
Feature Selectionin a French MEMD Language ModelGeorge FosterJanuary 20, 20001 IntroductionLanguage models which estimate p(wjh), the probability that a word w willfollow a sequence h of previous words, have many applications in naturallanguage processing, including speech recognition, machine translation, lan-guage identi�cation, character recognition, and text compression. From amachine learning perspective, language modeling is a challenging problembecause vocabularies are typically on the order of 10,000 or 100,000 words,training corpora can contain tens or hundreds of millions of words or more,and for any history h the true distribution p(wjh) is extremely unlikelyto be identical to the distribution for any other history. From a naturallanguage perspective, language modeling is among the problems best suitedto ML techniques, because there is no need for expensive and subjectivehand-labelling of examples,1 and because a simple, automatic, and relativelyapplication-independent evaluation procedure exists.The most widely-used language model is the trigram [8], which is basedon the assumption that only the last two words in a history are signi�cantwhen predicting what will come next: p(wjh) � p(wjw00; w0), where h endswith w00; w0. Advantages of the trigram are that it is conceptually simple,very e�cient to train and run, and gives surprisingly good results. Its maindisadvantage is that it relies on a very large number of parameters. Thiscomplicates implementation and makes maximum likelihood estimates fromrelative frequencies unreliable (for example, any trigram not observed in thetraining corpus will be assigned a probability of zero, whereas intuitivelyeven the largest training corpora will not include a large number of rarebut linguistically valid trigrams). An e�ective and popular solution to the1Although some human input is nevertheless required in establishing heuristics to iden-tify words and sentences in running text, and in specifying a mapping from a potentiallyin�nite set of \words" (including items like numbers, dates, proper nouns, etc) encounteredin text to a �nite vocabulary, which most language models assume.1



latter problem is to smooth raw ML trigram estimates by incorporatinginformation from more reliable bigram and unigram estimates.Although the smoothed trigram is obviously 
awed as a model of naturallanguage, it has proven surprisingly di�cult to come up with alternativesthat signi�cantly outperform it. One problem is that it is hard to �nd ane�ective way of incorporating additional information into a trigram. Toillustrate this, consider a cache model [10, 9] consisting of a unigram dis-tribution estimated from relative frequencies over the last several hundredwords of h. Clearly this captures information about recent lexical prefer-ences that would be useful in enhancing static trigram predictions at thecurrent position. However, the optimum method for combining trigram andcache distributions is not obvious. A standard approach is to take a linearcombination of the form a ptrigram(wjh) + b pcache(wjh), where a+ b = 1, butthis method has the drawback that it tends to average over the strengths andweaknesses of both models. In a context where the trigram is able to makea con�dent prediction but the cache is unsure, for example, the combiningweights will dilute the strength of the trigram's prediction. In principle thiscould be remedied by making the combining weights depend on h, but inpractice (as in this example) it is not always obvious how to do this in sucha way that the weights themselves can be estimated reliably.An alternate approach for combining information from di�erent sourceshas recently become popular for NLP applications. This technique, knownas Maximum Entropy/Minimum Divergence (MEMD) modeling, uses a col-lection of features|real-valued functions f(w;h)|to capture arbitrary rela-tions between a word and its context. There are no restrictions on what canconstitute a feature. For example, a feature could return the frequency ofw in the last hundred words of h (analogous to a cache model); or it mightcapture the fact that w belongs to a particular grammatical category andthat the last few words in h belong to a particular sequence of grammaticalcategories; or it might indicate w's semantic class. The main strength ofMEMD modeling is that it provides great 
exibility for combining disparatesources of information; and furthermore, in contrast to techniques like linearcombination, it does so in a theoretically-justi�ed way, as will be describedin the next section.The drawback to MEMD is that it is very computationally expensive.For example, although it would be possible to construct the equivalent ofa trigram model within this framework, the implementation would be verycumbersome. Fortunately, there is a way around this: MEMD also providesfor a reference distribution, which plays a role similar to that of a Bayesianprior. In the case of language modeling, a natural candidate for this distri-2



