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Abstract
In this paper, we propose two extensions to the vector space model (VSM) adaptation tech-
nique (Chen et al., 2013b) for statistical machine translation (SMT), both of which result in
significant improvements. We also systematically compare the VSM techniques to three mix-
ture model adaptation techniques: linear mixture, log-linear mixture (Foster and Kuhn, 2007),
and provenance features (Chiang et al., 2011). Experiments on NIST Chinese-to-English and
Arabic-to-English tasks show that all methods achieve significant improvement over a com-
petitive non-adaptive baseline. Except for the original VSM adaptation method, all methods
yield improvements in the +1.7-2.0 BLEU range. Combining them gives further significant
improvements of up to +2.6-3.3 BLEU over the baseline.

1 Introduction

The translation of a source-language expression to a target language might differ across genres,
topics, national origins, and dialects, or the author’s or publication’s style. The word “domain”
is often used to indicate a particular combination of all these factors (Chen et al., 2013b). Sta-
tistical machine translation (SMT) systems are trained on bilingual parallel and monolingual
data. The training data vary across domains, and translations across domains are unreliable.
Therefore, we can often get better performance by adapting the SMT system to the test domain.

Domain adaptation (DA) techniques for SMT systems have been widely studied. Ap-
proaches that have been tried for SMT model adaptation include self-training, data selection,
data weighting, context-based DA, and topic-based DA. etc. We will review these techniques
in the next Section. Among all these approaches, data weighting has received most attention,
it assigns each data item a weight according to its closeness to the in-domain data. Mixture
model and vector space model adaptation (Chen et al., 2013b) are two data weighting tech-
niques. Both of them assume the existence of N bilingual sub-corpora as training data, and
have weights tuned on an in-domain development corpus (dev).

Mixture model adaptation assigns weights at corpus-level; sub-models trained on different
domain data sets are combined linearly or log-linearly (Foster and Kuhn, 2007). Provenance
features (Chiang et al., 2011) compute a separate set of lexical weights for each sub-corpus, and
then log-linearly combined. While vector space model adaptation (Chen et al., 2013b) assigns
weights at phrase-level; it weights each phrase pair in the training data with the similarity score
between the phrase pair and the in-domain dev data.

In this paper, we first propose two extensions to the original vector space model adaptation,
thereby invent two new data weighting adaptation methods based on the vector space model.
The first one is grouped VSM adaptation, which classifies the in-domain data to several groups,
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such as general-domain, domain-specific phrase pair, then assigns several weights to the phrase
pair with the similarity scores between the phrase pair and the dev data sub-sets. The second
one is called distributional VSM adaptation, which directly uses the phrase pair’s distribution
across sub-corpora as decoding features. The two methods both significantly improve the SMT
performance over the original VSM adaptation.

The second contribution of this paper is a systematic comparison of two groups of DA
methods under the most common scenario for SMT: that the training material is heterogeneous,
and an in-domain development set is available. The first group of adaptation technique is mix-
ture model, includes linear mixtures, log-linear mixtures, provenance features; the other group
of adaptation technique is vector space model, includes original vector space model (VSM), and
the newly proposed grouped VSM and distributional adaptation. The mixture model and vector
space adaptation techniques both rely on information about the subcorpora from which the data
originate. However, a key difference is that vector space model methods capture each phrase
pair’s distribution across subcorpora, while in mixture models, a phrase pair’s distribution is the
prevalence of the pair within each subcorpus. Given this difference, it is interesting to have an
systematic comparison between them.

Another small but nice contribution is that inspired from (Chiang et al., 2011) and
(George Foster and Kuhn, 2013), we use a simple form of smoothing for log-linear mixture
adaptation, which significantly improves performance over the non-smoothed log-linear mix-
tures.

Experiments on NIST Chinese-to-English and Arabic-to-English tasks show that 1) each
technique yields significant improvement over a competitive but non-adaptive baseline; 2) the
largest improvements are for five of the six methods (those other than the original VSM), with
improvements for these five all in the range +1.7-2.0 BLEU; 3) combining some of these tech-
niques yields further significant improvement. The best combination yields improvements of
+2.6-3.3 BLEU over the baseline.

