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1 Introduction

Language models which estimate p(w|h), the probability that a word w will
follow a sequence h of previous words, have many applications in natural
language processing, including speech recognition, machine translation, lan-
guage identification, character recognition, and text compression. From a
machine learning perspective, language modeling is a challenging problem
because vocabularies are typically on the order of 10,000 or 100,000 words,
training corpora can contain tens or hundreds of millions of words or more,
and for any history h the true distribution p(w|h) is extremely unlikely
to be identical to the distribution for any other history. From a natural
language perspective, language modeling is among the problems best suited
to ML techniques, because there is no need for expensive and subjective
hand-labelling of examples,' and because a simple, automatic, and relatively
application-independent evaluation procedure exists.

The most widely-used language model is the trigram [8], which is based
on the assumption that only the last two words in a history are significant
when predicting what will come next: p(wlh) =~ p(w|w”,w'), where h ends
with w”,w'. Advantages of the trigram are that it is conceptually simple,
very efficient to train and run, and gives surprisingly good results. Its main
disadvantage is that it relies on a very large number of parameters. This
complicates implementation and makes maximum likelihood estimates from
relative frequencies unreliable (for example, any trigram not observed in the
training corpus will be assigned a probability of zero, whereas intuitively
even the largest training corpora will not include a large number of rare
but linguistically valid trigrams). An effective and popular solution to the

! Although some human input is nevertheless required in establishing heuristics to iden-
tify words and sentences in running text, and in specifying a mapping from a potentially
infinite set of “words” (including items like numbers, dates, proper nouns, etc) encountered
in text to a finite vocabulary, which most language models assume.



latter problem is to smooth raw ML trigram estimates by incorporating
information from more reliable bigram and unigram estimates.

Although the smoothed trigram is obviously flawed as a model of natural
language, it has proven surprisingly difficult to come up with alternatives
that significantly outperform it. One problem is that it is hard to find an
effective way of incorporating additional information into a trigram. To
illustrate this, consider a cache model [10, 9] consisting of a unigram dis-
tribution estimated from relative frequencies over the last several hundred
words of h. Clearly this captures information about recent lexical prefer-
ences that would be useful in enhancing static trigram predictions at the
current position. However, the optimum method for combining trigram and
cache distributions is not obvious. A standard approach is to take a linear
combination of the form @ pyigram(W|h) + b Peacne (w|h), where a +b = 1, but
this method has the drawback that it tends to average over the strengths and
weaknesses of both models. In a context where the trigram is able to make
a confident prediction but the cache is unsure, for example, the combining
weights will dilute the strength of the trigram’s prediction. In principle this
could be remedied by making the combining weights depend on h, but in
practice (as in this example) it is not always obvious how to do this in such
a way that the weights themselves can be estimated reliably.

An alternate approach for combining information from different sources
has recently become popular for NLP applications. This technique, known
as Maximum Entropy/Minimum Divergence (MEMD) modeling, uses a col-
lection of features—real-valued functions f(w, h)—to capture arbitrary rela-
tions between a word and its context. There are no restrictions on what can
constitute a feature. For example, a feature could return the frequency of
w in the last hundred words of h (analogous to a cache model); or it might
capture the fact that w belongs to a particular grammatical category and
that the last few words in h belong to a particular sequence of grammatical
categories; or it might indicate w’s semantic class. The main strength of
MEMD modeling is that it provides great flexibility for combining disparate
sources of information; and furthermore, in contrast to techniques like linear
combination, it does so in a theoretically-justified way, as will be described
in the next section.

The drawback to MEMD is that it is very computationally expensive.
For example, although it would be possible to construct the equivalent of
a trigram model within this framework, the implementation would be very
cumbersome. Fortunately, there is a way around this: MEMD also provides
for a reference distribution, which plays a role similar to that of a Bayesian
prior. In the case of language modeling, a natural candidate for this distri-



bution is a smoothed trigram. Using a trigram as a reference model gives the
MEMD model good baseline performance, and one can hope to find a set of
features that will improve substantially on this baseline without sacrificing
too much of the trigram’s efficiency as a result.

