PORTAGE in the NIST 2009 MT Evaluation

George Foster, Boxing Chen, Eric Joanis,
Howard Johnson, Roland Kuhn, and Samuel Larkin

31 August 2009

Abstract

This report describes experiments performed during preparations
for the NIST 2009 MT evaluation, where we participated in the con-
strained Chinese-English condition with PORTAGE. The aim is to
publicize new findings about the optimum configuration, and to sug-
gest some avenues for further improvement.

Contents
1 Overview 2
2 Data 4
2.1 Interim Versions, 4
2.2 Final Version, 4
2.3 FileLocations 5
3 Baseline Configuration 7
4 Preprocessing 8
5 Language Models 9
5.1 Dynamic Language Models for Mixture Adaptation 9
5.2 Gigaword Mixture Adaptation 13
5.3 Effects of Ngram Order 13
6 Translation and Distortion Models 15
6.1 New HMM Models 15
6.2 Estimating Probabilities for Phrase Table Combination . . . 17
6.3 Thelnsect L 20

6.4 Lexicalized Distortion 21

6.5 Additional Features 24
7 Decoding 25
7.1 Lattice MERT 25
7.2 Extended Search Options 26
8 Rescoring 29
8.1 Rescoring Features 29
8.2 Feature Selection L. 30
9 Truecasing 31
9.1 Naive George versus HMM 31
9.2 Tuning HMM Truecasing 32
9.3 Title Capitalization 32
10 Conclusions 33
A Maximum A Posteriori (MAP) Estimation 35
A.1 Using a Dirichlet Prior 36

1 Overview

For this year’s NIST evaluation, we decided to participate only in the Chinese-
to-English constrained task with PORTAGE.! Other possible tasks were
Arabic-to-English and Urdu-to-English; all tasks could be performed ei-
ther with constrained training data (limited to a prescribed list) or un-
constrained; and in either a single-system or system-combination track. Un-
fortunately, Chinese-English was evaluated only on a progress test set this
year—this is sequestered data re-used from year to year, whose reference
translations are not released by NIST. Since first-time NIST participants
are not automatically allowed to participate in progress tests, this may have
meant fewer participants for this task. See
www.itl.nist.gov/iad/mig/tests /mt/2009 for more information about
the NIST evaluation.

Our results were quite good: we placed 3rd out of 19 participants in
our track, and 8th out of all 55 primary and contrastive submissions in the

!We also participated in the unconstrained Chinese-English condition with a Systran
serial combination, not discussed here.

merged single-system/system-combination constrained tracks. We also im-
proved by 3.3 BLEU percentage points over last year’s results, which was
the largest increase registered by any site in the Chinese-English progress
test. However, to put this in perspective, our BLEU score was 28.11, com-
pared to 32.25 for the top system (ISI/Language Weaver) and 27.90 for the
system immediately below us (SRI). Also, a number of traditionally strong
sites, such as Google, IBM, and Edinburgh, did not field a Chinese-English
system this year.

A nice aspect of this year’s system was that many of the improvements
to PORTAGE undertaken during the previous year bore fruit. The results
are therefore largely a group effort; certainly each of the authors of this
report is directly responsible for some of the BLEU score improvement over
last year’s results.

The main purpose of this report is to describe the configuration used for
the NIST 2009 evaluation and the experiments run to establish it (including
many unsuccessful ones). It should be stressed that these are research results
and cannot be interpreted as representing “best practice” for PORTAGE.?
Another aim of the report is to identify areas where further investigation
seems warranted. These are indicated with a @ symbol in the text.

Preparation for an evaluation is essentially a greedy search, so there is no
single common baseline for most of the experiments presented below. This
“evolving baseline” phenomenon was compounded by the introduction of
new HMM code and a slightly new phrase extraction algorithm mid-stream.
Further complications resulted from the use of three different versions of
the training corpora: nist08, nist09-illegal, and nist09-final (see section 2 for
more details). Experiments based on nistO8 are marked with ** and those
based on nist09-illegal are marked with * in all tables of results. To save time,
most experiments were run only with the decoder, with no nbest rescoring
step. Whenever possible, we also avoided the use of MERT by substituting
alternative models (phrase tables, LMs, etc) while keeping log-linear weights
fixed. Unless otherwise stated, all results are measured on lowercase output
using our in-house BLEU program (bleumain), which implements the same
algorithm as this year’s official scoring script (mteval-vi3.pl).3

As shown in the table of contents, the remainder of this report is orga-

2The best configuration is highly dependent on setting, and the setting for NIST is
atypical in many ways. The performance of a configuration can also change substantially
due to new features being added to PORTAGE.

3This algorithm uses the closest-length-match reference, rather than the shortest refer-
ence, in the brevity penalty calculation. bleumain is much faster than mteval, and unlike
mteval, it takes tokenized text as input.

nized so as to roughly follow PORTAGE’s processing chain: data, baseline,
preprocessing, LMs, TMs and DMs, decoding, rescoring, and truecasing and
detokenization. The final section presents some conclusions.

2 Data

2.1 Interim Versions

We used two interim versions of the training data during preparation for the
evaluation:

e nist08. This was essentially last year’s corpus, minus one corpus
(LDC2002E17 - Chinese Treebank translation) that does not appear
on the list of allowed resources for this year (it is superceded by
LDC2003E07 - Chinese Treebank English Parallel Corpus, but we
did not have a preprocessed version of that corpus available when we
wanted to begin training). Results based on this corpus are identified
with **,

e nist09-illegal. This is identical to the nist09-final corpus described
in the next section except for the inclusion of LDC2009E10 - 2008
English-Chinese eval set among the training material. A few weeks be-
fore the evaluation, NIST sent out a message announcing that LDC2009E10
was out of bounds because it overlapped the epoch of the progress eval
set, so we had to back it out of the system.* This corpus uses different
preprocessing from nist08. Results based on it are identified with *.

2.2 Final Version

Table 1 lists the sub-corpora that comprise the nist09-final corpus, used for
the evaluation. These are a subset of the full list of resources permitted for
the Chinese constrained track, which can be categorized into:

e parallel corpora: we used all available except for the 2008 English-
Chinese eval set (LDC2009E10), which was prohibited as described
above; and the Hong Kong Parallel Text (LDC2004T08), which we
presumed to be equivalent to the existing Hong Kong parallel corpora
(LDC2000T50, LDC2000T47, and LDC2000T46).

4One might wonder why it was included among the allowed resources at all if this were
the case. But perhaps the intent was that it could be useful as a test corpus—similar to
what we assume is a legitimate use for the 2008 Chinese-English eval set.

e monolingual corpora: we used only the English Gigaword, not the Chi-
nese Gigaword (LDC2007T38), nor the Google ngrams (LDC2006T13),
nor several smaller English corpora (LDC2002T31, LDC2005T28, LDC2005T35,
LDC1993T1, LDC1993T3A, LDC1995T21, LDC1995T6, and LDC1998T30)
which are possibly already contained in the Gigaword.

e other resources: we used the named entity list (LDC2005T34) and
bilingual lexicon (LDC2002L27), treating them as ordinary parallel
corpora, as shown in table 1; we eschewed the Chinese propbank
(LDC2005T23), Chinese treebank (LDC2007T36), tagged Chinese Gi-
gaword (LDC2007T03), the English treebank (LDC1999T42), the En-
glish Chinese translation treebank (LDC2007T02), manual word align-
ments (LDC2006E86 and LDC2006E93), and OntoNotes (LDC2007T21).

As shown in table 1, the dev corpus (used for MERT and rescoring)
was partly taken from the NISTO05 eval set, and partly from GALE webtext
corpora. We tried to match the balance of genres from the NIST08 eval
set (roughly equal amounts of newswire and webtext), but found that last
year’s dev set, which contained about 70% webtext, gave better results.
Table 2 shows the sizes and compositions of the parallel corpora used for
training, dev, and test.

2.3 File Locations

All files pertaining to the NIST 2009 system are stored on balzac below
/home/portage.

Raw corpora are stored in corpora/GALE distn and intermediate pre-
processed versions are in corpora/GALE prepd. Final preprocessed versions
are in corpora/NIST09-Chinese: the collect subdirectory contains scripts
for installing various versions from GALE prepd into NISTO9-Chinese, per-
forming some further preprocessing and reorganization along the way.

