SMT
and obtain the best results for a criterion they call
“expected BLEU score”.

Moore and Quirk (2008) share the goal under-
lying our own research: improving, rather than
replacing, Och’s MERT procedure. They focus
on the step in the procedure where the set of fea-
ture weights optimizing BLEU (or some other MT
metric) for an n-best list is estimated. Typically,
several different starting points are tried for this
set of weights; often, one of the starting points is
the best set of weights found for the previous set
of n-best hypotheses. The other starting points are
often chosen randomly. In this paper, Moore and
Quirk look at the best way of generating the ran-
dom starting points; they find that starting points
generated by a random walk from previous max-
ima are superior to those generated from a uni-
form distribution. The criterion used throughout
the paper to judge the performance of MERT is the
BLEU score on the development test set (rather
than, for instance, the variance of that score, or
the BLEU score on held-out test data). Another
contribution of the paper is ingenious methods for

pruning the set of n-best hypotheses at each itera-
tion.

Cer et al (2008) also aim at improving Och’s
MERT. They focus on the search for the best set
of weights for an n-best list that follows choice
of a starting point. They propose a modified ver-
sion of Powell’s in which “diagonal” directions
are chosen at random. They also modify the ob-
jective function used by Powell’s to reflect the
width of the optima found. They are able to show
that their modified version of MERT outperforms
both a version using Powell’s, and a more heuris-
tic search algorithm devised by Philipp Koehn
that they call Koehn Coordinate Descent, as mea-
sured on the development set and two test data
sets. (Duh and Kirchhoff, 2008) ingeniously uses
MERT as a weak learner in a boosting algorithm
that is applied to the n-best reranking task, with
good results (a gain of about 0.8 BLEU on the test
set).

Recently, some interesting work has been done
on what might be considered a generalization of
Och’s procedure (Macherey et al., 2008). In this
generalization, candidate hypotheses in each iter-
ation of the procedure are represented as lattices,
rather than as n-best lists. This makes it possi-
ble for a far greater proportion of the search space
to be represented: a graph density of 40 arcs per
phrase was used, which corresponds to an n-best
size of more than two octillion (2 ∗ 1027) entries.
Experimental results for three NIST 2008 tasks
were very encouraging: though BLEU scores for
the lattice variant of Och’s procedure did not typ-
ically exceed those for the n-best variant on de-
velopment data, on test data the lattice variant out-
performed the n-best approach by between 0.6 and
2.5 BLEU points. The convergence behaviour of
the lattice variant was also much smoother than
that of the n-best variant. It would be interesting
to apply some of the insights of the current paper
to the lattice variant of Och’s procedure.

3 Och’s MERT Procedure

Och’s procedure works as follows. First the de-
coder is run using an initial set of weights to gen-
erate n best translations (usually around 100) for
each source sentence. These are added to exist-
ing n-best lists (initially empty). Next, Powell’s
algorithm is used to find the weights that maxi-
mize BLEU score when used to choose the best
hypotheses from the n-best lists. These weights

243

are plugged back into the decoder, and the pro-
cess repeats, nominally until the n-best lists stop
growing, but often in practice until some criterion
of convergence such as minimum weight change
is attained. The weights that give the best BLEU
score when used with the decoder are output.

The point of this procedure is to bypass di-
rect search for the weights that result in maxi-
mum BLEU score, which would involve decoding
using many different sets of weights in order to
find which ones gave the best translations. Och’s
procedure typically runs the decoder only 10–20
times, which is probably at least one order of mag-
nitude fewer than a direct approach. The main
trick is to build up n-best lists that are represen-
tative of the search space, in the sense that a given
set of weights will give approximately the same
BLEU score when used to choose the best hy-
potheses from the n-best lists as it would when de-
coding. By iterating, the algorithm avoids weights
that give good scores on the n-best lists but bad
ones with the decoder, since the bad hypotheses
that are scored highly by such weights will get
added to the n-best lists, thereby preventing the
choice of these weights in future iterations. Unfor-
tunately, there is no corresponding guarantee that
weights which give good scores with the decoder
but bad ones on the nbest lists will get chosen.