bution is a smoothed trigram. Using a trigram as a reference model gives theMEMD model good baseline performance, and one can hope to �nd a set offeatures that will improve substantially on this baseline without sacri�cingtoo much of the trigram's e�ciency as a result.The main challenge in MEMD modeling is �nding a maximally infor-mative set of features. Linguistically-motivated heuristics can be used tode�ne feature sets, but a better approach is to use linguistic knowledge tode�ne an initial large pool of candidate features and then select a subsetfrom this pool on the basis of empirical evaluation (the assumption here isthat the initial pool is either too large to be practical or so large as to over�tthe training corpus). Berger et al [3] have described a powerful and naturalalgorithm for feature selection, but unfortunately it is too expensive to beused for full-scale language models trained over large corpora. In a recentpaper [12], Printz suggests a much more e�cient variation on Berger et al'salgorithm, which has the potential to make automatic feature selection moreviable for language modeling.For my project I implemented a MEMD language model for French whichuses a smoothed trigram as a reference distribution and a set of triggers asfeatures. Triggers are functions of the form:fuv(w;h) = � 1; u occurs in the last L words of h, and v = w0; elsewhere u and v are words in the vocabulary, and the \window length" pa-rameter L is the same for all triggers. Triggers are a kind of generalizationof a unigram cache model (which can be thought of as a collection of \selftriggers" fuu), but with frequency replaced by a binary indicator functionfor reasons of e�ciency and robustness. They were �rst used by Rosenfeld[11, 13] within a ME framework very similar to the one I describe here, butwith the important di�erence that in Rosenfeld's case trigrams were incor-porated as features instead of within a reference distribution. Triggers havealso been used by Berger and Printz [2].The aim of my experiments was twofold: to evaluate Printz' algorithm,both from a practical standpoint and empirically by comparing it to a sim-ple heuristic method for selecting trigger features; and to measure the per-formance improvement over a trigram obtainable by using trigger featureswithin an MEMD framework, in comparison to the improvement given by aroughly equivalent cache model in a linear combination.The rest of this paper is structured as follows: section 2 gives a formaldescription of the MEMD method, section 3 describes the feature selection3



algorithms, section 4 describes the training algorithms, section 5 describesthe experimental setup and results, and section 6 concludes.2 Maximum Entropy/Minimum Divergence ModelA MEMD model has the form:p(wjh) = q(wjh) exp(� � f(w;h))=Z(h); (1)where q(wjh) is a reference distribution, f(w;h) maps (w;h) into an n-dimensional feature vector, � is a vector of feature weights (the parametersof the model), and Z(h) is a normalizing factor (the sum over all w of thenumerator term). Letting q(wjh) = exp(f0(w;h)), we can write:log s(w;h) = f0(w;h) + � � f(w;h) (2)where s(w;h) is the numerator in (1). It is easy to see that the right handside of (2) represents a single-layer neural net with n+1 inputs, a �xed weightof 1 on input 0, and a single output which gives a score for (w;h). (1) appliesa softmax function summed over all words to this output. Alternately, themodel can be thought of as computing a function from h to a vector ofscores, one for each word. In this case, the net consists of jW j units, whereW is the vocabulary, the input and output of w'th unit are described by (2),and the vector of weights � is constrained to be identical for all units.As their name implies, MEMD models can also be given an information-theoretic interpretion. Suppose we are con�dent that the expected valuesof the feature functions with respect to the empirical distribution ~p de�nedby the data are an accurate re
ection of their true values. If this is all thatis known about the true distribution, a reasonable estimation strategy is touse the distribution that has maximum entropy among all those which havethe desired expected values. The idea is to avoid making any inferenceswhich are not supported by the data. If, in addition to the data, someprior (or reference) distribution q is available, then �nding the distributionwith maximum entropy can be generalized to �nding the distribution p withminimum Kullback-Liebler divergence (relative entropy) D(pjjq) from thereference, where D(pjjq) = Px p(x) log[p(x)=q(x)]. Given q and a set ofexpected-value constraints of the form:Ep[fi(w;h)] = E~p[fi(w;h)]; i = 1 : : : n;4