Systems are in models/NIST09-Chinese: subdirectories tend to corre-
spond to different versions of the data, eg, for the versions listed in the pre-
cedeing sections: v1-nist08 for nist08, v3-newproc-full for nist09-illegal,
and v4-no-e2c for nist09-final.

corpus genre | usage size
LDC2007T07 English Gigaword Third Edition in trg Im | 172,125,525
LDC2005T34 Chinese English Name Entity Lists trg 1,192,305
LDC2002L27 Translation Lexicon Version 3.0 trg 82,098
LDC2005T10 Chinese English News Mag. Parallel Text | in trg 281,687
LDC2005T06 Chinese News Translation Text Part 1 in trg 10,317
LDC2003E07 Chinese Treebank English Parallel Corpus | in trg 4,172
LDC2003E14 FBIS Multilanguage Texts in trg 249,867
LDC2002E18 Xinhua Parallel News Text Version 1 in trg 109,746
LDC2007T09 IST Automatically Extracted Parallel Text | in trg 558,378
LDC2004E12 UN Chinese English Parallel Text out trg 4,979,857
LDC2000T50 Hong Kong Hansards Parallel Text out trg 1,297,205
LDC2000T47 Hong Kong Laws Parallel Text out trg 400,667
LDC2000T46 Hong Kong News Parallel Text trg 702,071
LDC2006E26 GALE Financial News trg 90,302
LDC2005E83 GALE Y1 Q1 Release - Translations in trg/dev 6,437
LDC2006E34 GALE Y1 Q2 Release - Translations V2.0 | in trg/dev 9,828
LDC2006E85 GALE Y1 Q3 Release - Translations in trg/dev 11,990
LDC2006E92 GALE Y1 Q4 Release - Translations in trg/dev 28,843
LDC2006E24 GALE Y1 Interim Release - Translations | in trg/dev 20,842
LDC2002T01 Multiple-Translation Chinese Corpus in trg 10,923
LDC2003T17 Multiple-Translation Chinese Part 2 in trg 3,512
LDC2004T07 Multiple-Translation Chinese Part 3 in trg 3,740
LDC2006T04 Multiple Translation Chinese Part 4 in trg 3,676
LDC2006E43 NIST 2004 Chinese evaluation set in test 1,788
LDC2006E38 NIST 2005 Chinese evaluation set in dev 1,082
LDC2007E59 NIST 2006 Chinese evaluation set in test 1,664
LDC2009E09 NIST 2008 Chinese evaluation set in test 1,357
total size (parallel corpora) 10,071,790

Table 1: Corpora used for NIST 2009: all are parallel except for the English
Gigaword on the first line. The genre column indicates whether corpora are
in-domain (news and webtext), out of domain, or unknown/neutral. The
usage column indicates whether corpora were used for training, dev, or test.
The size column gives the number of sentence pairs.

corpus | use composition size
train LM/TM training | all except devtest 10,063,395
devl decoding MERT | nist05 + GALE Y1 newsgroup+weblog 1,506
dev2 rescoring MERT | nist05 + GALE Y1 newsgroup+weblog 2,080
nist04 | test, reserved - 1,788
nist06 | main test — 1,664
nist08 | main test - 1,357

Table 2: Division of parallel corpora.

3 Baseline Configuration

The baseline configuration uses the following major features that have been
helpful in previous evaluations:

Sgram static Gigaword LM

4gram mixture-adapted LM: train LM’s on the source and target sides
of all training corpora in table 1, and use EM to find the linear weight-
ing of source-side models that maximizes likelihood of the current
source text (all documents combined); apply this weighting to the
corresponding target-side models during decoding as described in [6].

lexicalized HMMs: condition HMM jump probabilities on the current
hidden-sequence word, using MAP smoothing to back off to global
jump probabilities, as in [9)].

“domain adapted” phrase probabilities: extract phrase pairs from the
whole training corpus, but calculate Zens-Ney [23] conditional esti-
mates using the ttable from an HMM model trained on only the in-
domain and neutral domain material from table 1.

The resulting system has 8 loglinear features: 4 phrase probabilities (relative
frequency and Zens-Ney estimates in both directions), 2 LM probabilities,

word

count, and distortion penalty. Table 3 shows the contributions of some

of the major features.

configuration nist06 | nist08
0. 2008 best 32.66 | 26.57
1. *init baseline 29.26 | 23.65
2. mix LM 30.46 | 24.64
3. mix LM+ lex HMM 30.72 | 24.99
4. mix LM+ lex HMM + adapted TM 31.62 | 25.42
5. mix LM+ giga LM + lex HMM 32.15 | 25.79
6. mix LM+ giga LM + lex HMM + adapted TM | 32.68 | 26.00
7. baseline 33.12 | 26.65

Table 3: Baseline system performance, showing contributions of major fea-

tures.

The first line shows best results from last year’s system, which are

not comparable in many respects (corpora, preprocessing, rescoring, etc.)
to the other configurations in the table. The last two lines are identical
configurations except for the use of an improved MERT algorithm.

configuration nist06 | nist08
** baseline, nist08 preproc 32.33 | 25.98
baseline, nist09 preproc + ntreebank | 33.12 | 26.65

Table 4: Effects of Preprocessing. Both lines correspond to the baseline
configuration from table 3, but the 1st line was generated using NIST 08
preprocessing.

4 Preprocessing

In contrast to previous years, we did not undertake a major preprocessing
initiative this year. Work was limited to an extensive overhaul of the FBIS
corpus (better alignment and encoding handling), new punctuation nor-
malization procedures developed for GALE, and cleaning up some GALE
speech-transcription data by resolving “./?” ambiguities at the ends of lines.
These measures helped significantly, as shown in table 4.

configuration | nist06 | nistO8
baseline 32.15 | 25.79
filt 100 32.11 | 25.77
split 100 32.18 | 25.78
split 50 32.21 | 25.72
split 25 32.43 | 25.97

Table 5: Corpus splitting and filtering results. The baseline corresponds to
line 5 in table 3, the filt line is hard filtering using a 100-word threshold and
a 9:1 length ratio, and split n is Xu splitting with a length limit of n.

In addition to character-level preprocessing, we also looked at filtering
the corpus with a hard length limit (100 words) and sentence-length ratio
threshold (9:1), and splitting sentences using an algorithm due to Xu et al
[21]. The Xu et al algorithm recursively splits sentence pairs using IBM-
model probabilities until they are shorter than a given length limit. In
practice, due to the presence of noisy input, this condition is impossible to
satisfy (eg, if an input pair consists of a very long sentence aligned with a
very short one), so we apply hard filtering as a postprocessing step. As shown
in table 5, splitting with a limit of 25 improves BLEU score somewhat. It

5Note that, as indicated by the asterisks, the comparison in this table is unfortunately
confounded with the use of the LDC2003E07 corpus in the nist09-final data set, used with
the nist09 preprocessing on line 2.

also decreases training time, which is important due to the HMM slowdown
discussed in section 6. The non-filtered and non-split version was used for
the evaluation because the positive results with length=25 were not yet
available.@9

5 Language Models

Experiments with LMs involved the use of two different kinds of adaptation
as well as higher-order ngrams. We did not have time to try out dynamic
number-mapping LMs, nor Google ngrams.@p

5.1 Dynamic Language Models for Mixture Adaptation

The baseline adapted LM is a mixture of LMs trained on the target side of
each of the parallel training corpora listed in table 1,% along with a global
model trained on the aggregate of all of these target corpora (including the
latter gives a consistent gain over just using models trained on the individual
corpora). To set weights, we train corresponding models on the source sides
of all corpora, then use the EM algorithm to minimize perplexity on the
current source text. With the exception of including the global model, this
is exactly the procedure described in [6]. As was found in [6], it is not
beneficial to learn weights that are specific to individual documents or even
genres, so we learn a single set of weights per test set (eg one for nist06, one
for nist08, etc). Even this granularity may not be optimal, as exchanging
these weights does not lead to systematically worse results.

In the past, we have experimented with a different kind of adapted LM,
trained on a set of sentences selected using IR matching techniques applied
to the current source text. Essentially, each sentence in the text is treated as
an IR query, and n matching source sentences are identified in the parallel
corpus. The corresponding target sentences are pooled (across all queries) to
form a match corpus, on which a dynamic LM is trained. Originally we used
the dynamic LM as a feature within the global log-linear combination, but
it did not help when mixture model adaptation was also being used. This
year, we hypothesized that it might be more effective to include it within the
adapted mixture by treating the match corpus as an additional component
of the parallel corpus.

5The GALE Y1 were merged into a single corpus, then split according to genre: broad-
cast conversation (bc), broadcast news (bn), newsgroups (ng), and weblogs (wl). As
described above, some of this material was also reserved for the development corpus.

configuration nist06 | nist08

*baseline 33.08 | 26.67
*lemur 50 33.04 | 26.53
*lemur 100 33.08 | 26.58

*lemur 100 / 0.05 | 33.06 | 26.85
*lemur 100 / 0.10 | 33.26 | 26.90
*lemur 100 / 0.15 | 33.20 | 26.98
*lemur 100 / 0.20 | 33.11 | 27.00

Table 6: Results for adapted mixture LMs including a dynamic component.
The baseline is equivalent to line 7 in table 3. The lemur n lines use the
best n matches for each sentence according to Lemur. The / w lines assign
a weight of w to the dynamic LM instead of the weight assigned by the EM
algorithm.