Finding the set of weights that maximizes
BLEU score over n-best lists is a relatively easy
problem because candidate weight sets can be
evaluated in time proportional to n (simply cal-
culate the score of each hypothesis according to
the current weight set, then measure BLEU on the
highest scoring hypothesis for each source sen-
tence). Powell’s algorithm basically loops over
each feature in turn, setting its weight to an op-
timum value before moving on.1 Och’s linemax
algorithm is used to perform this optimization effi-
ciently and exactly. However this does not guaran-
tee that Powell’s algorithm will find a global max-
imum, and so Powell’s is typically run with many
different randomly-chosen initial weights in order
to try to find a good maximum.

4 Experimental Setup

The experiments described here were carried out
with a standard phrase-based SMT system (Koehn

1It can also choose to optimize linear combinations of
weights in order to avoid ridges that are not aligned with the
original coordinates, which can be done just as easily.

corpus num sents num Chinese toks
dev1 1506 38,312
dev2 2080 55,159
nist04 1788 53,446
nist06 1664 41,798

Table 1: Development and test corpora.

et al., 2003) employing a log-linear combination
of feature functions. HMM and IBM2 models
were used to perform separate word alignments,
which were symmetrized by the usual “diag-and”
algorithm prior to phrase extraction. Decoding
used beam search with the cube pruning algorithm
(Huang and Chiang, 2007).

We used two separate log-linear models for
MERT:

• large: 16 phrase-table features, 2 4-gram lan-
guage model features, 1 distortion feature,
and 1 word-count feature (20 features in to-
tal).

• small: 2 phrase-table features, 1 4-gram lan-
guage model feature, 1 distortion feature, and
1 word-count feature (5 features in total).

The phrase-table features for the large model were
derived as follows. Globally-trained HMM and
IBM2 models were each used to extract phrases
from UN and non-UN portions of the training cor-
pora (see below). This produced four separate
phrase tables, each of which was used to generate
both relative-frequency and “lexical” conditional
phrase-pair probabilities in both directions (target
given source and vice versa). The two language
model features in the large log-linear model were
trained on the UN and non-UN corpora. Phrase-
table features for the small model were derived by
taking the union of the four individual tables, sum-
ming joint counts, then calculating relative fre-
quencies.

All experiments were run using the Chi-
nese/English data made available for NIST’s 2008
MT evaluation. This included approximately 5M
sentence pairs of data from the UN corpus, and
approximatel 4M sentence pairs of other mate-
rial. The English Gigaword corpus was not used
for language model training. Two separate devel-
opment corpora were derived from a mix of the
NIST 2005 evaluation set and some webtext drawn
from the training material (disjoint from the train-
ing set used). The evaluation sets for NIST 2004

244

cfg nist04 nist06
avg ∆ S avg ∆ S

S1 31.17 1.09 0.28 26.95 0.90 0.27
S2 31.44 0.22 0.07 27.38 0.71 0.19
L1 33.03 1.09 0.37 29.22 0.97 0.34
L2 33.37 1.49 0.49 29.61 2.14 0.66

Table 2: Test-set BLEU score variation with 10
different random seeds, for small (S) and large (L)
models on dev sets 1 and 2. The avg column gives
the average BLEU score over the 10 runs; ∆ gives
the difference between the maximum and mini-
mum scores, and S is the standard deviation.

and NIST 2005 corpora were used for testing. Ta-
ble 1 summarizes the sizes of the devtest corpora,
all of which have four reference translations.

5 Measuring the Stability of Och’s
Algorithm

To gauge the response of Och’s algorithm to small
changes in system configuration, we varied the
seed value for initializing the random number gen-
erator used to produce random starting points for
Powell’s algorithm. For each of 10 different seed
values, Och’s algorithm was run for a maximum of
30 iterations2 using 100-best lists. Table 2 shows
the results for the two different log-linear models
described in the previous section.

The two development sets exhibit a similar pat-
tern: the small models appear to be somewhat
more stable, but all models show considerable
variation in test-set BLEU scores. For the large
models, the average difference between best and
worst BLEU scores is almost 1.5% absolute, with
an average standard deviation of almost 0.5%.
Differences of as little as 0.35% are significant at
a 95% confidence level according to paired boot-
strap resampling tests on this data, so these varia-
tions are much too large to be ignored.