The main challenge in MEMD modeling is finding a maximally infor-
mative set of features. Linguistically-motivated heuristics can be used to
define feature sets, but a better approach is to use linguistic knowledge to
define an initial large pool of candidate features and then select a subset
from this pool on the basis of empirical evaluation (the assumption here is
that the initial pool is either too large to be practical or so large as to overfit
the training corpus). Berger et al [3] have described a powerful and natural
algorithm for feature selection, but unfortunately it is too expensive to be
used for full-scale language models trained over large corpora. In a recent
paper [12], Printz suggests a much more efficient variation on Berger et al’s
algorithm, which has the potential to make automatic feature selection more
viable for language modeling.

For my project I implemented a MEMD language model for French which
uses a smoothed trigram as a reference distribution and a set of triggers as
features. Triggers are functions of the form:

1, w occurs in the last L words of h, and v = w
0, else

funtio ) = {

where u and v are words in the vocabulary, and the “window length” pa-
rameter L is the same for all triggers. Triggers are a kind of generalization
of a unigram cache model (which can be thought of as a collection of “self
triggers” fuu), but with frequency replaced by a binary indicator function
for reasons of efficiency and robustuness. They were first used by Rosenfeld
[11, 13] within a ME framework very similar to the one I describe here, but
with the important difference that in Rosenfeld’s case trigrams were incor-
porated as features instead of within a reference distribution. Triggers have
also been used by Berger and Printz [2].

The aim of my experiments was twofold: to evaluate Printz’ algorithm,
both from a practical standpoint and empirically by comparing it to a sim-
ple heuristic method for selecting trigger features; and to measure the per-
formance improvement over a trigram obtainable by using trigger features
within an MEMD framework, in comparison to the improvement given by a
roughly equivalent cache model in a linear combination.

The rest of this paper is structured as follows: section 2 gives a formal
description of the MEMD method, section 3 describes the feature selection



algorithms, section 4 describes the training algorithms, section 5 describes
the experimental setup and results, and section 6 concludes.

2 Maximum Entropy/Minimum Divergence Model

A MEMD model has the form:

p(wlh) = g(w|h) exp(a - f(w, h))/Z(h), (1)

where g(w|h) is a reference distribution, f(w,h) maps (w,h) into an n-
dimensional feature vector, « is a vector of feature weights (the parameters
of the model), and Z(h) is a normalizing factor (the sum over all w of the
numerator term). Letting ¢(w|h) = exp(fo(w,h)), we can write:

log s(w, h) = fo(w,h) + « - f(w, h) (2)

where s(w, h) is the numerator in (1). It is easy to see that the right hand
side of (2) represents a single-layer neural net with n+1 inputs, a fixed weight
of 1 on input 0, and a single output which gives a score for (w, h). (1) applies
a softmax function summed over all words to this output. Alternately, the
model can be thought of as computing a function from h to a vector of
scores, one for each word. In this case, the net consists of |W| units, where
W is the vocabulary, the input and output of w’th unit are described by (2),
and the vector of weights « is constrained to be identical for all units.

As their name implies, MEMD models can also be given an information-
theoretic interpretion. Suppose we are confident that the expected values
of the feature functions with respect to the empirical distribution p defined
by the data are an accurate reflection of their true values. If this is all that
is known about the true distribution, a reasonable estimation strategy is to
use the distribution that has maximum entropy among all those which have
the desired expected values. The idea is to avoid making any inferences
which are not supported by the data. If, in addition to the data, some
prior (or reference) distribution ¢ is available, then finding the distribution
with maximum entropy can be generalized to finding the distribution p with
minimum Kullback-Liebler divergence (relative entropy) D(p||q) from the
reference, where D(p|lq) = >, p(z)logp(z)/q(x)]. Given ¢ and a set of
expected-value constraints of the form:

Ep[fz(wuh)] = Eﬁ[fl(wvh)L 1=1...n,



it can be shown [3] that the distribution which satisfies the constraints with
minimum divergence from ¢ is unique and has the form:

p(w, h) = g(w, h) exp(a - f(w,h))/Z

where Z is the sum over all (w,h) of the numerator. (For most NL appli-
cations, Z is too expensive to compute, so the conditional form (1) is used
instead of the joint—fortunately, Z cancels out when deriving the condi-
tional using Bayes’ law.) Remarkably, it can also be shown that the mini-
mum discrimination information distribution is also the maximum likelihood
distribution with respect to «, and furthermore that likelihood is a convex
function of a, so hillclimbing techniques are guaranteed (in principle) to find
the MDI/ML distribution in this case.