To perform sentence matching, we used the freely-available Lemur toolkit
(www.lemurproject.org) as well as an in-house ngram-matching program
(see tmem/README in the PORTAGE hierarchy) [16].”7 For each matching
technique, we generated the top 100 matching sentence pairs for each source
sentence, ranked in order of descending match score. The top half of table 6
shows the results for experiments with Lemur, using different numbers of
retained matching target sentences to form the match corpus. Log-linear
weights were held fixed across these experiments in order to remove the
effect of MERT noise [7]. Clearly there is no significant gain from using the
match corpus as an additional component in the baseline mixture adaptation
algorithm.

To analyze these results, we looked at the weights on the various corpus
components, shown in table 7.8 The pattern is similar for both test corpora:
the match corpus receives a very high weight, with the relative weighting on
other corpus components being roughly preserved from the baseline configu-
ration. The EM algorithm appears to have a bias toward the match corpus,
perhaps due to the fact that Lemur uses ngrams in its matching algorithm.
That this does not reflect the usefulness of the match corpus in general is
obvious from table 8, which shows a sample of best-match sentences selected

"The key parameter to Lemur is -rule=method:dirichlet,mu:2500. For the tmem
matches, an ngram length of 5 was used.

8The weights for the +dyn columns do not sum to one in this table. The original
mixture included the match corpora for all devtest corpora instead of only the current
one, by mistake. These typically received very low weights, and have been removed from
the table to make it smaller.

10

component nist06 nist08
baseline +dyn | baseline +dyn
fbis 0.093537 | 0.043937 | 0.108907 | 0.050078
financial 0.001643 | 0.001072 | 0.002083 | 0.000844
hkh 0.000707 | 0.000835 | 0.002638 | 0.002388
hkl 0.000014 | 0.000000 | 0.000001 | 0.000018
hkn 0.000158 | 0.000216 | 0.000849 | 0.000590
isi 0.230176 | 0.125781 | 0.164057 | 0.076060
lexicon 0.002263 | 0.002539 | 0.003365 | 0.002863
multipl-merge | 0.000061 | 0.000040 | 0.000045 | 0.000019
multip2-merge | 0.000274 | 0.000121 | 0.000401 | 0.000147
multip3-merge | 0.000121 | 0.000061 | 0.000871 | 0.000367
multip4-merge | 0.000482 | 0.000324 | 0.000987 | 0.000381
ne 0.000029 | 0.000010 | 0.000099 | 0.000044
news 0.015327 | 0.006387 | 0.021050 | 0.007754
nistO8rev-merge | 0.003730 | 0.002674 | 0.010891 | 0.009700
ntreebank 0.000125 | 0.000040 | 0.000441 | 0.000099
sinorama 0.026757 | 0.004358 | 0.145991 | 0.035959
unv2 0.000845 | 0.020414 | 0.000720 | 0.014114
xinhua 0.006535 | 0.000836 | 0.007234 | 0.000523
y1l-be 0.029609 | 0.020596 | 0.045019 | 0.026828
y1-bn 0.122091 | 0.084546 | 0.025094 | 0.013387
y1-ng-90 0.025692 | 0.014639 | 0.027456 | 0.016234
y1-wl-90 0.007697 | 0.006460 | 0.030752 | 0.021734
all 0.432140 | 0.198651 | 0.401048 | 0.183030
match — | 0.445767 — | 0.518399

Table 7: Mixture LM weights for parallel corpus components.

11

score

match

reference

-3.37

MR ANDREW CHENG : Mr Pres-
ident , I would like to begin my
speech with a joke on the judiciary
of China in a bid to harmonize the
atmosphere .

Jokes

-6.92

Ku Chin-t’ien goes to flea markets
in his spare time , advising designers
to spend their time hunting for what
could be useful articles .

I wanted to understand more about
what we should be aware of at rail-
road stations in various places .

-7.30

After the statement was issued in
Beijing today , the head of the Chi-
nese delegation , Long Yongtu |,
told reporters that China ’s entry
into the WTO requires agreement
on market access by China and all
its trade partners , [...]

Director-general Lamy of the WTO
called these suggestions ” a fair and
reasonable foundation for reaching
an agreement which has major long-
term targets and balance and is
development-oriented . ”

-7.52

It noted that only five drugs have
been approved for treating pre-
cancers , including those for treat-
ment of skin , bladder , breast and
colon pre-cancers . Even though
surgical treatment exist for many
types of pre-cancers , |[...]

The research also discovered that
one of the genes , while increasing
people ’s risk of suffering from the
cancer of the prostate gland , also
lowered the risk of suffering from
Type 2 diabetes .

-7.66

Even though Hong Kong can hardly
compare with the United States ,
our ratio in this respect still should
not be too low . Otherwise , our
associate degree programme gradu-
ates will just be ” prospect-less
graduates .

7

The man refused , and became ar-
gumentative .

-7.82

Commander Liu introduced them to
me in a very familiar way ; it was not
at all easy for so many parameters
to be accurate , and I was amazed
at his memory ; I even wondered
whether or not I needed to put so
many hard to remember figures into
a microcomputer .

But the driver involved isn’t that
lucky . He has to remember , and

very likely will remember it all his
life .

Table 8: Best-match sentences for nistO8 retrieved by Lemur, compared to
the corresponding reference translati%l.

at random for various levels of the matching score. Clearly, most matches
contain very few words in common with the reference translations.® Some
matches are better than others, but the match score does not appear to be
a reliable indicator of these.@)

We attempted to compensate for the EM bias toward the match corpus
by setting the weight on the dynamic LM discriminatively, ie simply tuning
its value to achieve the best score on the test corpora (without renormalizing
the mixture). The results in table 6 (below the horizontal line) show small
gains of around 0.2 BLEU for weights that are much lower than the EM-
assigned values. We chose 0.15 as a good compromise for optimum weight
value across the two test sets.

Future work in this direction could include finer-grained tuning, the use
of source-sentence-specific dynamic LMs (instead of just one per source text),
tmem matches instead of Lemur ones, and discriminative assignment of all
mixture weights instead of only the one on the dynamic LM.6H

5.2 Gigaword Mixture Adaptation

Motivated by positive results for LM mixture adaptation using the parallel
corpus, we tried a similar approach with the unilingual Gigaword corpus,
which consists of six distinct sub-corpora drawn from different news agencies,
as listed in table 9. Since Chinese versions of these corpora were not available
for learning weights specific to each new source text as in the usual method,
we learned a single set of weights using the target side of the devl dev set,
then held these fixed for subsequent translation. Weights were learned using
EM to minimize perplexity as usual. Table 9 shows that there are clear (and
unsurprising) preferences for certain sub-corpora over others. Table 10 shows
the results of substituting the Gigaword mixture for the static Gigaword
LM, which are substantially worse than the baseline. We currently have no
explanation for why the drop is so large. €9

5.3 Effects of Ngram Order

Experiments in the previous sections were performed using a 4gram LM for
the mixture model derived from the parallel corpus, and a 5gram LM trained
on the Gigaword corpus. Table 11 shows the results of using higher-order

9Some matches appear to contain no words in common, but it is important to re-
member that matching is done on the source side. It should also be noted that only the
single best matches for each sentence are shown here; the other 99 matches may contain
complementary information that makes the aggregate match corpus more useful.

13

corpus

devl wt

Agence France-Presse, English Service (afp)
Associated Press Worldstream, English Service (apw)
Central News Agency of Taiwan, English Service (cna)
Los Angeles Times/Washington Post Newswire Service (ltw)
New York Times Newswire Service (nyt)
Xinhua News Agency, English Service (xin)

0.120447
0.060999
0.080731
0.129831
0.173202
0.434791

Table 9: Mixture LM weights for Gigaword corpus components.

configuration nist06 | nist08
baseline 33.12 | 26.65
giga mix 32.54 | 26.03
giga mix + global | 32.69 | 26.31

Table 10: Results for Gigaword mixture adaptation. The first line is identical
to line 7 in table 3. The +global line includes the global Gigaword LM as

one of the mixture components.

ngrams for each of these models (holding log-linear weights fixed as usual).
The results are mildly positive, but almost certainly not significantly so.
This is similar to our findings from previous years. Given that the higher
order models don’t hurt, we prefer to use them on the off chance that they
will match long sequences from the evaluation corpus.

configuration nist06 | nist08
1. *mix4 + gigab 33.08 | 26.67
2. *mix4 + gigab 33.24 | 26.63
3. *mixb + gigab 33.06 | 26.75
4. *mix5 + gigab 33.15 | 26.70
5. *lemur 100 / 0.15 33.20 | 26.98
6. *lemur 100 / 0.15 mix5 + giga6 | 33.17 | 26.99

Table 11: Results for higher-order ngram models. The 1st line is equivalent
to line 7 in table 3, and the 5th is taken from table 6.

14

6 Translation and Distortion Models

Experiments related to translation models involved new HMM models, a
new approach to the “phrase holes” problem, an improved phrase-extraction
algorithm, and the addition of lexicalized distortion and phrase-association
features.