2 Reviewing of SMT adaptation techniques

Most approaches to DA can be classified into one of five categories: self-training, data selection,
data weighting, context-based DA, and topic-based DA. Recently, several new approaches have
also been studied.

With self-training (Ueffing and Ney, 2007; Chen et al., 2008; Schwenk, 2008; Bertoldi and
Federico, 2009), an MT system trained on general domain data is used to translate in-domain
monolingual data. The resulting target sentences or bilingual sentence pairs are then used as
additional training data.

Data selection approaches (Zhao et al., 2004; Lü et al., 2007; Moore and Lewis, 2010;
Axelrod et al., 2011; Duh et al., 2013) search for monolingual or bilingual parallel sentences
that are similar to the in-domain data according to some criterion, then add them to the training
data.

Data weighting approaches can be seen as a generalization of data selection: instead of
making a binary include vs. not-include decision about a given sentence or sentence pair, one
weights each data item according to its closeness to the in-domain data. This can be applied
at corpus, sentence, or phrase level. At corpus level, linear and log-linear mixture combine
sub-models trained on different domain data sets linearly or log-linearly (Foster and Kuhn,
2007). Log-linear mixture DA can employ the same discriminative tuning algorithm used to
combine the log-linear high-level components of a typical SMT system (the translation model,
language model, reordering model, etc.), but linear mixture DA seems to work better. Thus,
(Foster et al., 2010; Sennrich, 2012; Chen et al., 2013a; George Foster and Kuhn, 2013) studied
linear mixture adaptation. (Koehn and Schroeder, 2007), instead, combined the sub-models via
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alternative paths. Provenance features (Chiang et al., 2011) compute a separate set of lexical
weights for each sub-corpus, then all these lexical weights are combined log-linearly. (Razmara
et al., 2012) used ensemble decoding to mix multiple translation models. (Sennrich et al., 2013;
Cui et al., 2013) extended the mixture model method to multi-domain DA.

At sentence level, (Matsoukas et al., 2009) used a rich feature set to compute weights for
each sentence in the training data. A sentence from a corpus whose domain is close to that of
the in-domain dev set would receive a high weight. At a finer level of granularity, (Foster et al.,
2010) used a rich feature set to compute phrase pair weights. Vector space model adaptation
(Chen et al., 2013b) is another phrase-level data weighting approach; it weights each phrase pair
with the similarity score between the in-domain dev data and each phrase pair in the training
data based on vector space model in which vectors (for the entire dev data, or for each phrase
pair) represent domain profiles.

The cache-based method (Tiedemann, 2010; Gong et al., 2011) is a form of context-based
adaptation technique. In the tradition of (Kuhn and De Mori, 1990) it uses a cache to con-
sider the local or document-level context when choosing translations. (Carpuat et al., 2013)
employed word sense disambiguation, using local context to distinguish the translations for
different domains.

Work on topic-based DA includes (Tam et al., 2007), where latent semantic analysis (LSA)
models topics for SMT adaptation, (Eidelman et al., 2012; Hewavitharana et al., 2013) which
employs a latent Dirichlet allocation (LDA) topic model, and (Eva Hasler and Koehn, 2012),
which employs hidden topic Markov models (HTMMs), adding a sentence topic distribution as
an SMT system feature.

Other DA approaches include mining translations from comparable data to translate OOVs
and capturing new senses in new domains (Daume III and Jagarlamudi, 2011; Irvine et al.,
2013). (Dou and Knight, 2012; Zhang and Zong, 2013) learned bilingual lexica or phrase tables
from in-domain monolingual data with a decipherment method, then incorporated them into the
SMT system.

3 Mixture model adaptation

There are several adaptation scenarios for SMT, of which the most common is 1) The training
material is heterogeneous, with some parts of it that are not too far from the test domain; 2)
A bilingual dev set drawn from the test domain is available. A common approach to DA for
this scenario is: 1) split the training data into sub-corpora by domain; 2) train sub-models or
features on each sub-corpus; 3) weight these sub-models or features via machine learning or
SMT tuning algorithms.