it can be shown [3] that the distribution which satis�es the constraints withminimum divergence from q is unique and has the form:p(w; h) = q(w; h) exp(� � f(w;h))=Zwhere Z is the sum over all (w;h) of the numerator. (For most NL appli-cations, Z is too expensive to compute, so the conditional form (1) is usedinstead of the joint|fortunately, Z cancels out when deriving the condi-tional using Bayes' law.) Remarkably, it can also be shown that the mini-mum discrimination information distribution is also the maximum likelihooddistribution with respect to �, and furthermore that likelihood is a convexfunction of �, so hillclimbing techniques are guaranteed (in principle) to �ndthe MDI/ML distribution in this case.In certain �elds such as physics (where the technique originated [7, 6]),this result is of direct practical utility, because the expected values of a rela-tively small number of parameters can be measured with precision. However,for most NLP applications|including language modeling|it is not, becausethe reliable statistics on which the model should be based are unknown. Fea-tures must therefore be established using heuristics, as described in the nextsection.It is interesting to examine intuitively how a model of the form (1)di�ers from linear combination as a method of combining di�erent sourcesof information. To simplify the comparison, suppose that there are twoequally-valuable sources of information to be combined, captured in the caseof linear combination by two distributions p1 and p2 with a weight of .5, andin the case of MEMD by two feature functions f1 and f2, each with a weightof 1. Suppose that, in some context, p1 and f1 both make a maximallystrong prediction of some word w, while p2 and f2 are maximally uncertain.Then the resulting linear combination will assign a probability of .75 to w,but the MEMD model will assign a probability approaching 1. Thus MEMDexhibits a built-in bias in favour of strong predictions, (and also strong anti-predictions) which may lead it to outperform a linear combination wheneversuch preferences are based on reliable empirical evidence.3 Feature SelectionThe intuition which underlies Berger et al's feature-selection algorithm issimply that, because training a MEMD model involves maximizing the like-lihood, the optimum set of features of a given size should be the one whichassigns highest likelihood to the corpus. Since determining the likelihood5



associated with all feature sets is combinatorially impossible, a sensible strat-egy is to grow a set one feature at a time by greedily adding at each step thenew feature which gives the greatest increase in likelihood over the currentmodel. However, even this is very expensive, because it necessitates train-ing a new model for each candidate feature that is to be evaluated. Bergeret al therefore advocate holding all parameters of the current model �xedand optimizing only the weight associated with the current candidate fea-ture. Formally, de�ne the gain, Gf , due to a feature f to be its associatedmaximum log-likelihood ratio:Gf = max� Gf (�) = max� 1T logpf�(w)p(w)where w = w1; : : : ; wT is the training corpus, p is the model at the currentstep, and pf� is p with the addition of the feature f with a weight of �. Thefeature which gets added to the model at each step will be the one with thehighest gain.The essential step in feature selection is therefore that of maximizingGf (�) in �. Berger et al observe that this can be done in parallel for allcandidate features at once, and suggest using Newton's method to �nd theroot of the derivative G0f(�). Each iteration of Newton's method requiresone pass over the corpus to calculate G0f (�) and G00f (�) for the current valueof �.2 Although this is not substantially more expensive than training amodel (see the next section), it must be kept in mind that the purpose offeature selection is to winnow a very large initial pool of features down toa manageable size. If the initial pool is too large to permit training in areasonable time, it will also be too large to permit gains to be computed ina reasonable time.3 Another di�culty with this method of feature selectionstems from its incremental nature: searching a large pool of features for thebest subset of size 100k, for example, would require 100k feature-additionsteps and therefore at least this many passes over the corpus.Printz' method addresses both these problems. First, he suggests thatNewton's algorithm can be replaced by an approximated function method2Alternately, certain values associated with each feature can be calculated in a singlepass over the corpus and stored in memory, allowing the algorithm to proceed withoutany future references to the corpus. For large feature sets and corpora the memory re-quirements of this technique are prohibitive.3Note, though, that there is one important di�erence between training and computinggains: features interact during training but not when computing gains. This means thatgains could still be computed, sequentially, for a set of features that was too big to �t inmemory at once. 6