In certain fields such as physics (where the technique originated [7, 6]),
this result is of direct practical utility, because the expected values of a rela-
tively small number of parameters can be measured with precision. However,
for most NLP applications—including language modeling—it is not, because
the reliable statistics on which the model should be based are unknown. Fea-
tures must therefore be established using heuristics, as described in the next
section.

It is interesting to examine intuitively how a model of the form (1)
differs from linear combination as a method of combining different sources
of information. To simplify the comparison, suppose that there are two
equally-valuable sources of information to be combined, captured in the case
of linear combination by two distributions p; and p2 with a weight of .5, and
in the case of MEMD by two feature functions f; and fo, each with a weight
of 1. Suppose that, in some context, p; and f; both make a maximally
strong prediction of some word w, while py and f2 are maximally uncertain.
Then the resulting linear combination will assign a probability of .75 to w,
but the MEMD model will assign a probability approaching 1. Thus MEMD
exhibits a built-in bias in favour of strong predictions, (and also strong anti-
predictions) which may lead it to outperform a linear combination whenever
such preferences are based on reliable empirical evidence.

3 Feature Selection

The intuition which underlies Berger et al’s feature-selection algorithm is
simply that, because training a MEMD model involves maximizing the like-
lihood, the optimum set of features of a given size should be the one which
assigns highest likelihood to the corpus. Since determining the likelihood



associated with all feature sets is combinatorially impossible, a sensible strat-
egy is to grow a set one feature at a time by greedily adding at each step the
new feature which gives the greatest increase in likelihood over the current
model. However, even this is very expensive, because it necessitates train-
ing a new model for each candidate feature that is to be evaluated. Berger
et al therefore advocate holding all parameters of the current model fixed
and optimizing only the weight associated with the current candidate fea-
ture. Formally, define the gain, G ¢, due to a feature f to be its associated
maximum log-likelihood ratio:

pfa(w)
Gr=maxG = max — [
f = max ) max - log (W)
where w = wy, ... ,wr is the training corpus, p is the model at the current

step, and py, is p with the addition of the feature f with a weight of . The
feature which gets added to the model at each step will be the one with the
highest gain.

The essential step in feature selection is therefore that of maximizing
Gf(a) in a. Berger et al observe that this can be done in parallel for all
candidate features at once, and suggest using Newton’s method to find the
root of the derivative G';(). Each iteration of Newton’s method requires
one pass over the corpus to calculate G'; () and G’f(«r) for the current value
of @.2 Although this is not substantially more expensive than training a
model (see the next section), it must be kept in mind that the purpose of
feature selection is to winnow a very large initial pool of features down to
a manageable size. If the initial pool is too large to permit training in a
reasonable time, it will also be too large to permit gains to be computed in
a reasonable time.? Another difficulty with this method of feature selection
stems from its incremental nature: searching a large pool of features for the
best subset of size 100k, for example, would require 100k feature-addition
steps and therefore at least this many passes over the corpus.

Printz’ method addresses both these problems. First, he suggests that
Newton’s algorithm can be replaced by an approximated function method

2 Alternately, certain values associated with each feature can be calculated in a single
pass over the corpus and stored in memory, allowing the algorithm to proceed without
any future references to the corpus. For large feature sets and corpora the memory re-
quirements of this technique are prohibitive.