6.1 New HMM Models

We discovered late in 2008 that there was a conceptual problem with our
implementation of an “end distribution” in HMM alignment models. Recall
that the generative process for HMM alignment handles each word in the
“observed” sequence in succession, linking it to either a word in the “hidden”
sequence or a special null word.'® The probability of the current link in this
process depends on the distance between its hidden-sequence word and the
hidden-sequence word from the previous link (as well as the identities of the
words being linked, and, for the lexicalized model, the identity of the hidden-
sequence word from the previous link). Clearly, the probabilities associated
with different distances (or jumps) will vary as the process moves along the
observed sequence: negative jumps, for example, are impossible at the very
beginning of the sequence, become more probable through the middle, and
are likely less prevalent again toward the end. To capture these tendencies,
we optionally use two special jump distributions: a start distribution for the
first word of the observed sequence, and a final distribution for its last word.
Jumps at other positions are governed by a single intermediate distribution.
In our previous implementation, the final distribution was not conditioned
on observed-sequence position but rather on the jump distance itself and
the fact that the jump landed on the final anchor in the hidden sequence.
This caused normalization to be done in an incoherent fashion.

As part of the fix to this implementation, we also added the possibility
to condition the current link on its hidden-sequence word or its observed-
sequence word, and made some other conditioning choices orthogonal. The
conditioning configurations for HMMs can now be summarized as:

e use special start jump distribution or not

e use special final jump distribution (correctly conditioned on observed-
sequence position) or not

10 Alignment is performed in both directions, so the source and target languages both
play the observed and hidden roles, depending on direction.

15

model code lex conditioning | nist06 | nistO8
mix+giga+lex old prev hidden 32.15 | 25.79
mix+giga+lex new prev hidden 31.98 | 25.64
mix+giga+lex new prev observed 31.80 | 25.43
mix+giga+lex new curr observed 32.18 | 25.73
mix+giga+lex+adapt tm old prev hidden 33.12 | 26.65
mix+giga+lex4+adapt tm new prev hidden 33.04 | 26.71
mix+giga+lex+adapt tm new prev observed 32.61 | 26.29
mix+giga+lex+adapt tm new curr observed 32.93 | 26.33

Table 12: Results for new HMM options. The configuration above the line is
equivalent to line 5 in table 3; the configuration below is equivalent to line 7.
All experiments used MAP smoothing for lexical conditioning, with -map-
tau 100 and -lex-prune-ratio 0.2; additionally, the -max-jump parameter was
set to 30. Default values were used for all other HMM parameters.

e use end anchor (special symbol appended to both hidden and observed
sequences, intended to encourage end punctuation to line up) or not

e lexical or lexical-class conditioning of jump probabilities on one of:
previous hidden-sequence word, previous observed-sequence word, or
current observed-sequence word

(There are many other options for HMMSs that can be listed using train_ibm
-h. Note that the -newhmm option is required to use the corrected final jump
distribution.)

As the new code runs considerably slower than the previous HMM code,
we tested only a limited number of options, shown in table 12. All tested
options included the start and final distributions; we varied only the lexical
conditioning, and did not test the end anchor. The prev hidden lines in
table 12 are direct comparisons between the old and new code, and show
that the new code produces slightly (=~ 0.1) lower BLEU scores for most
experiments. One explanation for this may be that the new code chops up
sentences that are longer than 200 words into successive chunks for faster
alignment. Conditioning on the observed-sequence words (previous and cur-
rent) does not seem to yield systematic benefit. However, it was discovered
after the evaluation that there was a bug with these variants, so these ex-
periments need to be re-run. @ Given the slightly poorer results with the
new implementation of HMMs, we decided to use the old one for subsequent

16

experiments. !

Another system change motivated by the new HMM implementation
was the stabilization of gen-jpts-parallel.sh, the program that allows
phrase extraction to be run in parallel for large corpora. Essentially this
breaks large parallel files into smaller pieces, extracts joint phrase tables
(jpts) from the pieces in parallel, then combines the small jpts by adding
joint counts for all phrase pairs. This is typically used with an option to
add IBM1 translations for words that occur in the parallel file but have
no translations in the extracted phrase table. Unfortunately, the “parallel
files” for this operation were taken to be the pieces of the original file, so the
set of added pairs depended on how many pieces there were. In the past,
we “stabilized” this procedure by never changing the number of pieces, but
with slower HMM alignment we needed to boost the parallelism, and hence
implemented a fix to make the added pairs depend only on the original file.
A side effect is a slight change compared to the basic algorithm currently
implemented by gen _phrase_tables, resulting in a slightly improved set of
added pairs. This change was introduced after the new HMM code was
installed, and its effects have not yet been measured, even though it was
used in subsequent experiments for the evaluation.@d

6.2 Estimating Probabilities for Phrase Table Combination

It can be advantageous to distinguish phrase pairs arising from different
sources, such as different parts of the training corpus, alternate phrase
extraction techniques, bilingual lexicons, etc, by placing them in separate
phrase tables and learning a log-linear weight for each table. This creates
the problem of assigning probabilities to the “holes” that occur when one
phrase table doesn’t contain phrase pairs that occur in some other table(s).
Canoe deals with this by assigning a small, fixed, epsilon value. This solu-
tion is not perfect, however, because it creates a bias against smaller high
precision tables, which will be assigned a low weight to compensate for their
tendency to consider many valid phrase pairs highly improbable.

We implemented a better solution in the program joint2multi_cpt
(henceforth joint2multi), a partial replacement for joint2cond phrase tables
(henceforth joint2cond). Joint2cond produces a conditional phrase table
(cpt) from an input joint frequency phrase table (jpt) by applying selected
smoothing techniques. If a set of distinct jpts are available, then each is run

H)\ ore accurately, we used HMM models that had been trained with the old imple-
mentation, but used the new implementation for subsequent alignment and lexicalized-
distortion experiments described in sections 6.3 and 6.4.

17

separately through joint2cond, resulting in a set of cpts that will be used
with canoe.!'? Joint2multi, on the other hand, produces a single, multicol-
umn, cpt from a set of input jpts. Since it has all of the input tables on
hand when making probability estimates, it can assign more sensible values
to holes than canoe’s fixed epsilon strategy.

For NIST09, we tried only a very simple method for combining the ev-
idence from multiple jpts in order to fill holes. Assuming that conditional
probabilities for target given source language are desired (the other direction
works the same way), we distinguish three cases:

1. the phrase pair occurs in the current table: make (smoothed) relative-
frequency estimate as usual

2. only the source phrase occurs in the current table: assign a small
(non-constant) probability

3. the source phrase does not occur in the current table: assign uniform
probability over all translations of the source phrase found in any table

Motivated by theoretical arguments in favour of MAP smoothing (see ap-
pendix A), we used a simple add-alpha smoothing scheme for relative-
frequency (RF) estimates (used for both case 1 and 2 above):

B fls,t) +a _ fs)+a
P = i Fe D Fa — F(5) +aN(s, %)

where (s,t) is a phrase pair, p(t|s) is the smoothed RF estimate in the
current table, f(s,t) and f(s) are frequencies in the current table, F'(s,t) is
a frequency across all tables, and N(s,) is the number of translations of s
across all tables. This formula is used for cases 1 and 2 above. For case 3,
p(t|s) = 1/N(s,*).

There is a potential problem for case 2: as the number of known transla-
tions increases (assuming a fixed source-phrase frequency), the probability
assigned to an unseen translation within the current table decreases. This
seems opposite to the intuition captured in the widely-used Kneser-Ney
smoothing scheme for ngram LMs [12], and may well be sub-optimal in the
current context. €9

121t is also possible to create a single cpt from many input jpts with joint2cond. However,
this is exactly equivalent to summing frequencies across the jpts to produce a single
combined jpt, then using that as input. In this case, splitting into separate jpts is only
done in order to parallelize the expensive phrase extraction step.

18

configuration nist06 | nist08
split comb method «
** none — - 31.80 | 25.54
** model canoe — 31.78 | 25.75
** model multi 0.00 | 31.73 | 25.36
** model multi 0.01 | 31.70 | 25.63
** model multi 0.10 | 31.28 | 25.46
** corp canoe - 31.90 | 25.64
** corp multi 0.00 | 32.51 | 26.02
** corp multi 0.01 | 31.68 | 25.36
** corp multi 0.10 | 31.71 | 25.51
** both canoe - 32.09 | 26.01
** both multi 0.00 | 32.14 | 25.59
** both multi 0.01 | 32.30 | 25.77
** both multi 0.10 | 32.02 | 25.34
** none — - 32.33 | 25.98
** model canoe - 32.40 | 25.99
** model multi 0.0 32.10 | 26.14
** corp canoe - 32.42 | 26.02
** corp multi 0.0 | 32.78 | 26.15
** both canoe - 31.80 | 25.62
** both multi 0.0 32.29 | 25.64

Table 13: Different methods for combining phrase tables. The
describes the phrase tables to be combined: none means a single large table
(no combination necessary); model means one IBM2 phrase table and one
HMM phrase table; corp means one table trained on the “good” part of the
corpus, one on the less good part; and both means tables split by both model
and corpus (4 tables in all). The comb method column describes how the
tables are combined: either by creating separate cpts for canoe, or creating a
single multi-column cpt (the new method described in this section). Results
in the top part of the table pertain to a configuration that is equivalent
to line 5 in table 3; results in the bottom part pertain to a configuration

equivalent to line 7 in table 3.