which requires only a single pass over the corpus. Second, he advocates doingaway with repeated feature addition steps by simply using the gain over thereference model as a measure of a feature's worth in the �nal model. Hismethod can therefore be summarized as follows: compute approximate gainswith respect to the reference model in a single pass over the corpus, rankfeatures in order of decreasing approximate gain, then select the optimumcuto� point in this ranking. In theory, this seems a radically suboptimalsearch, but it is justi�ed if it allows for the fruitful exploration of very largefeature sets which would otherwise remain inaccessible.4The core of Printz' algorithm is the approximated function method,which in essence works as follows. For each feature f (in parallel, if de-sired ), compute the value of G0f (�) over a pre-determined set of test pointsf�1; : : : ; �sg. Fit these points using least-squares polynomial interpolation,then use the interpolating function to solve numerically for the root, whichapproximates �̂, the optimum weight for f . Finally, integrate the interpo-lating function numerically (over a range which depends on �̂) to get anapproximation for Gf .5 Of all these steps, only the computation of G0f (�)depends on the corpus, so the algorithm requires only a single pass (as-suming a memory overhead of S times the number of features, for storingintermediate values of G0f(�1); : : : ; G0f (�s)).The approximated function method has a fairly large number of parame-ters which must be tuned, including stopping criteria for the three numericalalgorithms used (least-squares polynomial, Newton-Raphson root-�nding,and Romberg integration), order of the interpolating polynomial, and num-ber and location of the test points. Of these, I found that performance wasparticularly sensitive to the polynomial order and the location of test points,with severe degradation in cases where the test points failed to bracket �̂, orwhere �̂ was a large negative value and the polynomial order was low. Fur-thermore, I found that the accuracy of the numerical approximation to Gfwas very sensitive to small errors in the estimate of �̂, suggesting that, wheretime permits, it might be better to use an additional pass over the corpusto calculate the true values of Gf (~�), (where ~� is the approximation to �̂)instead of relying on numerical integration. Table 3 shows the performance4My own experience underscores this last point: machine-time limitations forced meto evaluate Printz' algorithm by comparing it only to a simple heuristic, rather than toBerger et al's algorithm as well, which would have been more interesting.5I have glossed over many details here, in the process obscuring the reason for usingnumerical rather than analytic integration when the interpolating function is apparentlya polynomial. In actual fact, for technical reasons, the interpolating function is the recip-rocal of a polynomial, and the least-squares �t is to the reciprocals of the test points.7



Gf (�̂) Gf (~�) ~Gf (~�) �̂ ~� trigger7.43e-05 7.20e-05 6.78e-05 0.810 1.012 m. ! m.2.50e-05 1.98e-05 7.38e-05 -0.389 -2.510 gouvernement ! pr�esident1.84e-05 1.26e-05 4.88e-05 -0.385 -1.490 je ! loi8.17e-06 6.41e-06 1.61e-06 0.281 0.186 pr�esident ! est7.65e-06 7.21e-06 1.17e-05 -0.258 -0.645 ministre ! canada3.82e-06 3.82e-06 3.89e-06 -0.103 -0.104 est ! je2.69e-06 2.42e-06 4.52e-06 -0.133 -0.182 a ! gouvernement2.69e-06 2.01e-06 5.84e-06 -0.161 -0.364 gouvernement ! canada9.87e-07 3.44e-07 3.05e-06 -0.098 -0.238 nous ! ministre6.88e-07 6.50e-07 1.04e-06 -0.070 -0.234 loi ! canadaTable 1: Performance of Printz' algorithm on a set of trigger features selectedrandomly from among frequent words, over a 390k word training corpus.Features are ordered by decreasing true gain Gf(�̂) calculated by training,for each feature, a single-feature model with a reference trigram distribution,to get the optimum weight �̂. ~� denotes the approximation to �̂, and ~Gf isthe approximated gain.of Printz' algorithm on a small set of triggers, and illustrates that|for thistest at least|the resulting feature ordering does not correspond to the trueordering. However, because the results seem fairly reasonable, to save time Iadopted Printz' parameter values verbatim, and used a 4th order polynomialwith the (logscale) test points f�1; 0; 2; 6; 10; 14g for all experiments.4 TrainingA simple way to train MEMD models is by gradient ascent. The log-likelihood of the corpus is given by:log p(w) = TXt=1 log q(wtjht) + � � f(w;h)) � logZ(ht):Di�erentiating with respect to the ith weight:@ log p(w)@�i = TXt=1 fi(wt;ht)� @ logZ(ht)@�i= TXt=1 fi(wt;ht)�Xw q(wjht)fi(w;ht) exp(� � f(w;ht))Z(ht) :8