3Note, though, that there is one important difference between training and computing
gains: features interact during training but not when computing gains. This means that
gains could still be computed, sequentially, for a set of features that was too big to fit in
memory at once.



which requires only a single pass over the corpus. Second, he advocates doing
away with repeated feature addition steps by simply using the gain over the
reference model as a measure of a feature’s worth in the final model. His
method can therefore be summarized as follows: compute approximate gains
with respect to the reference model in a single pass over the corpus, rank
features in order of decreasing approximate gain, then select the optimum
cutoff point in this ranking. In theory, this seems a radically suboptimal
search, but it is justified if it allows for the fruitful exploration of very large
feature sets which would otherwise remain inaccessible.*

The core of Printz’ algorithm is the approximated function method,
which in essence works as follows. For each feature f (in parallel, if de-
sired ), compute the value of G’f(a) over a pre-determined set of test points
{ai,... ,as}. Fit these points using least-squares polynomial interpolation,
then use the interpolating function to solve numerically for the root, which
approximates &, the optimum weight for f. Finally, integrate the interpo-
lating function numerically (over a range which depends on &) to get an
approximation for G.> Of all these steps, only the computation of G’f(oz)
depends on the corpus, so the algorithm requires only a single pass (as-
suming a memory overhead of S times the number of features, for storing
intermediate values of G';(a1),... , G’y (as)).

The approximated function method has a fairly large number of parame-
ters which must be tuned, including stopping criteria for the three numerical
algorithms used (least-squares polynomial, Newton-Raphson root-finding,
and Romberg integration), order of the interpolating polynomial, and num-
ber and location of the test points. Of these, I found that performance was
particularly sensitive to the polynomial order and the location of test points,
with severe degradation in cases where the test points failed to bracket &, or
where & was a large negative value and the polynomial order was low. Fur-
thermore, I found that the accuracy of the numerical approximation to G
was very seunsitive to small errors in the estimate of &, suggesting that, where
time permits, it might be better to use an additional pass over the corpus
to calculate the true values of G y(&), (where & is the approximation to &)
instead of relying on numerical integration. Table 3 shows the performance

“My own experience underscores this last point: machine-time limitations forced me
to evaluate Printz’ algorithm by comparing it only to a simple heuristic, rather than to
Berger et al’s algorithm as well, which would have been more interesting.

°I have glossed over many details here, in the process obscuring the reason for using
numerical rather than analytic integration when the interpolating function is apparently
a polynomial. In actual fact, for technical reasons, the interpolating function is the recip-
rocal of a polynomial, and the least-squares fit is to the reciprocals of the test points.



Gil@)  Gpa)  Gra) G & trigger

7.43e-05 7.20e-05 6.78e-05 0.810 1.012 m. — m.

2.50e-05 1.98e-05 7.38e-05 -0.389 -2.510 gouvernement — président
1.84e-05 1.26e-05 4.88e-05 -0.385 -1.490 je — loi

8.17e-06 6.41e-06 1.61e-06 0.281 0.186 président — est

7.65e-06 7.21e-06 1.17e-05 -0.258 -0.645 ministre — canada
3.82e-06 3.82e-06 3.89e-06 -0.103 -0.104 est — je

2.69e-06 2.42e-06 4.52e-06 -0.133 -0.182 a — gouvernement
2.69e-06 2.0le-06 5.84e-06 -0.161 -0.364 gouvernement — canada
9.87e-07 3.44e-07 3.05e-06 -0.098 -0.238 nous — ministre

6.88e-07 6.50e-07 1.04e-06 -0.070 -0.234 loi — canada

Table 1: Performance of Printz’ algorithm on a set of trigger features selected
randomly from among frequent words, over a 390k word training corpus.
Features are ordered by decreasing true gain G (&) calculated by training,
for each feature, a single-feature model with a reference trigram distribution,
to get the optimum weight &. & denotes the approximation to &, and G fis
the approximated gain.

of Printz’ algorithm on a small set of triggers, and illustrates that—for this
test at least—the resulting feature ordering does not correspond to the true
ordering. However, because the results seem fairly reasonable, to save time I
adopted Printz’ parameter values verbatim, and used a 4th order polynomial
with the (logscale) test points {—1,0,2,6,10,14} for all experiments.

4 Training

A simple way to train MEMD models is by gradient ascent. The log-
likelihood of the corpus is given by:

T

log p(w Zlogq welhy) + o - f(w, h)) — log Z(hy).
t=1

Differentiating with respect to the 7th weight:

Odlogp(w) Olog Z(hy)
aaz Z fZ wt? ht aaz

R a(wih) fi(w,hy) exp(a - £(w,hy))
- Zfz taht Z (ht) .