In the rest of the paper, we assume that the training data are split into N sub-corpora. We
apply various adaptation techniques to a phrase-based SMT system whose translation model
incorporates forward and backward phrase translation probabilities and forward and backward
lexical weights. Linear and log-linear mixture techniques are applied to phrase translation prob-
abilities, provenance features to the lexical weights.

3.1 Linear mixture model

Given a set of phrase tables, each trained on one of the N sub-corpora and with “forward”
and “backward” probabilities for phrase pairs, these sub-models can be combined linearly. Let
us consider the “backward” probability p(s|t) of source-language phrase s being generated by
target-language phrase t (for all the adaptation techniques, each technique is applied symmetri-
cally in “backward” and “forward” directions). For a set of pi(s|t), each trained on a sub-corpus
di, the mixture model is
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p(s|t) =

NX

i=1

↵i pi(s|t) (1)

To set weights ↵i, we first extract a set of phrase pairs from an in-domain dev set using
standard techniques 1. This yields a joint distribution p̃, which we use to define a maximum
likelihood objective as in Equation 2. The weights can then be learned efficiently using the EM
algorithm. This estimation approach was first proposed in (Foster et al., 2010).

↵̂ = arg max

↵

X

s,t

p̃i(s, t) log

NX

i=1

↵i pi(s|t) (2)

A problem with this approach is that large phrase tables with good phrase pair coverage get
assigned high weights by EM. When such tables are out-of-domain, this will cause translation
performance to suffer: the in-domain translations for which they got credit under EM will be
replaced by out-of-domain alternatives to which they assign higher probability. To correct this
bias in favour of large corpora, (George Foster and Kuhn, 2013) proposed sub-sampling phrase
tables. Thus, before running EM, we randomly select roughly the same number of phrase pairs
covered by the in-domain dev set from each phrase table to learn the weights. While, the actual
interpolated phrase table uses the full data.

3.2 Log-linear mixture model

Like the linear mixture model, the log-linear mixture model is made up of sub-models trained on
each of the sub-corpora. However, it combines the sub-models multiplicatively by directly using
those sub-models as features in the SMT log-linear framework. Thus, one is tuning directly to
the desired objective function (e.g., BLEU) instead of to likelihood, as EM does.

The standard implementation of log-linear mixtures has a serious disadvantage compared
to linear mixtures: it performs badly when there are many sub-corpora, and the sub-models
are not smoothed. Within a log-linear combination, all sub-models must agree on successful
hypotheses. Linear mixtures implement a kind of “or”, while log-linear models implement a
kind of “and”: if pi(s|t) is zero because phrase pair (s, t) did not occur in sub-corpus di, p(s|t)
will be estimated as zero. One can assign and tune small positive probabilities for the pi(s|t)
for missing phrase pairs, but this tends not to work very well. “Small” models thus need to
be down-weighted heavily to avoid excessive vetoing; whatever useful information they might
possess is also discarded (George Foster and Kuhn, 2013). Linear mixture models are far more
forgiving of phrase pairs that are missing from some of the sub-corpora. Inspired from (Chiang
et al., 2011) and (George Foster and Kuhn, 2013), to address this problem, we propose the
following smoothing scheme:

p̂i(s|t) = (1� �)pi(s|t) + �pa(s|t) (3)

where pa(s|t) is trained on all training data, and � is tuned on held-out data. The sub-model
weights p̂i(s|t) are then learned under the standard SMT log-linear framework. Experiments
(see 5.3) show that this simple smoothing greatly improves the performance of log-linear mix-
ture adaptation.