This expression can be used to update each parameter in the usual way,either in \batch" mode: �i  �i + �@ log p(w)@�i ;or by using the individual terms in the sum to update parameters at eachposition in the corpus.Although gradient ascent is simple to implement, its convergence prop-erties are heavily dependent on the gradient step �, and it can be di�cultto specify ahead of time an optimum value (or progression of values) forthis variable. Berger et al [3] describe a specialized training algorithm forMEMD called Improved Iterative Scaling (IIS), based on earlier work byDarroch and Ratcli� [5], which converges much faster than gradient ascentand does not require setting a step parameter.Each iteration of IIS involves solving numerically (via Newton's algo-rithm) for a weight update quantity �i in the following equation:Ep[fi(w;h) exp(�if#(w;h))] = E~p[fi(w;h)];where f#(w;h) gives the number of features which are active (take on non-zero values) for (w;h), and the expected values are with respect to p(w;h)and ~p(w;h) respectively. Once �i has been calculated for each weight �i, allweights are updated according to: �i  �i +�i, and the process continuesuntil convergence.A major problem with this equation is that, for language models, theexpectation with respect to the joint model p(w;h) is impossible to computedue to the sum over h. To get around this, a common solution is to use thedistribution ~p(h)p(wjh) instead of p(w;h); in other words, to constrain themarginal of the joint model to its empirical value during training. Underthis assumption, and the fact that ~p(ht) = 1=T at each position t in thecorpus, the above equation becomes:TXt=1Xw p(wjht)fi(w;ht) exp(�if#(w;ht)) = TE~p[fi(w;h)]The key to implementing IIS e�ciently is to observe that this can berewritten as a polynomial by making the transformation 
i = exp(�i):TXt=1Xw p(wjht)fi(w;ht)
f#(w;ht)i = TE~p[fi(w;h)]:9



Thus if the set of (integer) values that f#() takes on whenever feature iis active throughout the corpus is known,6 the main part of the algorithmreduces to collecting the values of the coe�cients corresponding to theseexponents. At the end of each iteration, when the coe�cients are known forall features, Newton's algorithm can be applied to solve e�ciently for thevalue of 
i that satis�es the polynomial equation for each feature.The costly part of IIS is computing p(wjh) for each word in the vocabu-lary and each history in the corpus. Rather than describing in detail how Idealt with this, I will sketch an e�cient method for calculating Z(h), whichindicates the essence of the approach; similar techniques were applied togradient ascent and Printz' feature selection algorithm. The main idea is toorganize the lookup for the features which are active (ie, non zero) on h tosupply a set of words to which at least one of these features applies. Callingthis set A, we can write:Xw q(wjh) exp(� � f(w;h)) = Xw2A q(wjh) exp(� � f(w;h)) +Xw=2A q(wjh)= Xw2A q(wjh)[exp(� � f(w;h)) � 1] + 1;eliminating the sum over all \non-active" words in the vocabulary, which canincrease e�ciency considerably when only a relatively small set of words areactive for each history, and when the reference model takes non-negligibletime to compute.In practical tests, I found that IIS gave much better results than gradientascent, usually converging within 20 iterations or so compared with 50 ormore|for models that can take days to train, this is a signi�cant savings.I used IIS for all MEMD training described in the next section.5 Experiments5.1 Test SetupI ran all experiments using the French text of the Canadian Hansard corpus(transcripts of parliamentary proceedings), for the years 86-94. After cer-tain �ltering operations,7 the corpus consisted of about 34M words in 10086This can be established in a single preliminary pass through the corpus, since thesevalues don't change during training.7Eliminating sentences longer than 40 words, and those which do not translate into asingle English sentence. This was done for other work, and has no relevance to language10