19

split column

The results of experiments with different combination schemes are shown
in table 13. In general, the new joint2multi technique (multi lines in the
table) does better than the old joint2cond one (canoe lines), though the
differences are quite small and are not systematic. The optimum value for «
is 0 (assigning 0 probability to holes where the source phrase appears in the
current table), which may be related to the point in the previous paragraph.
In contrast to findings from previous years, splitting by corpus alone (instead
of by model and corpus) seems to give slightly better results, particularly
for the stronger configuration in the bottom part of the table. For this
configuration, the best gain over the baseline (obtained by the joint2multi
corpus split) was only 0.13 for the valuable nist08 test set, which we deemed
not compelling enough to justify the inconvenience of splitting the phrase
table in future nist09 configurations.

6.3 The Insect

In comparisons to phrase tables generated by Moses from the FBIS corpus,
we noticed that PORTAGE’s phrase tables contained only about one third
as many entries. Further investigation revealed that PORTAGE’s phrase-
extraction algorithm was subtly different from Moses’ in that it permitted
phrase pairs in which none of the words was linked to any others. For
instance, in the sentence pair:

The Newfoundland Government came up with a number of sug-
gestions in the Green Paper .

Le gouvernement de Terre-Neuve a présenté diverses solutions
dans son Livre vert .

suppose the words in bold are not aligned to any others. Then PORTAGE
would extract the phrase pairs a/de, a/son, of/de, of/son, etc, while Moses
would not. We call this behaviour, which has been part of PORTAGE
since its inception, the “insect”.'® We speculate that its presence has led
us to tune our symmetrized word alignment algorithms in such a way as
to minimize the number of unaligned words in order to avoid polluting the
phrase tables with large numbers of noisy entries such as the ones above.
Removing the insect (by requiring extracted phrase pairs to contain at
least one link) permits the use of sparser and more natural word alignments
that lead to larger phrase tables with less noise. Unfortunately, it also
necessitates re-optimizing our word-alignment strategy to take advantage of

13Not quite a bug, but something related.

20

configuration num phrases | nist06 | nist08
1. mix+giga+lex p0=0.0 93m | 32.15 | 25.79
2. mix+giga+lex p0=0.5 199m | 32.55 | 26.10
3. mix+giga+lex p0=0.6 232m | 32.60 | 26.14
4. mix+giga+lex+adapt p0=0.0 93m | 33.12 | 26.65
5. mix+giga+lex+adapt p0=0.5 199m | 33.26 | 27.05
6. mix+giga+lex+adapt p0=0.6 232m | 33.19 | 27.16

Table 14: Effects of sparser word alignments obtained by varying pO during
word alignment. The configuration above the line is equivalent to line 5 in
table 3; the configuration below is equivalent to line 7.

this. For lack of time, we adusted only one word-alignment parameter: the
pO component of the jump-to-null probability for HMM-based alignments.
As its name implies, this affects the probability that the current observed
word will align to the null word in the HMM generative process. (Whether
or not the word is actually left unaligned in the final symmetrized alignment
depends also on many other factors, such as lexical associations, alignment
monotonicity, etc.) Note that, for speed and convenience, we adjusted this
parameter only during HMM alignment; for HMM training, we retained
its default value of 0.0.1* We also used the same value in both alignment
directions, despite some evidence on GALE data that it can be beneficial to
tune different values.

The results in table 14 show that this tuning leads to much larger phrase
tables and significant increases in BLEU score for most configurations. The
highest p0O value we tested (0.6) gave the best results: an average gain of
0.35 BLEU over the baseline, with a 250% increase in phrase table size.
More investigation is required to determine the optimum parameters for
HMM /IBM2 training and alignment, and for symmetrized alignment.

6.4 Lexicalized Distortion

Having a distortion model that takes lexical context into account has been
shown to be important for language pairs like Chinese-English that involve
substantial reordering [24]. We implemented a lexicalized distortion model
similar to Moses’ that characterizes the position of the current source phrase
relative to the previous one as either monotonic, swapped or discontinu-
ous, according as it immediately follows, immediately precedes, or occurs

14The complete jump-to-null probability is p0 + up0/(I+1), where I is the length of
the observed sequence and we set upO to 1.

21

anywhere else. (One obvious enhancement is to split discontinuous into
discontinuous-following and discontinuous-preceding. €) The probability
of these three orientations is conditioned on both the previous and the cur-
rent phrase pairs, giving two different estimates:

e p(o|pp) - the probability that the previous phrase pair pp has orienta-
tion o with respect to the following pair; and

e p(o|cp) - the probability that the current phrase pair ¢p has orientation
o with respect to the previous pair.

where o ranges over the values m, s, and d for monotonic, swapped, and
discontinuous orientations.

All of this information (previous pair, current pair, and orientation) is
available when placing the current phrase pair during normal decoding, so it
is straightforward to incorporate it into decoder features. We implemented
two different feature schemes:

e A 2-feature scheme with values log p(o|pp) and log p(o|cp) as above.

e A 6-feature scheme with values 6 (o, o) log p(o'|pp) and 6(o, o') log p(o'|cp)
for o' € {m, s,d}. In this scheme, only the two features corresponding
to the current orientation are non-zero in any given context.

Estimating p(o|pp) and p(o|cp) is a two-step procedure: first count the
number of times each phrase pair occurs in all possible orientations, then
estimate probabilities from the counts. To establish orientations, we use a
version of the Moses technique illustrated in figure 1. This is applied during
standard phrase extraction, and relies on the alignment of the words that
immediately precede and follow the current target phrase as approximations
for alignments of the preceding and following phrases, which are usually
ambiguous. To make the approximation slightly more accurate, we imposed
some additional partition conditions: the m link in figure 1 is taken to
indicate monotonicity only if it is the earliest link for next, the s link indicates
swapping only if it is the latest link for next; and similar conditions for prev.
Also, we counted orientations at the beginning and ends of sentence pairs,
assuming aligned pairs of dummy words in those positions.

Estimating conditional phrase-pair probabilities is a problem that bene-
fits from smoothing [8], so clearly estimating distortion probabilities—with
sparser data due to fragmentation of original phrase-pair counts into three
different categories—should also benefit. We implemented a MAP-based

22

source phrase

target phrase

O O O O

Figure 1: Assigning orientations for lexicalized distortion. The current
phrase pair is deemed to have a monotonic orientation with respect to the
following one if the m link exists for word nezt, a swapped orientation if
the s link exists for nmext, or a discontinuous orientation if neither link ex-
ists. Orientation with respect to the previous pair is derived from prev in a
similar way.

prev nex

smoothing scheme (see appendix A) that uses a hierarchy of prior distribu-
tions. First, a global distribution is smoothed using a uniform distribution:

f(0|) + aupu(0|')
)+ o 7

where f() is frequency, and “-” matches any context. Next, source- and
target-dependent distributions are smoothed using the global distribution:

py(ol) =

ol = £105) + aupifol) (0t) + agpy (ol
s f(s) +ay f(t)+ag ’

and the final distribution is smoothed using both of these:

and py(olt) = 1

f(ols,t) + asps(ols) + aupi(olt)
f(s,t) + as + oy

p(0|8) t) = :

The four hyperparameters ay,, g, a5, and a; are shared by the previous and
current models, p(o|pp) and p(o|cp). To tune these values, we minimized the
perplexity of p(o|pp)p(o|cp) on counts derived from the devl corpus. A rough
grid search yielded an optimal value of 10 for all four parameters.

Results from using lexicalized distortion with a strong baseline model
are shown in table 15. The MERT column is included to show the large
variation in BLEU scores due to different MERT procedures. Since the
two sets of baseline weights give conflicting results, we average them to get

23

configuration | MERT | nist06 | nist08

lex-dist 6 hand 34.70 | 28.71
lex-dist 6 lattice | 35.06 | 28.31

1. baseline old wts | 33.16 | 27.57
2. baseline std 33.42 | 26.96
3. lex-dist 2 | std 33.67 | 27.15
4. lex-dist 6 | std 34.72 | 27.83
5.
6.

Table 15: Lexicalized distortion results. The baseline includes dynamic mix-
ture LMs (section 5.1), higher-order LMs (section 5.3), larger phrase tables
with the insect fix (section 6.3), length-dependent phrase table filtering (sec-
tion 7.2), and other expanded search options (section 7.2). In the MERT
column, old wts indicates weights trained on a previous configuration, std
indicates the standard MERT procedure, hand indicates semi-automatic op-
timization, and lattice is lattice MERT (section 7.1).