The variation in table 2 might result from Och’s
algorithm failing to maximize development-set
BLEU properly on certain runs. Alternatively, it
could be finding different maxima that vary in the
extent to which they generalize to the test sets.
Both of these factors appear to play a role. The
ranges of BLEU scores on the two development
corpora with the large models are 0.86 and 1.3 re-
spectively; the corresponding standard deviations

2Sufficient for effective convergence in all cases we
tested.

dev nist04 nist06 inter
ρ r ρ r ρ

dev1 0.18 0.42 -0.27 0.07 0.73
dev2 0.55 0.60 0.73 0.85 0.94

Table 3: Pearson (ρ) and Spearman rank (r) cor-
relation between dev-set and test-set BLEU scores
for the large log-linear model. The final column
shows nist04/nist06 correlation.

are 0.27 and 0.38. Different runs clearly have sig-
nificantly different degrees of success in maximiz-
ing BLEU.

To test whether the variation in development-
set BLEU scores accounts completely for the vari-
ation in test-set scores, we measured the correla-
tion between them. The results in table 3 show
that this varies considerably across the two de-
velopment and test corpora. Although the rank
correlation is always positive and is in some
cases quite high, there are many examples where
higher development-set scores lead to lower test-
set scores. Interestingly, the correlation between
the two test-set scores (shown in the last column of
the table) is much higher than that between the de-
velopment and test sets. Since the test sets are not
particularly similar to each other, this suggests that
some sets of log-linear weights are in fact overfit-
ting the development corpus.

5.1 Bootstrapping with Random Seeds

The results above indicate that the stability prob-
lems with Och’s MERT can be quite severe, es-
pecially when tuning weights for a fairly large
number of features. However, they also consti-
tute a baseline solution to these problems: run
MERT some number of times with different ran-
dom seeds, then choose the run that achieves the
highest BLEU score on a test set. Since test-
set scores are highly correlated, these weights are
likely to generalize well to new data. Applying
this procedure using the nist04 corpus to choose
weights yields a BLEU increase of 0.69 on nist06
compared to the average value over the 10 runs in
table 2; operating in the reverse direction gives an
increase of 0.37 on nist04.3

3These increases are averages over the increases on each
development set. This comparison is not strictly fair to the
baseline single-MERT procedure, since it relies on a test set
for model selection (using the development set would have
yielded gains of 0.25 for nist06 and 0.27 for nist04). How-
ever, it is fairly typical to select models (involving different
feature sets, etc) using a test set, for later evaluation on a

245

 29

 29.2

 29.4

 29.6

 29.8

 30

 30.2

 30.4

 30.6

 1 2 3 4 5 6 7 8 9 10

number of runs

NIST06 BLEU scores versus number of random runs

dev2
dev1

Figure 1: Results on the nist06 test corpus, using
nist04 to choose best weights from varying num-
bers of MERT runs, averaged over 1000 random
draws. The error bars indicate the magnitude of
the standard deviation.

An obvious drawback to this technique is that
it requires the expensive MERT procedure to be
run many times. To measure the potential gain
from using fewer runs, and to estimate the stability
of the procedure, we used a bootstrap simulation.
For each development set and each n from 1 to 10,
we randomly drew 1000 sets of n runs from the
data used for table 2, then recorded the behaviour
of the nist06 scores that corresponded to the best
nist04 score. The results are plotted in figure 1.
There is no obvious optimal point on the curves,
although 7 runs would be required to reduce the
standard deviation on dev2 (the set with the higher
variance) below 0.35. In the following sections
we evaluate some alternatives that are less com-
putationally expensive. The large model setting is
assumed throughout.

6 Improving Maximization

In this section we address the problem of improv-
ing the maximization procedure over the devel-
opment corpus. In general, we expect that being
able to consistently find higher maxima will lead
to lower variance in test-set scores. Previous work,
eg (Moore and Quirk, 2008; Cer et al., 2008), has
focused on improving the performance of Powell’s
algorithm. The degree to which this is effective de-
pends on how good an approximation the current
n-best lists are to the true search space. As illus-

second, blind, test set. A multi-MERT strategy could be nat-
urally incorporated into such a regime, and seems unlikely to
give rise to substantial bias.