1We use the models trained on the whole training data to align the dev set. This can be done with mgiza
(http://www.kyloo.net/software/doku.php/mgiza)
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3.3 Provenance features
Provenance features (Chiang et al., 2011) are applied to lexical weights. There are slight varia-
tions in computing lexical weights (Foster et al., 2006), they all use forward and backward word
translation probabilities T (s|t) and T (t|s) estimated from the word-aligned parallel text. The
conditional probability for word pair (s, t) in a translation table is computed as below:

T (s|t) =

count(s, t)P
si

count(si, t)
. (4)

We adopt the approach proposed in (Zens and Ney, 2004) to compute the lexical weights.
It assumes that all source words are conditionally independent:

plw(s|t) =

nY

i=1

p(si|t) (5)

and adopts a “noisy-or” combination, so that

p(si|t) = 1�
mY

j=1

(1� T (si|tj)) (6)

where n and m are number of source and target words in the phrase pair (s, t) respectively.
To compute the provenance features, we first estimate the word translation tables T (s|t)

and T (t|s) trained on the N sub-corpora. However, many word pairs are unseen for the word
translation table of a given sub-corpus. Following (Chiang et al., 2011), we smooth the transla-
tion tables:

ˆ

Ti(s|t) = (1� �)Ti(s|t) + �Ta(s|t) (7)

where Ta(s|t) is the word translation table trained on all training data. Ti(s|t) is the conditional
probability for word pair (s, t) in a translation table extracted from the ith sub-corpus. After
we obtain the smoothed word translation lexicons for each sub-corpora, we compute the lexical
weights using Equation 5, therefore, we obtain 2⇥N provenance features.

4 Extensions to vector space model (VSM) adaptation

The original vector space model (VSM) adaptation was proposed in (Chen et al., 2013b), two
new variants are proposed in this paper.

4.1 Original VSM adaptation
The version of VSM in (Chen et al., 2013b) compares the domain vector profile of the in-domain
dev set with a profile for the phrase pairs extracted from the training data. The similarity score
for these two vectors is used as a decoding feature. This VSM variant will be called “original”
VSM.

The domain vector for phrase-pair (s, t) is a vector where each entry reflects the con-
tribution of a particular sub-corpus to the phrase pair. It is defined as a vector of standard
tf(s, t) · idf(s, t) weights, where tf(s, t) is the raw joint count ci(s, t) in the corpus di normal-
ized by dividing by the maximum raw count of any phrase pair extracted in the corpus di.2
Let

2We tried normalizing with the total count or not normalizing: normalizing with the maximum count works better
in practice.
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tfi (s, t) =

ci (s, t)

max {ci (sj , tk) , (sj , tk) 2 di}
. (8)

The idf (s, t) is the inverse document frequency. We use the standard formula:

idf (s, t) = log

✓
N

df (s, t)

+ C

◆
, (9)

where df(s, t) is the number of sub-corpora that (s, t) appears in, and C is an empirically
determined smoothing term.

To calculate the domain similarity score between a phrase pair and the in-domain data,
we (following (Chen et al., 2013b)) compute the Bhattacharya coefficient (BC) (Bhattacharyya,
1943). To map the BC score onto a range from 0 to 1, we normalize each weight in the vector
by dividing it by the sum of the weights. Thus, we get the probability of a phrase pair in the ith
sub-corpus:

pi(s, t) =

tfi(s, t) · idf(s, t)
Pj=N

j=1 tfj(s, t) · idf(s, t)
(10)

pi(s, t) =

tfi(s, t)Pj=N
j=1 tfj(s, t)

(11)

For the in-domain dev set, we first run word alignment and phrase extraction in the usual
way, then sum the distribution of each phrase pair (sj , tk) extracted from the dev across sub-
corpora to represent its domain information. The ith component of the dev domain vector is
thus

wi(dev) =

j=JX

j=0

k=KX

k=0

cd (sj , tk) tfi(sj , tk) · idf(sj , tk) (12)

J,K are the total number of source/target phrases extracted from the dev data respectively.
cd (sj , tk) is the joint count of phrase pair (sj , tk) found in the dev set. pi(dev) is normalized
similarly.

pi(dev) =

wi(dev)

Pj=N
j=1 wj(dev)

(13)