33.29 for nist06 and 27.27 for nist08. Then 2-feature lexicalized distortion
gives gains of 0.38 for nist06 and -0.12 for nist08 over these averages. The
6-feature version gives gains of 1.43 and 0.56 with standard MERT, and is
clearly preferable. Using weights from lattice MERT gives highly significant
gains of 1.77 and 1.04 over the baseline average.

Future experiments will test the contribution of lexicalized distortion
with simpler baseline systems, as well as the effect of the MAP smoothing
scheme.

6.5 Additional Features

We had plans to try out significance features [11], which were beneficial in
the GALE 2008 system, but ran out of time for this.

We also had limited time to try out the phrase-association features de-
scribed in [5], and experimented only with the top-performing log-likelihood-
ratio measure. Unfortunately, this was computed on a phrase table without
length-dependent filtering, and so could not be included in the final system,
which benefitted from this filtering.

A final additional feature was a simple phrase count, obtained by adding
a constant-value column to the phrase table. This was included in the final
system, but its results are confounded with other changes to the system, so
we have no hard evidence yet that it would be useful on its own.

24

7 Decoding

The major decoding-related strategy implemented for the evaluation was
lattice-based MERT. We also experimented with some new variants on
search parameters that proved effective.

7.1 Lattice MERT

We implemented the lattice-based MERT procedure described in [13] as an
alternative to our standard nbest-list based MERT, which often fails to find
a good set of weights, especially for large feature sets [7]. The basic idea
in lattice MERT is to replace the nbest list within Och’s algorithm [15]
with a lattice, which contains many orders of magnitude more hypotheses
and therefore offers a better approximation to the true search space (ie,
the space of all hypotheses) for weight optimization. The key conceptual
change this entails is adapting Och’s line maximization algorithm to work
with sets of lattices rather than sets of nbest lists. Another change in our
implementation is that we do not currently merge lattices across successive
iterations of Och’s procedure as is done with nbest lists. There is therefore
no guarantee that the algorithm won’t revisit previous “bad” weights (ones
where the approximate search space diverges harmfully from the true space),
but this is much less likely to happen with lattices, and does not seem to be
a significant problem in practice, as lattice MERT tends to avoid such bad
weights in the first place.

For many of the experiments described in this report, we held log-linear
weights fixed at an optimum that was the best out of a large number of
nbest MERT runs with similar configurations. Lattice MERT was unable
to do better than this highly evolved optimum in most settings, especially
on the critical nist08 test set. However, as shown in table 16, when com-
pared on an equal footing with nbest MERT, the lattice-based approach won
convincingly, achieving higher BLEU scores in 12 out of 15 measurements.
This trend was particularly marked for configurations with larger numbers
of features (where the “hand”-tuned weights were more problematic); in the
strongest configuration at the bottom of table 16, lattice MERT did spec-
tacularly well, outperforming nbest by approximately 1 BLEU point on all
three devtest corpora. A final observation is that the lattice approach re-
quires only half as many iterations as nbest MERT, so despite somewhat
longer per-iteration times with the current implementation, it tended to fin-
ish faster. Several of the runs in the table used 10 iterations, but these
typically achieved their best results on or before the 7th iteration, which

25

MERT num iters | num features devl | nist06 | nist08
nbest 15 8 | 25.60 | 32.68 | 26.00
lattice 6 8| 25.52 | 3245 | 26.13
hand - 8 -1 33.12 | 26.65
lattice 10 8| 25.81 | 33.42 | 26.96
hand - 8 — | 33.16 | 27.57
nbest 15 14 | 27.04 | 34.35 | 27.71
lattice 7 14 | 26.89 | 34.43 | 27.83
nbest 15 14 | 27.16 | 34.72 | 27.83
lattice 10 14 | 27.23 | 35.06 | 28.31
hand - 14 - 34.70 | 28.71
nbest 15 15| 26.32 | 33.80 | 27.27
lattice 7 15 | 26.71 | 34.32 | 27.75
hand+nbest 15 15 | 26.52 | 34.72 | 27.77
hand+lattice 7 15 | 27.57 | 35.70 | 28.60

Table 16: Results for lattice MERT, compared to nbest MERT, hand MERT
(weights borrowed judiciously from other configurations), and hand+ MERT
(weights initialized by hand). Each set of results between horizontal lines
varies only in the MERT technique used. The first set is the configuration
in line 7 of table 3. All other sets use dynamic mixture LMs (section 5.1),
higher-order LMs (section 5.3), and larger phrase tables with the insect fix
(section 6.3), but vary in other parameters. For the sake of the reader’s
sanity, we suppress further details and list only the number of features.

seems like a reasonable stopping point.

7.2 Extended Search Options

Toward the very end of preparations for the evaluation, we experimented
with various alternative search strategies:

Future scores for forward probabilities

Future score calculations were not implemented for optional “forward” (tar-
get given source) phrase probability features when they were originally added
to PORTAGE. This was rectified early in 2009 as part of the work for adding
“adirectional” (4th column) phrase table features.

26

Length-based hard phrase table filtering

To speed up search, the phrase table is typically filtered as it is read in by
canoe, with only the top 30 candidate translations for each source phrase
retained.!> Candidates are ranked for this filtering by applying current
weights to forward phrase probabilities (typically the corresponding back-
ward weights are used for this, because these seem to be more reliable than
the forward weights, which would be a more natural choice). This strategy
causes problems for MERT because the phrases available to the decoder
change as weights fluctuate across different iterations. Hypotheses added to
the nbest lists on previous iterations—and preferred by the current weights—
may actually be inaccessible to the decoder under these weights, due to fil-
tering.'® This can cause MERT to converge to a set of weights which give
good results on the nbest lists, but poor results with the decoder.

To avoid this undesirable behaviour, we experimented with hard phrase
table filtering: fixing the set of translations for each source phrase prior to
MERT and subsequent decoding. Motivated by an observation in [2] that
larger sets of translations yield dramatically improved coverage of devtest
corpora, we were interested in setting the hard threshold to a value greater
than 30. Since this can slow translation substantially, we tried allowing
more translations only for longer phrases, which in general have more real
translations than shorter ones, and are less prone to having long “tails” of
noisy translations in the phrase table. We did this by setting the threshold
to be 301, where [is the number of words in the source phrase. One remain-
ing question is how to set the weights on different phrase tables for hard
filtering. This was accomplished by using previous “good” weights, which
was an effective but not very automatic procedure. Further work is needed
to determine how best to automate this step, as well as to optimize the base
threshold of 30, and the functional dependence on length (eg, trying out
other schemes besides a simple linear one).

5More precisely, this filtering happens only before the translation of each source sen-
tence, when a phrase data structure is constructed for that sentence. The distinction is
important for speed, because the language model is filtered only once based on the target
phrases that are retained when the phrase table is first read in—ie, not those that are
used for each individual sentence.

16This seems strange, but it happens quite frequently, especially when phrase table
weights are negative. In this situation, the hypotheses produced by the decoder with cur-
rent weights are poor, and the presence of the language model causes the good hypotheses
on the nbest list to be ranked higher, even though the phrase scores for those hypotheses
are lower.

27

Expanded-distortion options

To give the lexicalized distortion model more scope to contribute, we ex-
perimented with three previously-implemented options that encourage the
search procedure to consider hypotheses with more reordering;:

e increasing the distortion limit from the standard 7 words to 8;

e always allowing any two contiguous source phrases to be swapped (ie
to be aligned in reverse order to two consecutive target phrases) even
if the resulting hypothesis violates the current distortion limit; and

e relaxing the interpretation of the distortion limit somewhat to allow
more partial hypotheses to be considered (using the -dist-limit-ext
option to canoe)!”

These options were always used together; we did not consider each on its

own. P

Results

Due to the short time available to test the extended search options, we ran
only one comparative test for each, as shown in table 17. Results are sys-
tematically positive, but the gains are small and not necessarily significant,
except for expanded-distortion search, where they are unequivocal (there
may have been a slight bias in this case because the weights were tuned
for the expanded search rather than the baseline, but this clearly does not
account for all of the gain).!8

For all options, there is slightly more evidence than presented in this
table that they help, but it is derived from combining them with other
parameters. More experiments are needed in order to provide a clearer

picture.

"Let the source coverage of the previous phrase be [z,y), the first non-covered
source position be NCW1, and the source coverage of next phrase be [a,b). Then
-no-dist-limit-ext is respected iff b < NCW1+ L and |a —y| < L. -dist-limit-ext
is respected iff a < NCW1+ L and |a —y| < L.

8In an original attempt at running the baseline, we made the interesting mistake of
omitting a distortion limit. Even with a lexicalized distortion model, this is not a recom-
mended strategy: it caused a drop of around 0.5 BLEU, and required 40G of memory to
complete successfully (compared to 8G for the baseline)!