This expression can be used to update each parameter in the usual way,
either in “batch” mode:

0log p(w)

o <o+ 1 D ,
(]

or by using the individual terms in the sum to update parameters at each
position in the corpus.

Although gradient ascent is simple to implement, its convergence prop-
erties are heavily dependent on the gradient step 7, and it can be difficult
to specify ahead of time an optimum value (or progression of values) for
this variable. Berger et al [3] describe a specialized training algorithm for
MEMD called Improved Iterative Scaling (IIS), based on earlier work by
Darroch and Ratcliff [5], which converges much faster than gradient ascent
and does not require setting a step parameter.

Each iteration of IIS involves solving numerically (via Newton’s algo-
rithm) for a weight update quantity A; in the following equation:

Ep[fi(w, h) exp(Aif” (w, h))] = Bj[fi(w, h)],

where f# (w, h) gives the number of features which are active (take on non-
zero values) for (w,h), and the expected values are with respect to p(w, h)
and p(w, h) respectively. Once A; has been calculated for each weight «;, all
weights are updated according to: a; < a; + A;, and the process continues
until convergence.

A major problem with this equation is that, for language models, the
expectation with respect to the joint model p(w, h) is impossible to compute
due to the sum over h. To get around this, a common solution is to use the
distribution p(h)p(w|h) instead of p(w, h); in other words, to constrain the
marginal of the joint model to its empirical value during training. Under
this assumption, and the fact that p(hy) = 1/7 at each position ¢ in the
corpus, the above equation becomes:

T
S5 plwlhe) filw, by) exp(Aif# (w, b)) = TEp[fi(w, b)]

t=1 w

The key to implementing IIS efficiently is to observe that this can be
rewritten as a polynomial by making the transformation y; = exp(A;):

T
SO plwlho) filw, o)yl M TE(f(w, b)),

t=1 w



Thus if the set of (integer) values that f#() takes on whenever feature i
is active throughout the corpus is known,® the main part of the algorithm
reduces to collecting the values of the coefficients corresponding to these
exponents. At the end of each iteration, when the coefficients are known for
all features, Newton’s algorithm can be applied to solve efficiently for the
value of 7; that satisfies the polynomial equation for each feature.

The costly part of IIS is computing p(w|h) for each word in the vocabu-
lary and each history in the corpus. Rather than describing in detail how 1
dealt with this, I will sketch an efficient method for calculating Z(h), which
indicates the essence of the approach; similar techniques were applied to
gradient ascent and Printz’ feature selection algorithm. The main idea is to
organize the lookup for the features which are active (ie, non zero) on h to
supply a set of words to which at least one of these features applies. Calling
this set A, we can write:

Y a(wlh)exp(a-f(w,h)) = Y qlw|h)exp(a-f(w,h) + Y q(w|h)

’ wed w¢A
= Z q(w|h)[exp(a - f(w,h)) — 1] +1,
weA

eliminating the sum over all “non-active” words in the vocabulary, which can
increase efficiency considerably when only a relatively small set of words are
active for each history, and when the reference model takes non-negligible
time to compute.

In practical tests, I found that LIS gave much better results than gradient
ascent, usually converging within 20 iterations or so compared with 50 or
more—for models that can take days to train, this is a significant savings.
I used IIS for all MEMD training described in the next section.

5 Experiments

5.1 Test Setup

I ran all experiments using the French text of the Canadian Hansard corpus
(transcripts of parliamentary proceedings), for the years 86-94. After cer-
tain filtering operations,” the corpus consisted of about 34M words in 1008

6This can be established in a single preliminary pass through the corpus, since these
values don’t change during training.