A B
C

Figure 2: True objective function (bold curve)
compared to n-best approximation (light curve).
Och’s algorithm can correct for false maxima like
B by adding hypotheses to n-best lists, but may
not find the true global maximum (C), converging
to local peaks like A instead.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

B
LE

U

iter

BLEU scores versus Och iteration

best run
worst run

Figure 3: Development-set BLEU scores after
each Och iteration for two different training runs
on the dev2 corpus.

trated in figure 2, it is possible for the true space to
contain maxima that are absent from the approxi-
mate (n-best) space. Figure 3 gives some evidence
that this happens in practice. It shows the evolu-
tion of decoder BLEU scores with iteration for the
best and worst runs for dev2. Although the worst
run explores a somewhat promising area at itera-
tion 7, it converges soon afterwards in a region that
gives lower true BLEU scores. This is not due to
a failure of Powell’s algorithm, since the scores on
the n-best lists rise monotonically in this range.

We explored various simple strategies for avoid-
ing the kind of local-maximum behaviour exhib-
ited in figure 3. These are orthogonal to improve-
ments to Powell’s algorithm, which was used in
its standard form. Our baseline implementation of
Och’s algorithm calls Powell’s three times start-
ing with each of the three best weight sets from
the previous iteration, then a certain number of
times with randomly-generated weights. The to-
tal number of Powell’s calls is determined by an
algorithm that tries to minimize the probability of

246

a new starting point producing a better maximum.4

The first strategy was simply to re-seed the ran-
dom number generator (based on a given global
seed value) for each iteration of Och’s algorithm.
Our implementation had previously re-used the
same “random” starting points for Powell’s across
different Och iterations. This is arguably justifi-
able on the grounds that the function to be opti-
mized is different each time.

The second strategy was motivated by the ob-
servation that after the first several iterations of
Och’s algorithm, the starting point that leads to
the best Powell’s result is nearly always one of
the three previous best weight sets rather than a
randomly-generated set. To encourage the algo-
rithm to consider other alternatives, we used the
three best results from all previous Och’s itera-
tions. That is, on iteration n, Powell’s is started
with the three best results from iteration n−1, then
the three best from n−2, and so forth. If more than
3(n − 1) points are required by the stopping al-
gorithm described above, then they are generated
randomly.

The final strategy is more explicitly aimed at
forcing the algorithm to cover a broader por-
tion of the search space. Rather than choosing
the maximum-BLEU results from Powell’s algo-
rithm for the subsequent decoding step, we choose
weight vectors that yield high BLEU scores and
are dissimilar from previous decoding weights.
Formally:

α̂ = argmax
α∈P

w rbleu(α) + (1− w) rdist(α),

where P is the set of all weight vectors returned
by Powell’s on the current iteration, rbleu(α) is
α’s BLEU score divided by the highest score for
any vector in P , and rdist(α) is α’s distance to
previous weights divided by the largest distance
for any vector in P . Distance to previous weights
is measured by taking the minimum L2 distance
from α to any of the decoding weight vectors used
during the previous m Och iterations.

Intuitively, the weight w that controls the im-
portance of BLEU score relative to novelty should
increase gradually as Och’s algorithm progresses
in order to focus the search on the best maxi-

4Whenever a new maximum is encountered, at least the
current number of new starting points must be tried before
stopping, with a minimum of 10 points in total. Experiments
where the total number of starts was fixed at 30 did not pro-
duce significantly different results.

mum found (roughly similar to simulated anneal-
ing search). To accomplish this, w is defined as:

w = 1− a/(iter + b),

where b ≥ 0 and a ≤ b + 1 are parameters that
control w’s decay, and iter is the current Och iter-
ation.

Each of the three strategies outlined above was
run using 10 random seeds with both development
corpora. The weight selection strategy was run
with two different sets of values for the a and b
parameters: a = 1, b = 1 and a = 5, b = 9. Each
assigns equal weight to BLEU score and novelty
on the first iteration, but under the first parameter-
ization the weight on novelty decays more swiftly,
to 0.03 by the final iteration compared to to 0.13.