28

configuration search option | nist06 | nist08
dm6+1bf+ext no ftm 34.70 | 28.71
dm6+Ibf+ext ftm 34.84 | 28.74
ext no lbf 33.15 | 27.45
ext Ibf 33.16 | 27.57
dm6-+1lbf+lmert | no ext 35.00 | 28.33
dm6-+1bf+lmert | ext 35.70 | 28.60

Table 17: Results for various extended-search options: ftm - future scores
with forward phrase probabilities; Ibf - length-based hard filtering; and ezt
- expanded-distortion search. These are evaluated in each of the pairs of
results between horizontal lines. The baseline configuration for all tests is
as described in 16, with the additional features noted in the configuration
column: dmé - 6-feature distortion model; and Imert - lattice MERT.

8 Rescoring

After decoding, we rescore hypotheses using additional models, as usual.
This year we used 1,000-best lists for convenience (in the past we have
sometimes used 5,000-best lists). We implemented some new features and
used a new feature-selection algorithm that gave significant gains over our
best single-pass output.

8.1 Rescoring Features

The models used for rescoring were:

1. The models used in the decoder: 2 language model features, 4 trans-
lation model features, 6 distortion model features, and word/phrase
penalties. (14 features)

2. Forward and backward lexicon models: IBM1, IBM2, HMM, HMM
Viterbi-alignment lexicon scores. (8 features)

3. Features that check that all words are translated, and that no words
are inserted, respectively, using IBM1 lexicons. (2 features)

4. IBM1 deletion models [14]. These count all source words whose lexical
probability given each target word is below a threshold. (2 features)

5. Posterior probabilities for words (based on both source and target
position), phrases (based on both source and target position), n-grams,

29

configuration nist06 | nist08
baseline 35.70 | 28.60
+all features 36.01 | 28.97
+hand-selected features 36.10 | 28.91
+all features + greedy pruning 36.22 | 29.21
+ hand-selected features + greedy selection | 36.35 | 29.11

Table 18: Rescoring results

sentence length [22, 17], and word reordering, all calculated over the
nbest lists. (7 features)

6. Numbers of mismatched parentheses and mismatched quotes, within
the hypothesis. (2 features)

7. Cache LM over docs defined in docids file. (1 feature)

8. Length-related features: number of characters and ratio of words in
the translation over words in the source. (2 features)

9. Ngram frequency [4], sum of n-grams (n=1,2,3,4) frequencies in the
N-best lists. (1 feature)

Of the above 25 rescoring features, the word reordering posterior and
ngram frequency features are new in PORTAGE.

8.2 Feature Selection

Since some of the features are partially overlapping and highly correlated to
each other, we applied a greedy algorithm to select a subset of the features.
Two strategies are exploited: a) start from the set of all features, then prune;
b) start from a hand-selected set of features (decoder features, forward and
backward IBM1 and HMM lexicon features, n-gram and sentence length
posterior, n-gram frequency, etc), then expand.

Table 18 shows the results of rescoring the best single-pass configuration
(the one from the last line of tables 17 and 16). The two base feature sets
(all and hand selected) both give approximately a 0.3 BLEU gain over the
baseline, and the greedy strategies increase this by 0.2-0.3 BLEU. For the
evaluation, we used the all + pruning method, which does slightly better on
the indicative nist08 test set.

30

9 Truecasing

Work on the final step in the processing chain comprised a comparison be-
tween the “naive George” approach and the standard HMM-based truecasing
algorithm, experimentation with variants of HMM-based truecasing, and a
new title capitalization heuristic.

9.1 Naive George versus HMM

Our standard approach to truecasing is to treat it as a separate postprocess-
ing step that aims to restore normal case conventions to lowercase MT out-
put, independent of the source text. We model the problem using an HMM
in which the observed sequence is the MT output and the hidden sequence
is the desired truecase version [1]. Hidden-sequence probabilities come from
an ngram LM trained on normally-cased text, and output probabilities are
p(cased-form|lowercase-form), the relative frequency of cased-form among
all forms that map to the given lowercase form in the corpus.'?

Recent results had indicated that a “naive George” approach gave bet-
ter truecasing results than the HMM-based approach. For the record, the
original, “non-naive George” approach consists of:

1. Train IBM/HMM models on lowercase text as usual.

2. Create an “ncl” version of the training corpus in which sentence-initial
capitalization is undone for words which would not be capitalized
on their own. This is accomplished by comparing the probability of
the first word given the following n-1-gram, p(wj|wa, ..., wy,), with the
probability of its lowercase version, p(lc(wy)||wa, ..., wy), and choosing
the most likely. Here p(w|-) is estimated over the whole corpus (all sen-
tence positions, not just the first) using standard language modeling
techniques.

3. Perform phrase-extraction over the ncl parallel corpus, mapping words
to their lowercase equivalents in order to match the IBM/HMM models
for word alignment, but extracting truecase phrases.

4. Decode with the truecase phrase table, using a linear combination of a
lowercase and an ncl LM. Words are dynamically mapped to lowercase
before calculating probabilities with the former.

19This probability technically should be p(lowercase-form|cased-form), since the HMM’s
states are cased forms, but because these correct probabilities are always 1, it seems more
satisfying to use the incorrect version. The two approaches give similar results.

31

configuration nist06 | nist08
**baseline 31.42 | 25.67
**naive George, baseline weights | 30.98 | 24.66
**naive George, MERT weights 30.25 | 24.48

13

Table 19: Results for baseline HMM truecasing compared with “naive

George”. The configuration for all tests is the same as line 5 in table 3.

5. Restore sentence-initial capitalization to final M'T output.

The naive variant, as implemented here? consists of simply training and
running on ncl text (ie, without trying to use lowercase IBM/HMM models
or LMs).

Table 19 shows a comparison between the standard approach and naive
George. The former is so much better than we did not pursue the naive
George approach further. It seems likely that using source information in
some form will benefit truecasing, but this particular avenue does not look
promising at the moment.

9.2 Tuning HMM Truecasing

To tune the HMM truecasing approach, we varied the training corpora
used for HMM output probabilities (the map), and for the LM trained on
naturally-cased text. We also varied the order for the LM. As shown in
table 20, training the map on the parallel corpus and a 4gram LM on the
Gigaword corpus gives a slight advantage (averaged over both test corpora)
over the baseline approach of training both components on the parallel cor-
pus.

9.3 Title Capitalization

During semi-automatic error analysis of nistO8 results, we realized that it
would be beneficial to systematically capitalize content words in the titles
of newswire articles. We originally relied on the genre tag in the nist data
to detect newswire articles, but because of some uncertainty over whether
this information was actually legal, we simply applied content-word capital-
ization to the first line of all documents in the test set, regardless of genre.
This had no negative effect on performance, perhaps because many of the
webtext documents begin with a title or some sort of capitalized identifier.

20Glightly less naive than the version used for previous tests in which the ncl corpus
was produced by systematically lowercasing sentence-initial letters.

32

map Im nist06 | nist08
- - 34.70 | 28.71
parallel parallel 4g | 32.57 | 26.60
parallel giga 3g 32.79 | 26.59
parallel giga 4g 32.86 | 26.57
parallel giga bg 32.75 | 26.54
parallel giga 6g 32.84 | 26.50
parallel small | giga 4g 32.83 | 26.55
giga giga 4g 32.71 | 26.45

Table 20: Different training conditions for HMM-based truecasing. Trans-
lations are produced by the system in the first line of table 17 (lowercase
BLEU scores are given in the first line here for comparison). The map col-
umn describes the lowercase/truecase map: parallel denotes training on the
English half of the parallel corpus; parallel small the English parallel corpus
minus the UN, Hong Kong Laws, and Hong Kong Hansard; and giga the Gi-
gaword corpus. The Im column describes the LM: parallel denotes training
on the parallel corpus, and giga on the Gigaword.

method nist06 | nistO8
baseline 32.86 | 26.57
+ title cap | 33.01 | 27.08

Table 21: Effect of title capitalization.

As shown in table 21, this strategy results in a very significant gain over
the baseline truecasing approach.

10 Conclusions

To conclude, we first briefly summarize the techniques that were included
in this year’s system (and not in last year’s), along with their approximate
BLEU gain (non-cumulative, and typically averaged over several different
baselines and test corpora):

e better preprocessing (especially of FBIS): 0.5 (estimated, because re-
sults were confounded with corpus switch)

e IR-based relevant corpus as LM mixture component (with max-BLEU
weighting): 0.2

33

higher-order LMs (5g adapted; 6g Gigaword): 0.1
lexicalized HMMs [9]: 0.3

“adapted” lexical probs from HMM trained on in-domain parallel cor-
pus: 0.5

fixing the “insect”: 0.4 (more optimization required)

Moses-style lexicalized distortion with 6 features, MAP smoothing for
rf estimates: 1.3

lattice MERT [13]: better test results than nbest in 12/15 configura-
tions

expanded search, with future scores for forward probabilities, length-
based phrase-option filtering, distortion limit of 8 (versus 7), relaxed
distortion limit (-dist-limit-ext), and swapping always allowed: 0.5

rescoring with IBM- and nbest-based features ([17, 4]: 0.3 BLEU
greedy feature pruning for rescoring +0.3 BLEU

truecasing with “title trick”: 40.3 BLEU

Here are the techniques that we tested but did not include in this year’s
system, along with an explanation:

long-sentence splitting [21]: +0.2 BLEU (positive results weren’t known
early enough)

Gigaword mixture adaptation: -0.4 BLEU

new HMM implementation (fixed end distribution and observed-word
conditioning): -0.1 BLEU (was also considerably slower)

linear phrase-table combination to avoid “holes”: +0.3 (gain was very
small on nist08 corpus; method somewhat more cumbersome)

significance features [11]: no time
phrase-association features [5]: no time

passive truecasing (train on naturally-cased text): -1.0+

34

A Maximum A Posteriori (MAP) Estimation

Parameter estimation is a central problem in statistical NLP. Typically,
given a model p(x|6), we wish to set its parameters 6 based on some training
dataD. A common approach is maximum-likelihood (ML) estimation, which
chooses the parameters that maximize the probability of the data according
to the model:
0 = argmax p(D|0),
[4

assuming that D consists of a sequence of independent events x, say. A
problem with ML estimation is that it tends to overfit D, since it doesn’t
take into account any phenomena that don’t occur in that data.