"Eliminating sentences longer than 40 words, and those which do not translate into a
single English sentence. This was done for other work, and has no relevance to language
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name purpose files words

train A main training 918 31,709,800
train B trigram interpolation parameters 30 1,082,350
train C feature cutoff 30 1,241,581
test test corpus 30 1,103,320

Table 2: Corpus division; note that the four segments shown are contiguous
and in chronological order.

files, with each file usually corresponding to a single day’s parliamentary
record. An important characteristic of the Hansard is that it is chronolog-
ically ordered, so adjacent files tend to be similar, and later files contain
more information about earlier ones than the converse. Since most language
model applications will involve new (ie, future) Hansard text, this means
that using a random selection of files as a test corpus will give optimistic
results when the rest of the corpus has been used for training. A more re-
alistic evaluation can be obtained by training on some initial portion of the
Hansard and testing on a later portion. Because of this, I split the corpus
into contiguous train and test portions with the training set further subdi-
vided into a main block (A) and two “held-out” blocks (B and C), as shown
in table 5.1. Due to time constraints I used only a single train/test split.

All training and testing was performed on a version of the corpus in which
both tokens (ie, word occurences) and sentences had been automatically
identified. To control for out-of-vocabulary words, all models used the same
vocabulary, consisting of all words which appeared more than once in blocks
A and B, plus one special unknown word UNK. During training, any word
with frequency 1 in the corpus was mapped to UNK; during testing, any
word not found in the vocabulary was mapped to UNK, and the probability
of each UNK token was divided by the total number of out-of-vocabulary
words encountered in the text.

The models’ performance was evaluated using the standard perplezity
measure [1]. This is a geometric average over token probabilities, p(w) /7,
where p(w) = Hlep(wﬁwl ...,wy_1) is the probability assigned to the
corpus by the model. Perplexity is a useful measure because it takes on
convenient values (on the order of 100), is independent of corpus size, and
has an intuitive interpretation as the size of a uniform distribution (assumed

modeling, but available disk space did not permit me to maintain a separate version of
the corpus with these constraints removed.
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to contain the correct word) which would give the same performance as the
model being evaluated. One thing to note about this measure is that its
value is infinite whenever a model assigns zero probability to a word in the
corpus.

5.2 Reference Model

The reference model for the MEMD models used in all experiments was a
standard interpolated trigram, of the form:

plwh) = gs(w", w)ps(wlw”,w') + g2 (w", w)pa(wlw') +
= ¢1(w",w")p1(w) + do(w", w')po(w),

where p;() is the empirical distribution over i-grams, po(w) is a uniform dis-
tribution over all words in the vocabulary, and ¢; is the weight associated
with the ith distribution when w”, w’ are the last two words in h. Following
standard practice, I let the weights depend on the frequency of the condi-
tioning bigram, ie ¢(w”, w') = ¢(freq(w”, w')), so there is one set of weights
for each distinct bigram frequency in the training corpus.®

The first step in creating this model was to count ngrams over block
A. More specifically, for i = 1...3, i-gram frequencies were collected over
sentences by prepending ¢ — 1 special markers to the beginning of each
sentence, then sliding a window of length ¢ along the sentence, counting
one i-gram at each position, until the end of the window reached the end of
the sentence. This resulted in 7,267,001 trigrams, 1,786,611 bigrams, and
66,509 unigrams; the total vocabulary contains 66,718 words. For each 1,
the associated empirical distribution is defined as:

freq(wy, ... ,w;)

Pi(wilwn, - s wi-1) >, frea(wr, ..oy wy)

The next step was to estimate maximum likelihood values for the com-
bining weights ¢;(w”, w"). The corpus used for this must be distinct from the
one used to collect ngram frequencies, otherwise there will be a bias toward
higher-order ngrams; it is easy to see that in the case when both corpora
are identical, maximum likelihood will assign a weight of 1 to the empirical
trigram distribution. Because there are far fewer combining weights than
ngram parameters, (26,570 versus over 9M), I used the much smaller block
B to estimate them. Maximum likelihood values were obtained from the

8This is not the optimum way of constructing an ngram model [4], but it gives good
results and is easy to implement.

12



model perplexities
train A train B train C test
D3 18.51
D2 66.24
D1 703.61
Do 67549.6
P 23.57 47.17 55.98 61.05

Table 3: Perplexities of the trigram reference distribution p and its com-
ponents on different segments of the corpus. The rise in perplexity with
“distance” from block A reflects the chronological nature of the Hansard.
The perplexities of B, C, and test for the empirical models are not shown
because they are infinite.