The results are shown in table 4. The best strat-
egy overall appears to be a combination of all three
techniques outlined above. Under the a = 5,
b = 9, m = 3 parametrization for the final (weight
selection) strategy, this improves the development
set scores by an average of approximately 0.4%
BLEU compared to the baseline, while signifi-
cantly reducing the variation across different runs.
Performance of weight selection appears to be
quite insensitive to its parameters: there is no sig-
nificant difference between the a = 1, b = 1 and
a = 5, b = 9 settings. It is possible that further
tuning of these parameters would yield better re-
sults, but this is an expensive procedure; we were
also wary of overfitting. A good fallback is the
first two strategies, which together achieve results
that are almost equivalent to the final gains due to
weight selection.

7 Generalization

As demonstrated in section 5, better performance
on the development set does not necessarily lead
to better performance on the test set: two weight
vectors that give approximately the same dev-set
BLEU score can give very different test-set scores.
We investigated several vectors with this charac-
teristic from the experiments described above, but
were unable to find any intrinsic property that was
a good predictor of test-set performance, perhaps
due to the fact that the weights are scale invari-
ant. We also tried averaging BLEU over boot-
strapped samples of the development corpora, but
this was also not convincingly correlated with test-
set BLEU.

247

strategy dev avg ∆ S

baseline 1 22.64 0.87 0.27
2 19.11 1.31 0.38

re-seed 1 22.87 0.65 0.21
2 19.37 0.60 0.17

+history 1 22.99 0.43 0.15
2 19.44 0.35 0.11

+sel 1,1,3 1 23.12 0.59 0.19
2 19.53 0.38 0.13

+sel 5,9,3 1 23.11 0.42 0.13
2 19.46 0.44 0.14

Table 4: Performance of various strategies for im-
proving maximization on the dev corpora: base-
line is the baseline used in section 5; re-seed is
random generator re-seeding; history is accumu-
lation of previous best weights as starting point;
and sel a,b,m is the final, weight selection, strat-
egy described in section 6, parameterized by a, b,
and m. Strategies are applied cumulatively, as in-
dicated by the + signs.

An alternate approach was inspired by the reg-
ularization method described in (Cer et al., 2008).
In essence, this uses the average BLEU score from
the points close to a given maximum as a surro-
gate for the BLEU at the maximum, in order to
penalize maxima that are “narrow” and therefore
more likely to be spurious. While Cer et al use this
technique while maximizing along a single dimen-
sion within Powell’s algorithm, we apply it over
all dimensions with the vectors output from Pow-
ell’s. Each individual weight is perturbed accord-
ing to a normal distribution (with variance 1e-03),
then the resulting vector is used to calculate BLEU
over the n-best lists. The average score over 10
such perturbed vectors is used to calculate rbleu
in the weight-selection method from the previous
section.

The results from regularized weight selection
are compared to standard weight selection and to
the baseline MERT algorithm in table 5. Regu-
larization appears to have very little effect on the
weight selection approach. This does not neces-
sarily contradict the results of Cer et al, since it is
applied in a very different setting. The standard
weight selection technique (in combination with
the re-seeding and history accumulation strate-
gies) gives a systematic improvement in average
test-set BLEU score over the baseline, although it
does not substantially reduce variance.

strategy dev test avg ∆ S

baseline 1 04 33.03 1.09 0.37
06 29.22 0.97 0.34

2 04 33.37 1.49 0.49
06 29.61 2.14 0.66

(+) sel 5,9,3 1 04 33.43 1.23 0.41
06 29.62 0.98 0.31

2 04 33.95 1.03 0.37
06 30.32 0.88 0.30

+ reg 10 1 04 33.36 1.45 0.49
06 29.56 1.25 0.39

2 04 33.81 0.94 0.28
06 30.17 1.21 0.35

Table 5: Performance of various MERT tech-
niques on the test corpora. (+) sel 5,9,3 is the same
configuration as +sel 5,9,3 in table 4; + reg 10
uses regularized BLEU within this procedure.