The Bhattacharya coefficient (BC) is defined as:

BC(dev; s, t) =

i=NX

i=0

p
pi(dev) · pi(s, t) (14)

4.2 Grouped VSM
The original VSM adaptation computes the in-domain domain vector with a set of phrase pairs
extracted from the in-domain dev set. However, even a highly domain-specific dev set contains
both domain-specific phrase pairs and general-domain phrase pairs. For example, in “I have
two computers, one is a Dell laptop, another one is a HP desktop”, the phrases “Dell laptop”,
and “HP desktop” are from the computer domain, while the phrases “I have”, “two”, “one is”,
“another one is” are general. Therefore, we devised a new form of VSM which groups the in-
domain phrase pairs into subsets, which are then used for VSM adaptation. That is we partition
the phrase-pairs of the dev set into K subsets, then derive a domain vector and similarity score
for each, resulting in K similarity scores as decoding features.
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After initial attempts using K-medoid and K-mean clustering to group the phrase pairs,
which we abandoned because these two algorithms were computationally expensive and yielded
poor DA, we implemented a simple, cheap grouping algorithm. This algorithm can classify the
phrase pairs into 2 or N + 1 subsets, where N is the number of sub-corpora. We first create
N +1 pseudo-domain vectors, each with N entries: the first N vectors form an N ⇥N identity
matrix, and the last vector represents the uniform probability vector - each of its entries is 1/N

as in Equation 15. Then, we calculate the similarity score for the domain profile vector for
each phrase pair in the dev set with each of the N + 1 pseudo-vectors. The phrase pairs are
then grouped into N + 1 subsets according to their biggest similarity score. Thus, each phrase
pair in the dev set is assigned to the domain for which it has the largest component, except for
general phrase pairs, which are assigned to domain N + 1.

[1, 0..., 0], [0, 1..., 0], ..., [0, ..., 1, ..., 0], [0, 0, ..., 1], and [

1
N ,

1
N , ...,

1
N ]. (15)

lab(s, t) = argmax

i=1...N+1
BC(pveci; s, t) (16)

where lab(s, t) is the subset label of phrase pair (s, t), and pveci is the ith pseudo-vector in
Equation 15.

If we want to split the dev phrase pairs into only two groups - domain-specific and general-
domain - we merge the first N subsets into a domain-specific set, while the last subset of phrase
pairs is the general-domain set. To group the phrase pairs into N subsets, i.e. if we don’t want
to have a general-domain sub-set, we remove the last, uniform pseudo-domain vector from the
procedure.

After grouping the phrase-pairs of the dev set into K subsets, we then compute a domain
vector and similarity score for each using the algorithm in the section 4.1. Then, the K similarity
scores are used as decoding features.

4.3 Distributional VSM
This is the second new version of VSM. Instead of computing a similarity score between the
domain vectors of the phrase pair and the dev set, we propose to use the entries of the phrase
pair’s domain vector directly as decoder log-linear features. Those features, i.e. the probability
distribution in Equation 11, indicate each phrase pair’s distribution across sub-corpora. There-
fore, we call this method distributional VSM adaptation. This method has a few advantages
compared to the original VSM adaptation. In the original VSM adaptation, we need a similar-
ity function to compute the domain similarity between the dev set and phrase pair, such as the
Bhattacharya coefficient in Equation 14. To select a good similarity function needs additional
experiments or a priori knowledge, like (Chen et al., 2013b) did. And there are also some free
parameters needs to be tuned before-hand, such as C in Equation 9. But the distributional VSM
adaptation can avoid these additional experiments, moreover, experiments (see 5.3) show that
this method greatly improves the performance over the original VSM adaptation.