EM algorithm, which in this case takes a particularly simple form. Each
iteration collects expected values associated with the current model in each
bigram context:

T

~ h ol T

ci(w", w') = Z pi(wi (t)gbzl’iu)) ,w' i=0...3, VW' w) (3)
t:suff(ht):’w”,w’ p wt| t

where h; = wy,... ,w;_1, and the sum is over all such histories that end in

w',w'. At the end of each iteration, each parameter is updated according
to:
cl (,u)//7 w/)

Z’:L;:O C’L (w”7 wl) ’

Table 5.2 shows some of the perplexities associated with the trigram
model and its components. These are quite low, indicating that the Hansard
is a fairly homogeneous corpus.

5.3 Evaluating Printz’ Method

I evaluated Printz’s feature selection method by comparing it to an obvious
heuristic for selecting trigger features: the mutual information (MI) between
trigger and target words, defined as:

Iw;0) = 3 o, 0) log 2142
— p(u)p(v)

13



where p(u,v) is the empirical joint distribution over trigger pairs u — v,
p(u) and p(v) are the left and right marginals of this, and the sum is over
the four terms (u,v), (u,v), (u,v), and (u,v).

To establish p(u,v), I counted every occurrence of a word preceding
another word in the A and B corpora. In order to reduce the size of the table
that needed to be stored, pairs were limited to those where the trigger and
target both occurred within the same sentence, and where neither word was
among the 45 most frequent function words in the vocabulary. To make the
triggers complementary to the information captured by the trigram model,
pairs where the target occurred within 2 words of the trigger were also
eliminated. Of the resulting approximately 20M pairs, I retained the 2M
with the highest MI scores which also had pair frequencies greater than or
equal to five.

My original plan was to use these pairs as an initial pool for feature se-
lection using Printz’ algorithm. However, this would not have been feasible
in the available time, so I ran the algorithm on a much smaller pool of just
the top 100k pairs (which still required several days to process). (Unfor-
tunely, 100k features is suboptimal—the perplexity of a held-out training
corpus versus number of features continues to drop past this point, so the
comparison is less interesting than it might have been.) In order that the
information available to the algorithm would be similar to that on which
MI scores were based, I used a MEMD model with a fixed trigger-window
length of 15.

After computing approximate gains with Printz’ algorithm, I sorted the
trigger list in order of decreasing gain and compared it to the same list sorted
in order of decreasing MI score. The results are significantly different, as
shown in table 5.3. Empirical comparisons were made by training MEMD
models (again with window length 15) using the top n features in both
lists, for each n in {1000,2000, 5000, 10000, 20000, 50000, 100000}. Due to
time constraints, the training corpus was limited to the last 100 files in A
and B (3.6M tokens in total). The performances of these models over the
test corpus are shown in figure 1 and table 5. In all cases (except on the
100k feature set, where the two models are identical), the gain-based model
outperforms the MI-based model by a small margin.

To test the significance of this result, I computed individual perplexities
for each of the 30 files in the test corpus for both MI and gain models at
each feature-set size. Since these perplexities show significant variation from
file to file, with only a barely discernable upward trend with time, it seems
reasonable to treat them as iid. Although the standard deviation for any
particular model is high, the deviation of the difference between MI and gain
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MI ranking gain ranking

m. — président << = >>

<< = >> ne — pas

m. — monsieur ils — ils

président — paproski suppléant — monsieur
hon. — monsieur seulement — mais
hon. — président elle — elle

hon. — ministre m. — m.

voix — ! monsieur — suppléant
m. — — non — mais

— — président n’ — pas

Table 4: Top ten trigger pairs for MI and gain ranking methods. (The angle
brackets are French quotation marks, rendered incorrectly by IWTEX.)

perplexities at a given feature-set size is low; most of the global deviation
appears to be caused by the reference trigram, which is by far the strongest
determinant of a file’s perplexity. Computing the standard normal cutoff
points v/30A/S for perplexity differences A using the figures in the last
column of table 5 gives values in the approximate range 10-30, so the null
hypothesis that the gain-based models are no better than MI-based models
has vanishingly small probability.