MAP estimation explicitly models the posterior distribution of the pa-
rameters given the data, which is a natural strategy since it is the data and
not the parameters that have been observed. It chooses parameters that
maximize this distribution:

0 = argmaxp(0|D)
0

= argmax p(D|0) p(0),
0

where the two factors on the second line are called the likelihood and prior
distributions. MAP estimation can be seen as ML estimation weighted by
the prior, which can be used to express knowledge such as that vocabulary
words should not be assigned 0 probability even if they don’t occur in a
particular training text.

As an aside, MAP estimation is related to Bayesian inference, which
does away with discrete parameter estimation by considering all parameter
values at each point:

palD) = [plo.0D)as
— [blalo) poID)as
where the second factor is the posterior probability that is maximized un-
der MAP. The Bayesian approach has an appealing theoretical motivation
(predicting new values x directly from previously observed data), but the

resulting formula is usually impossible to calculate analytically, and hence
relies on expensive sampling methods. See [3] for more details.

35

A.1 Using a Dirichlet Prior

In many NLP models for p(z|@), = ranges over a set of discrete events such as
words or the orientations in section 6.4, and the parameter vector 6 contains
event probabilities 6; = p(x;), i = 1...N. (Typically x is conditioned on a
context such as an ngram or phrase pair, but we will leave this conditioning
implicit for simplicity, since it doesn’t change the development below.) The
probability that this model assigns to a set of independent observations

D =zx..xp is:
T N

p(D10) = [p(z;10) =] 6] (1)

j=1 i=1

where f; is the frequency of z; in D.2! It is not hard to show that the
maximum-likelihood estimates for this distribution are él = f;/T, i=1...N.

When performing MAP estimation, it is convenient to choose a prior
distribution that is comjugate to the likelihood function, so that the poste-
rior distribution will have the same functional form as the prior. For the
distribution above, the conjugate prior is the Dirichlet:

. I'(a N o
Dir(f|a) = R (-OIZ(OZN) ;l_[lez(n

with parameters aq...an, and ay = Ef\i 1 «;. This assigns a probability to
any valid set of multinomial parameters 6, with the usual constraints that
0; € [0,1],7 = 1...N, and Ef\il 0; = 1. 6 thus ranges over a simplex with
vertices at the points where each 6; = 1 and the other parameters are 0. The
Dirichlet parameters a control the shape of this distribution, with «; < 1.0
favouring high values of 6;, a; = 1 giving a uniform distribution, and «; > 1
favouring intermediate values.
Under a Dirichlet prior, the MAP equation becomes:

N
6 = argmax p(D|6) Dir(6|a) = argmax [] 617,
o 0 =1

21 This is very similar to the multinomial distribution, which models the probability that
N events will occur with a particular set of frequencies in T trials, rather than the actual
sequence of outcomes from the trials, as here. The multinomial therefore includes a factor
T/ 11, fi! to count the number of sequences having the event frequencies fi...fn, each of
which has probability HN oSt

=1 "1

36

omitting the Dirichlet normalization factor, which doesn’t depend on 6. By
similarity to (1), this has the solution:

N
Oi=(fi+0ai—1)/(T+> ai—N), i=1.N.

=1

Use of a Dirichlet prior for MAP is thus equivalent to augmenting the event
counts in D by «;—1, then performing ML estimation. It can be reformulated
somewhat more conveniently as:

0; = (fi+ a po(@:) /(T + a),

where po(x) is a prior having the same form as the original likelihood dis-
tribution, and « is a global scalar hyperparameter that controls the relative
contribution of the prior and the likelihood (abusing notation somewhat).
This formula has the appealing property that it adjusts automatically to the
amount of evidence available: large values of f; will result in estimates that
are close to ML, while for small values the prior will dominate.

References

[1] Akakpo Agbago, Roland Kuhn, and George Foster. Truecasing for the
portage system. In Recent Advances in Natural Language Processing
(RANLP), Borovets, Bulgaria, 2005.

[2] Michael Auli, Adam Lopez, Hieu Hoang, and Philipp Koehn. A sys-
tematic analysis of translation model search spaces. In WMTO09 [20],
pages 224-232.

[3] Christopher M. Bishop. Pattern Recognition and Machine Learning.
Springer, 2006.

[4] B. Chen, R. Cattoni, N. Bertoldi, M. Cettolo, , and M. Federico. ITC-
IRST SMT system for IWSLT-2005. In IWSLT 2005, Pittsburgh, 2005.

[5] Boxing Chen, George Foster, and Roland Kuhn. Phrase translation
model enhanced with association based features. In MTS09 [10]. To
appear.

[6] George Foster and Roland Kuhn. Mixture-model adaptation for SMT.
In WMTO7 [19].

37

[7]

8]

[10]

[11]

[16]

[17]

George Foster and Roland Kuhn. Stabilizing minimum error rate train-
ing. In WMTO09 [20].

George Foster, Roland Kuhn, and Howard Johnson. Phrasetable
smoothing for statistical machine translation. In Proceedings of the
2006 Conference on Empirical Methods in Natural Language Process-
ing (EMNLP), Sydney, Australia, 2006.

Xiaodong He. Using word-dependent transition models in HMM based
word alignment for statistical machine translation. In WMTO07 [19].

International Association for Machine Translation. Proceedings of MT
Summit XII, Ottawa, Canada, September 2009.

Howard Johnson, Joel Martin, George Foster, and Roland Kuhn. Im-
proving translation quality by discarding most of the phrasetable. In
Proceedings of the 2007 Conference on Empirical Methods in Natural
Language Processing (EMNLP), Prague, Czech Republic, 2007.

Reinhard Kneser and Hermann Ney. Improved backing-off for m-gram
language modeling. In Proceedings of the International Conference on
Acoustics, Speech, and Signal Processing (ICASSP) 1995, pages 181—
184, Detroit, Michigan, 1995. IEEE.

Wolfgang Macherey, Franz Josef Och, Ignacio Thayer, and Jakob Uszko-
reit. Lattice-based minimum error rate training for statistical machine
translation. In Proceedings of the 2008 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), Honolulu, 2008.

A. Mauser, R. Zens, E. Matusov, S. Hasan, and H. Ney. The RWTH
statistical machine translation system for the IWSLT 2006 evaluation.
In IWSLT 2006, Kyoto, Japan, 2006.

Franz Josef Och. Minimum error rate training for statistical machine
translation. In Proceedings of the 41th Annual Meeting of the Associa-
tion for Computational Linguistics (ACL), Sapporo, July 2003.

Michel Simard and Pierre Isabelle. Phrase-based machine translation
in a computer-assisted translation environment. In MTS09 [10]. To
appear.

Nicola Ueffing and Hermann Ney. Word-level confidence estimation for
machine translation. Computational Linguistics, 33(1):9-40, 2007.

38

[18]

[19]

[20]

[21]

[22]

23]

[24]

WMT. Proceedings of the NAACL Workshop on Statistical Machine
Translation, New York, June 2006.

WMT. Proceedings of the ACL Workshop on Statistical Machine Trans-
lation, Prague, June 2007.

WMT. Proceedings of the 4th Workshop on Statistical Machine Trans-
lation, Athens, March 2009.

Jia Xu, Richard Zens, and Hermann Ney. Partitioning parallel docu-
ments using binary segmentation. In WMT06 [18].

R. Zens and H. Ney. N-gram posterior probabilities for statistical ma-
chine translation. In WMTO06 [18].

Richard Zens and Hermann Ney. Improvements in phrase-based statisti-
cal machine translation. In Proceedings of Human Language Technology
Conference / North American Chapter of the ACL, Boston, May 2004.

Andreas Zollmann, Ashish Venugopal, Franz Och, and Jay Ponte.
A systematic comparison of phrase-based, hierarchical and syntax-
augmented statistical MT. In Proceedings of the International Confer-
ence on Computational Linguistics (COLING) 2008, Manchester, Au-
gust 2008.

39