name purpose �les wordstrain A main training 918 31,709,800train B trigram interpolation parameters 30 1,082,350train C feature cuto� 30 1,241,581test test corpus 30 1,103,320Table 2: Corpus division; note that the four segments shown are contiguousand in chronological order.�les, with each �le usually corresponding to a single day's parliamentaryrecord. An important characteristic of the Hansard is that it is chronolog-ically ordered, so adjacent �les tend to be similar, and later �les containmore information about earlier ones than the converse. Since most languagemodel applications will involve new (ie, future) Hansard text, this meansthat using a random selection of �les as a test corpus will give optimisticresults when the rest of the corpus has been used for training. A more re-alistic evaluation can be obtained by training on some initial portion of theHansard and testing on a later portion. Because of this, I split the corpusinto contiguous train and test portions with the training set further subdi-vided into a main block (A) and two \held-out" blocks (B and C), as shownin table 5.1. Due to time constraints I used only a single train/test split.All training and testing was performed on a version of the corpus in whichboth tokens (ie, word occurences) and sentences had been automaticallyidenti�ed. To control for out-of-vocabulary words, all models used the samevocabulary, consisting of all words which appeared more than once in blocksA and B, plus one special unknown word UNK. During training, any wordwith frequency 1 in the corpus was mapped to UNK; during testing, anyword not found in the vocabulary was mapped to UNK, and the probabilityof each UNK token was divided by the total number of out-of-vocabularywords encountered in the text.The models' performance was evaluated using the standard perplexitymeasure [1]. This is a geometric average over token probabilities, p(w)�1=T ,where p(w) = QTt=1 p(wtjw1 : : : ; wt�1) is the probability assigned to thecorpus by the model. Perplexity is a useful measure because it takes onconvenient values (on the order of 100), is independent of corpus size, andhas an intuitive interpretation as the size of a uniform distribution (assumedmodeling, but available disk space did not permit me to maintain a separate version ofthe corpus with these constraints removed.11



to contain the correct word) which would give the same performance as themodel being evaluated. One thing to note about this measure is that itsvalue is in�nite whenever a model assigns zero probability to a word in thecorpus.5.2 Reference ModelThe reference model for the MEMD models used in all experiments was astandard interpolated trigram, of the form:p(wjh) = �3(w00; w0)~p3(wjw00; w0) + �2(w00; w0)~p2(wjw0) += �1(w00; w0)~p1(w) + �0(w00; w0)p0(w);where ~pi() is the empirical distribution over i-grams, p0(w) is a uniform dis-tribution over all words in the vocabulary, and �i is the weight associatedwith the ith distribution when w00; w0 are the last two words in h. Followingstandard practice, I let the weights depend on the frequency of the condi-tioning bigram, ie �(w00; w0) = �(freq(w00; w0)), so there is one set of weightsfor each distinct bigram frequency in the training corpus.8The �rst step in creating this model was to count ngrams over blockA. More speci�cally, for i = 1 : : : 3, i-gram frequencies were collected oversentences by prepending i � 1 special markers to the beginning of eachsentence, then sliding a window of length i along the sentence, countingone i-gram at each position, until the end of the window reached the end ofthe sentence. This resulted in 7,267,001 trigrams, 1,786,611 bigrams, and66,509 unigrams; the total vocabulary contains 66,718 words. For each i,the associated empirical distribution is de�ned as:~pi(wijw1; : : : ; wi�1) = freq(w1; : : : ; wi)Pwi freq(w1; : : : ; wi) :The next step was to estimate maximum likelihood values for the com-bining weights �i(w00; w0). The corpus used for this must be distinct from theone used to collect ngram frequencies, otherwise there will be a bias towardhigher-order ngrams; it is easy to see that in the case when both corporaare identical, maximum likelihood will assign a weight of 1 to the empiricaltrigram distribution. Because there are far fewer combining weights thanngram parameters, (26,570 versus over 9M), I used the much smaller blockB to estimate them. Maximum likelihood values were obtained from the8This is not the optimum way of constructing an ngram model [4], but it gives goodresults and is easy to implement. 12