5 Experiments

5.1 Data setting
We carried out experiments in two different settings, both involving data from NIST Open MT
12.3 The first setting is based on data from the Chinese to English constrained track, com-
prising about 283 million English running words. We manually grouped the training data into
14 corpora according to genre and origin. Table 1 summarizes information about the training,

3http://www.nist.gov/itl/iad/mig/openmt12.cfm
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corpus # segs # en tok % genres
fbis 250K 10.5M 3.7 nw
financial 90K 2.5M 0.9 financial
gale bc 79K 1.3M 0.5 bc
gale bn 75K 1.8M 0.6 bn ng
gale nw 25K 696K 0.2 nw
gale wl 24K 596K 0.2 wl
hkh 1.3M 39.5M 14.0 Hansard
hkl 400K 9.3M 3.3 legal
hkn 702K 16.6M 5.9 nw
isi 558K 18.0M 6.4 nw
lex&ne 1.3M 2.0M 0.7 lexicon
others nw 146K 5.2M 1.8 nw
sinorama 282K 10.0M 3.5 nw
un 5.0M 164M 58.2 un
TOTAL 10.1M 283M 100.0 (all)

devtest
tune 1,506 161K nw wl
NIST06 1,664 189K nw bn ng
NIST08 1,357 164K nw wl

Table 1: NIST Chinese-English data. In the genres column: nw=newswire, bc=broadcast con-
versation, bn=broadcast news, wl=weblog, ng=newsgroup, un=United Nations proceedings.

development and test sets; we show the sizes of the training subcorpora in number of words as
a percentage of all training data. The development set (tune) was taken from the NIST 2005
evaluation set, augmented with some web-genre material reserved from other NIST corpora.
NIST MT 06 and 08 test sets are used as our two test sets.

The second setting uses NIST 12 Arabic to English data, but excludes the UN data. There
are about 47.8 million English running words in these training data. We manually grouped the
training data into 7 groups according to genre and origin. Table 2 summarizes information about
the training, development and test sets. We use the evaluation sets from NIST 06, 08, and 09
as our development set and two test sets, respectively. All Chinese and Arabic dev and test sets
have 4 references.

5.2 System
Experiments were carried out with an in-house, state-of-the-art phrase-based system. The
whole corpora were first word-aligned using IBM2, HMM, and IBM4 models, then split to sub-
corpora according to genre and origin; the phrase table was the union of phrase pairs extracted
from these alignments, with a length limit of 7. The translation model (TM) was Kneser-Ney
smoothed in both directions (Chen et al., 2011). We use the hierarchical lexicalized reorder-
ing model (RM) (Galley and Manning, 2008), with a distortion limit of 7, lexical weighting in
both directions, word count, a distance-based reordering model, a 4-gram language model (LM)
trained on the target side of the parallel data, and a 6-gram English Gigaword LM. The system
was tuned with batch lattice MIRA (Cherry and Foster, 2012).

5.3 Results
This paper has described three modifications to existing techniques: smoothing for log-linear
mixtures and two new versions of VSM - grouped VSM and distributional VSM. First, we did
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corpus # segs # en toks % genres
gale bc 57K 1.6M 3.3 bc
gale bn 45K 1.2M 2.5 bn
gale ng 21K 491K 1.0 ng
gale nw 17K 659K 1.4 nw
gale wl 24K 590K 1.2 wl
isi 1,124K 34.7M 72.6 nw
other nw 224K 8.7M 18.2 nw
TOTAL 1,512K 47.8M 100.0 (all)

devtest
NIST06 1,664 202K nw wl
NIST08 1,360 205K nw wl
NIST09 1,313 187K nw wl

Table 2: NIST Arabic-English data. In the genres column: nw=newswire, bc=broadcast con-
versation, bn=broadcast news, ng=newsgroup, wl=weblog.

Chinese-English Arabic-English
MT06 MT08 MT08 MT09

baseline 36.0 29.4 46.4 49.2
log-lin w/o smooth 35.8 29.0 47.7** 50.0**
log-lin w/ smooth 37.9**++ 31.1**++ 48.2**+ 50.6**++

Table 3: Results of log-linear mixtures with or without smoothing. */** or +/++ means result
is significantly better than baseline or system without smoothing (p < 0.05 or p < 0.01,
respectively).

experiments to see if these three modifications yield statistically significant improvements over
the original techniques. Our evaluation metric is IBM BLEU (Papineni et al., 2002), which
performs case-insensitive matching of n-grams up to n = 4. Following (Koehn, 2004), we use
the bootstrap-resampling test for significance testing.