8 Conclusion

In this paper, we have investigated the stability
of Och’s MERT algorithm using different random
seeds within Powell’s algorithm to simulate the
effect of small changes to a system. We found
that test-set BLEU scores can vary by 1 percent
or more across 10 runs of Och’s algorithm with
different random seeds. Using a bootstrap analy-
sis, we demonstrate that an effective, though ex-
pensive, way to stabilize MERT would be to run it
many times (at least 7), then choose the weights
that give best results on a held-out corpus. We
propose less expensive simple strategies for avoid-
ing local maxima that systematically improve test-
set BLEU scores averaged over 10 MERT runs, as
well as reducing their variance in some cases. An
attempt to improve on these strategies by regular-
izing BLEU was not effective.

In future work, we plan to integrate improved
variants on Powell’s algorithm, which are orthog-
onal to the investigations reported here.

9 Acknowlegement

This material is partly based upon work supported
by the Defense Advanced Research Projects
Agency (DARPA) under Contract No. HR0011-
06-C-0023. Any opinions, findings and conclu-
sions or recommendations expressed in this ma-
terial are those of the authors and do not neces-
sarily reflect the views of the Defense Advanced
Research Projects Agency (DARPA).

248

References
Daniel Cer, Daniel Jurafsky, and Christopher D. Man-

ning. 2008. Regularization and search for minimum
error rate training. In Proceedings of the ACL Work-
shop on Statistical Machine Translation, Columbus,
June. WMT.

Mauro Cettolo and Marcello Federico. 2004. Min-
imum error training of log-linear translation mod-
els. In International Workshop on Spoken Language
Translation, Kyoto, September.

David Chiang. 2005. A hierarchical phrase-based
model for statistical machine translation. In Pro-
ceedings of the 43th Annual Meeting of the Associ-
ation for Computational Linguistics (ACL), Ann Ar-
bor, Michigan, July.

Kevin Duh and Katrin Kirchhoff. 2008. Beyond log-
linear models: Boosted minimum error rate training
for n-best re-ranking. In Proceedings of the 46th An-
nual Meeting of the Association for Computational
Linguistics (ACL), Columbus, Ohio, June.

Liang Huang and David Chiang. 2007. Forest rescor-
ing: Faster decoding with integrated language mod-
els. In Proceedings of the 45th Annual Meeting
of the Association for Computational Linguistics
(ACL), Prague, Czech Republic, June.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In Ed-
uard Hovy, editor, Proceedings of the Human Lan-
guage Technology Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics, pages 127–133, Edmonton, Alberta,
Canada, May. NAACL.

Wolfgang Macherey, Franz Josef Och, Ignacio Thayer,
and Jakob Uszkoreit. 2008. Lattice-based minimum
error rate training for statistical machine transla-
tion. In Proceedings of the 2008 Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP), Honolulu.

Robert C. Moore and Chris Quirk. 2008. Random
restarts in minimum error rate training for statisti-
cal machine translation. In Proceedings of the Inter-
national Conference on Computational Linguistics
(COLING) 2008, Manchester, August.

Franz Josef Och, Daniel Gildea, and Sanjeev Khudan-
pur et al. 2004. Final report of johns hopkins
2003 summer workshop on syntax for statistical ma-
chine translation (revised version). Technical report,
February 25.

Franz Josef Och. 2003. Minimum error rate training
for statistical machine translation. In Proceedings
of the 41th Annual Meeting of the Association for
Computational Linguistics (ACL), Sapporo, July.

William H. Press, Saul A. Teukolsky, William T. Vet-
terling, and Brian P. Flannery. 2002. Numerical
Recipes in C++. Cambridge University Press, Cam-
bridge, UK.

Richard Zens and Hermann Ney. 2004. Improve-
ments in phrase-based statistical machine transla-
tion. In Proceedings of Human Language Technol-
ogy Conference / North American Chapter of the
ACL, Boston, May.

Richard Zens, Sasa Hasan, and Hermann Ney. 2007.
A systematic comparison of training criteria for sta-
tistical machine translation. In Proceedings of the
2007 Conference on Empirical Methods in Natural
Language Processing (EMNLP), Prague, Czech Re-
public.

249