5.4 FEvaluation of MEMD Models

The second set of tests I performed was simply aimed at measuring the im-
provement of the trigger-based MEMD models over the reference trigram,
and comparing this improvement to that given by a cache model incor-
porated within a linear combination. Although, as mentioned earlier, the
MEMD and cache models have certain similarities, they are not similar
enough to permit well-founded claims that, for instance, MEMD combi-
nations are superior to linear combination or the contrary. The interest
in comparing these two models is therefore mainly practical, to see whether
MEMD models give more improvement over the baseline trigram than cache
models, which are far simpler to implement and far more efficient.

As described above, a basic cache model is just a fixed-length buffer of the
last L words in h, over which an empirical unigram distribution is calculated.
For each value of L in {15, 50, 100,200,400}, I combined the resulting cache
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Figure 1: Performance of MI and gain feature selection methods. Each point
represents the performance over the test corpus of a MEMD model using a
feature set of the given size.

number of MI gain A
features avg sdev avg sdev | avg sdev
1000 | 60.02 7.38 | 59.44 7.35 | 0.57 0.112
2000 | 59.82 7.38 | 59.14 7.34 | 0.69 0.106
5000 | 59.39 7.36 | 58.65 7.35 | 0.74 0.107
10000 | 58.95 7.34 | 58.26 7.35 | 0.68 0.127
20000 | 58.44 7.32 | 57.89 7.35 | 0.55 0.129
50000 | 57.75 7.29 | 57.51 7.34 | 0.24 0.120
100000 | 57.23 7.20 | 57.23 7.20 — —

Table 5: Average and standard deviation of perplexity over files in the test
corpus, for top MI- and gain-ranked feature sets of the given sizes. The
column marked A reflects the differences in perplexities between each MI
model and the corresponding gain model.
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model perplexity A

avg sdev | avg sdev
trigram 60.48 7.39 — —
cache 15 60.57 7.44 | -0.09 0.123
cache 50 60.17 7.31 | 0.31 0.146
cache 100 60.07 7.26 | 0.41 0.183
cache 200 60.06 7.25 | 0.43 0.208
cache 400 60.08 7.25 | 0.40 0.215
MEMD 103 | 59.44 7.38 | 1.04 0.153
MEMD 10* | 58.26 7.34 | 2.27 0.201
MEMD 10° | 57.23 7.20 | 3.25 0.312

Table 6: Average and standard deviation of perplexity over files in the test
corpus, for each model listed. The numbers beside the cache models indicate
the window length L, and the numbers beside the MEMD models indicate
the number of features. The column marked A reflects the differences in
perplexities between each model and the reference trigram.

model with the reference trigram using a single pair of context-independent
weights, estimated over corpus B with the EM algorithm as a special case
of equations (3) and (4).

The results are shown in table 6 (the MEMD results in this table are
reproduced from table 5). Although no model gives a tremendous improve-
ment over the trigram, the MEMD models clearly outperform the cache
models, with even the smallest 1000-feature model doing significantly better
than the optimum 200-word cache model. Interestingly, the cache model
which is based on the last 15 words actually performs worse than the refer-
ence trigram over the test corpus—this indicates that the MEMD models are
more efficient than the cache in using the relatively limited amount of con-
text available to them. The best model tested was the 100k-feature MEMD
model, which achieved over 5% lower perplexity than the reference, albeit
at significantly increased computational cost. By the same analysis as used
in the previous section, all these results are statistically significant.

6 Conclusion

I have described some theoretical and practical aspects of the MEMD frame-
work for statistical modeling, as applied to the problem of natural language
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modeling. I implemented a class of MEMD language models which use bi-
nary trigger (word pair) features to improve on the performance of a refer-
ence trigram model, and tested them over a large French corpus drawn from
the Canadian Hansard. I found that a recent algorithm for automatic feature
selection due to Printz yields trigger models which are significantly better
than those containing the same number of features selected on the basis of
mutual information scores. MEMD models also outperformed an optimized
linear combination of a trigram and a cache model, even when the number
of triggers used was as small as 1000, and even though the context available
to the trigger model was limited to the previous 15 words. Despite these
positive results, however, a major obstacle to the use of MEMD techniques
for language modeling remains the fact that, for any significant number of
features, these models are very computationally expensive to train and run.
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