We set the � in Equation 3 and Equation 7 to 0.01 by looking at performance on the
Arabic-English dev set. Table 3 shows the results of log-linear mixture model with or with-
out smoothing. Without smoothing, log-linear mixture model DA hurt the performance of
Chinese-to-English on both test sets, but gave moderate improvements on Arabic-to-English.
The Chinese task has more (14) sub-corpora than the Arabic one, and they seem more diverse;
as suggested earlier, the “veto power” of small sub-corpora seems to be particularly harmful for
Chinese. Fortunately, the smoothing technique described earlier yielded significant improve-
ments over the baseline for all four test sets at level p < 0.01, with absolute improvements
from +1.4-1.9 BLEU: also a significant improvement over the adaptive but unsmoothed system.
Thus, smoothing makes log-linear mixture DA perform much better.

Table 4 shows experiments with grouped VSM DA. We classify the phrase pairs extracted
from in-domain dev set into K groups. The K = 1 case is equivalent to original VSM. The
K = 2 case labels every phrase pair as either domain-specific or general-domain. The K = N

case means that every phrase pair is labeled with the number of the closest sub-corpus (there are
N sub-corpora). Finally, the K = N +1 case labels every phrase pair either with the number of
the closest sub-corpus, or as general-domain (the N +1 group). Performance steadily improves
as the number of groups increases.
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Chinese-English Arabic-English
MT06 MT08 MT08 MT09

baseline 36.0 29.4 46.4 49.2
K = 1 37.0** 30.3** 47.7** 50.1**
K = 2 37.3**+ 30.6** 47.9** 50.3**+
K = N 37.9**++ 31.2**++ 48.2**++ 50.8**++
K = N + 1 38.2**++ 31.6**++ 48.3**++ 51.0**++

Table 4: Grouped VSM adaptation. */** or +/++ means result is significantly better than base-
line or original VSM adaptation system, i.e., K = 1. (p < 0.05 or p < 0.01, respectively).

Chinese-English Arabic-English
MT06 MT08 MT08 MT09

baseline 36.0 29.4 46.4 49.2
vsm 37.0** 30.3** 47.7** 50.1**
distr. feat. 38.0**++ 31.2**++ 48.0**+ 50.9**++

Table 5: The results of baseline, original VSM adaptation and distributional VSM adaptation.

Table 5 compares original VSM and distributional VSM. It shows that the original VSM
adaptation reported in (Chen et al., 2013b) does yield improvement over a non-adaptive base-
line. However, if instead of computing a domain similarity score, we directly maximize BLEU
on the dev set by tuning the weights of distribution features, we got further significant improve-
ments. On the Chinese task, the further improvements were +0.7-0.8 BLEU, while on Arabic,
the further improvements were smaller but still significant: +0.3-0.4 BLEU. (Cherry, 2013)
showed that in the case of reordering features, directly maximizing BLEU outperforms maxi-
mum entropy optimization; the experiments in Table 5 yield a similar conclusion. Given that
recently developed tuning algorithms such as MIRA can handle a very large feature set, we may
consider having all possible features directly tuned to maximize BLEU (or similar criteria).

Now, we compare all six DA techniques, Table 6 reports the results. All techniques im-
proved on all test sets across two language pairs over the non-adaptive baseline, and all these
improvements are significant. From the average absolute improvement across test sets, the orig-
inal VSM adaptation yield improvement of around 1.1 BLEU on average. And it is inferior to
the remaining five DA techniques; these five techniques obtained similar improvement over the
baseline, around +1.7-2.0 BLEU. Linear mixtures did best on Arabic MT08, provenance fea-
tures did best on Chinese MT06, while N + 1 grouped VSM did best on the other two sets. So
there is no clear winner among these techniques.