model perplexitiestrain A train B train C test~p3 18.51~p2 66.24~p1 703.61p0 67549.6p 23.57 47.17 55.98 61.05Table 3: Perplexities of the trigram reference distribution p and its com-ponents on di�erent segments of the corpus. The rise in perplexity with\distance" from block A re
ects the chronological nature of the Hansard.The perplexities of B, C, and test for the empirical models are not shownbecause they are in�nite.EM algorithm, which in this case takes a particularly simple form. Eachiteration collects expected values associated with the current model in eachbigram context:ci(w00; w0) = TXt:su�(ht)=w00;w0 ~pi(wtjht)�i(w00; w0)p(wtjht) i = 0 : : : 3; 8(w00; w0) (3)where ht = w1; : : : ; wt�1, and the sum is over all such histories that end inw00; w0. At the end of each iteration, each parameter is updated accordingto: �i(w00; w0) ci(w00; w0)P3i=0 ci(w00; w0) ; i = 0 : : : 3; 8(w00; w0): (4)Table 5.2 shows some of the perplexities associated with the trigrammodel and its components. These are quite low, indicating that the Hansardis a fairly homogeneous corpus.5.3 Evaluating Printz' MethodI evaluated Printz's feature selection method by comparing it to an obviousheuristic for selecting trigger features: the mutual information (MI) betweentrigger and target words, de�ned as:I(u; v) =Xu;v ~p(u; v) log ~p(u; v)~p(u)~p(v)13



where ~p(u; v) is the empirical joint distribution over trigger pairs u ! v,~p(u) and ~p(v) are the left and right marginals of this, and the sum is overthe four terms (u; v), (�u; v), (u; �v), and (�u; �v).To establish ~p(u; v), I counted every occurrence of a word precedinganother word in the A and B corpora. In order to reduce the size of the tablethat needed to be stored, pairs were limited to those where the trigger andtarget both occurred within the same sentence, and where neither word wasamong the 45 most frequent function words in the vocabulary. To make thetriggers complementary to the information captured by the trigram model,pairs where the target occurred within 2 words of the trigger were alsoeliminated. Of the resulting approximately 20M pairs, I retained the 2Mwith the highest MI scores which also had pair frequencies greater than orequal to �ve.My original plan was to use these pairs as an initial pool for feature se-lection using Printz' algorithm. However, this would not have been feasiblein the available time, so I ran the algorithm on a much smaller pool of justthe top 100k pairs (which still required several days to process). (Unfor-tunely, 100k features is suboptimal|the perplexity of a held-out trainingcorpus versus number of features continues to drop past this point, so thecomparison is less interesting than it might have been.) In order that theinformation available to the algorithm would be similar to that on whichMI scores were based, I used a MEMD model with a �xed trigger-windowlength of 15.After computing approximate gains with Printz' algorithm, I sorted thetrigger list in order of decreasing gain and compared it to the same list sortedin order of decreasing MI score. The results are signi�cantly di�erent, asshown in table 5.3. Empirical comparisons were made by training MEMDmodels (again with window length 15) using the top n features in bothlists, for each n in f1000; 2000; 5000; 10000; 20000; 50000; 100000g. Due totime constraints, the training corpus was limited to the last 100 �les in Aand B (3.6M tokens in total). The performances of these models over thetest corpus are shown in �gure 1 and table 5. In all cases (except on the100k feature set, where the two models are identical), the gain-based modeloutperforms the MI-based model by a small margin.To test the signi�cance of this result, I computed individual perplexitiesfor each of the 30 �les in the test corpus for both MI and gain models ateach feature-set size. Since these perplexities show signi�cant variation from�le to �le, with only a barely discernable upward trend with time, it seemsreasonable to treat them as iid. Although the standard deviation for anyparticular model is high, the deviation of the di�erence between MI and gain14