Our last experiment studies whether all these DA techniques exploit the same information,
or if they are somewhat complementary. The results are reported in Table 7. “Single best”
is a strong baseline, since it involves the best result in each column of Table 6 rather than
the best single row. We first figured out the best mixture model combination, by exploring
all 4 possible combinations of the three mixture model adaptation methods. We found that
combination of linear mixture and provenance features got the best performance, even better
than using all three mixture model methods together. The possible reason is that they are likely
to be complementary, since the former adapts phrase translation probabilities and the latter
adapts lexical weights. This combination did very well on Arabic-English but gave only small
improvements on Chinese-English.

Then, we add VSM adaptation method by a form of greedy search: beginning with the best
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Chinese-English Arabic-English
MT06 MT08 MT08 MT09 avg �

baseline 36.0 29.4 46.4 49.2 —
linmix 37.8 31.2 48.8 50.9 +1.9
smoothed log-linmix 37.9 31.1 48.2 50.6 +1.7
provenance 38.4 31.4 48.2 50.6 +1.9
original VSM 37.0 30.3 47.7 50.1 +1.1
distr. VSM 38.0 31.2 48.0 50.9 +1.8
N + 1 gr. VSM 38.2 31.6 48.3 51.0 +2.0

Table 6: The comparison of all 7 adaptation techniques. The � is computed on all four test sets.

mixture model combination and then incorporating the technique that yields the highest BLEU
improvement over the system it’s added to. For the next combination, we add N + 1 grouped
VSM adaptation and observe significant improvements over “single best” for all test sets. For
the final combination, we add distributional VSM DA, gaining +2.9 BLEU on both Chinese
MT06 and MT08, +3.3 BLEU on Arabic MT08 and +2.6 BLEU on Arabic MT09 over the non-
adaptive baseline. Adding the two VSM adaptation methods to the best mixture combinations,
further significant improvements were obtained on three out of four test sets. We were unable to
obtain further gains by adding the original VSM adaptation technique to the system: apparently,
the combination of four techniques shown in the last row of the table covers all the information
exploited by the six DA techniques described in this paper.

Chinese-English Arabic-English avg
MT06 MT08 MT08 MT09 �

baseline 36.0 29.4 46.4 49.2 —
single best 38.4 31.6 48.8 51.0 +2.2
linmix 37.8 31.2 48.8 50.9 +1.9
prov. (provenance) 38.4 31.4 48.2 50.6 +1.9
linmix & prov. 38.6 31.7+ 49.3**++ 51.4*++ +2.5
linmix & prov. & gr. VSM 38.7* 32.0*+ 49.6**+ 51.6** +2.7
linmix & prov. & gr. VSM & distr. VSM 38.9** 32.3**+# 49.7**# 51.8**# +2.9

Table 7: Combinations of techniques. */** or +/++ means result is significantly better than sin-
gle best result in Table 6 (“single best” row) or system without newly added technique (i.e., than
previous row) (p < 0.05 or p < 0.01, respectively). # means the result in the final combination
(the last row) is significantly better than the best mixture model combination (“linmix & prov.”
row) at level p < 0.05.

6 Conclusions

We have proposed two extensions to the original vector space model (VSM) adaptation, which
are distributional VSM, and grouped VSM. They both significantly improved over the original
VSM adaptation. We also improved log-linear mixture significantly by smoothing the mixture
components. Then we systematically compared the VSM adaptation techniques to the mixture
model adaptation techniques, which includes linear mixture, log-linear mixture and provenance
features. According to BLEU, the original VSM DA has weaker performance than the other
techniques, yielding around 1.1 improvement on average over a non-adaptive baseline. The
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remaining five techniques obtained similar improvements across four test sets in two large-
scale data conditions, in the range +1.7-2.0 BLEU on average; there is no clear winner among
them.

Although the improvements obtained from these techniques are not strictly additive, com-
bining a subset of them yields further significant improvement: we obtained +2.6-3.3 BLEU
improvement on average over the non-adaptive baseline with our best combination. In future
work, we will try combining language model and reordering model adaptation with the tech-
niques we have described here.
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