MI ranking gain rankingm. ! pr�esident << ! >><< ! >> ne ! pasm. ! monsieur ils ! ilspr�esident ! paproski suppl�eant ! monsieurhon. ! monsieur seulement ! maishon. ! pr�esident elle ! ellehon. ! ministre m. ! m.voix ! ! monsieur ! suppl�eantm. ! { non ! mais{ ! pr�esident n' ! pasTable 4: Top ten trigger pairs for MI and gain ranking methods. (The anglebrackets are French quotation marks, rendered incorrectly by LATEX.)perplexities at a given feature-set size is low; most of the global deviationappears to be caused by the reference trigram, which is by far the strongestdeterminant of a �le's perplexity. Computing the standard normal cuto�points p30 ��=S for perplexity di�erences � using the �gures in the lastcolumn of table 5 gives values in the approximate range 10{30, so the nullhypothesis that the gain-based models are no better than MI-based modelshas vanishingly small probability.5.4 Evaluation of MEMD ModelsThe second set of tests I performed was simply aimed at measuring the im-provement of the trigger-based MEMD models over the reference trigram,and comparing this improvement to that given by a cache model incor-porated within a linear combination. Although, as mentioned earlier, theMEMD and cache models have certain similarities, they are not similarenough to permit well-founded claims that, for instance, MEMD combi-nations are superior to linear combination or the contrary. The interestin comparing these two models is therefore mainly practical, to see whetherMEMD models give more improvement over the baseline trigram than cachemodels, which are far simpler to implement and far more e�cient.As described above, a basic cache model is just a �xed-length bu�er of thelast L words in h, over which an empirical unigram distribution is calculated.For each value of L in f15; 50; 100; 200; 400g, I combined the resulting cache15
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Figure 1: Performance of MI and gain feature selection methods. Each pointrepresents the performance over the test corpus of a MEMD model using afeature set of the given size.number of MI gain �features avg sdev avg sdev avg sdev1000 60.02 7.38 59.44 7.35 0.57 0.1122000 59.82 7.38 59.14 7.34 0.69 0.1065000 59.39 7.36 58.65 7.35 0.74 0.10710000 58.95 7.34 58.26 7.35 0.68 0.12720000 58.44 7.32 57.89 7.35 0.55 0.12950000 57.75 7.29 57.51 7.34 0.24 0.120100000 57.23 7.20 57.23 7.20 | |Table 5: Average and standard deviation of perplexity over �les in the testcorpus, for top MI- and gain-ranked feature sets of the given sizes. Thecolumn marked � re
ects the di�erences in perplexities between each MImodel and the corresponding gain model.16



model perplexity �avg sdev avg sdevtrigram 60.48 7.39 | |cache 15 60.57 7.44 -0.09 0.123cache 50 60.17 7.31 0.31 0.146cache 100 60.07 7.26 0.41 0.183cache 200 60.05 7.25 0.43 0.208cache 400 60.08 7.25 0.40 0.215MEMD 103 59.44 7.38 1.04 0.153MEMD 104 58.26 7.34 2.27 0.201MEMD 105 57.23 7.20 3.25 0.312Table 6: Average and standard deviation of perplexity over �les in the testcorpus, for each model listed. The numbers beside the cache models indicatethe window length L, and the numbers beside the MEMD models indicatethe number of features. The column marked � re
ects the di�erences inperplexities between each model and the reference trigram.model with the reference trigram using a single pair of context-independentweights, estimated over corpus B with the EM algorithm as a special caseof equations (3) and (4).The results are shown in table 6 (the MEMD results in this table arereproduced from table 5). Although no model gives a tremendous improve-ment over the trigram, the MEMD models clearly outperform the cachemodels, with even the smallest 1000-feature model doing signi�cantly betterthan the optimum 200-word cache model. Interestingly, the cache modelwhich is based on the last 15 words actually performs worse than the refer-ence trigram over the test corpus|this indicates that the MEMD models aremore e�cient than the cache in using the relatively limited amount of con-text available to them. The best model tested was the 100k-feature MEMDmodel, which achieved over 5% lower perplexity than the reference, albeitat signi�cantly increased computational cost. By the same analysis as usedin the previous section, all these results are statistically signi�cant.6 ConclusionI have described some theoretical and practical aspects of the MEMD frame-work for statistical modeling, as applied to the problem of natural language17



modeling. I implemented a class of MEMD language models which use bi-nary trigger (word pair) features to improve on the performance of a refer-ence trigram model, and tested them over a large French corpus drawn fromthe Canadian Hansard. I found that a recent algorithm for automatic featureselection due to Printz yields trigger models which are signi�cantly betterthan those containing the same number of features selected on the basis ofmutual information scores. MEMD models also outperformed an optimizedlinear combination of a trigram and a cache model, even when the numberof triggers used was as small as 1000, and even though the context availableto the trigger model was limited to the previous 15 words. Despite thesepositive results, however, a major obstacle to the use of MEMD techniquesfor language modeling remains the fact that, for any signi�cant number offeatures, these models are very computationally expensive to train and run.
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