SPECTRAL CLUSTERING FROM A GEOMETRICAL VIEWPOINT

Tyrus Berry, Timothy Sauer
Outline of the presentation

- Understanding the classical algorithm for spectral clustering
- 3 limits of the classical method and how to overcome them
- Conclusion
Understanding spectral clustering

Motivations:

- **K-means limitations:**

- **Clustering definition:** “The intuition of clustering is to separate points in different groups according to their similarities”
Understanding spectral clustering

Finding connected components in the perfect case:

Assumption: The data is already given with the knowledge of pairwise similarity

- Number of clusters = number of connected components in the graph (« perfect case »)

5 points in the plane with their similarity links form 2 clusters

```
W =
```

```
\begin{pmatrix}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 \\
\end{pmatrix}
```

Corresponding adjacency matrix
Understanding spectral clustering

Indicator vectors

Given a subset of vertices $A \subset V$ we define:

$$1_A = (f_1, \ldots, f_n)^\top$$

where

$$f_i = \begin{cases} 1 & \text{if } i \in A \\ 0 & \text{otherwise} \end{cases}$$

(indicator vector)
Understanding spectral clustering

Finding connected components in the perfect case:

Definition:

- **Graph Laplacian**
 \[L = D - W \]
 where \(D = \text{diag}(W) \);

 \(\mathbf{1} \) the vector of ones;

 \(W \) the adjacency matrix

Theorem: The multiplicity \(k \) of the eigenvalue 0 of the graph Laplacian \(L \) is equal to the number of \(W \)-connected components. The eigenspace of the eigenvalue 0 is spanned by the indicator vectors of those connected components.

Note: There are other possible definitions of \(L \), we will stick to the simplest one.
Understanding spectral clustering

Finding connected components in the perfect case:

Outline of the Proof:

- With $k = 1$, we assume that φ is an eigenvector of 0

$$0 = \varphi^T L \varphi = \sum_{i,j=1}^n w_{ij} (\varphi_i - \varphi_j)^2 \Rightarrow (\forall i, j : w_{ij} \neq 0), \varphi_i = \varphi_j$$

Then, the eigenspace of the eigenvalue 0 of L is spanned by the vector 1

- For any k, if we name L_i the graph Laplacian of the i-th component, we have:

$$L \sim \begin{pmatrix} L_1 & & \\ & L_2 & \\ & & \ddots \\ & & & L_k \end{pmatrix} \Rightarrow \{\lambda\}_L = \bigcup_{i=1}^k \{\lambda\}_{L_i}$$

Then, the eigenspace of the eigenvalue 0 of L is spanned by the vectors 1_{S_i}
Understanding spectral clustering

Finding connected components in the perfect case:

\[
1_{S_1} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} ; \quad 1_{S_2} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}
\]

Implications: In our example, let’s take \(\varphi_1 \) and \(\varphi_2 \) the 2 orthogonal eigenvectors for 0 (\(L \) is symmetric, positive semi-definite).

Then:

\[
\varphi_1 = \sum_{i=1}^{k} \alpha_i^{(1)} 1_{S_i} = \begin{pmatrix} \alpha_1^{(1)} \\ \alpha_2^{(1)} \\ \alpha_1^{(1)} \\ \alpha_2^{(1)} \\ \alpha_2^{(1)} \end{pmatrix} ; \quad \varphi_2 = \sum_{i=1}^{k} \alpha_i^{(2)} 1_{S_i} = \begin{pmatrix} \alpha_1^{(2)} \\ \alpha_2^{(2)} \\ \alpha_1^{(2)} \\ \alpha_2^{(2)} \\ \alpha_2^{(2)} \end{pmatrix}
\]

And if we concatenate the two vectors in the same matrix \(\phi \):

\[
\phi = \begin{pmatrix} \alpha_1^{(1)} & \alpha_1^{(2)} \\ \alpha_2^{(1)} & \alpha_2^{(2)} \\ \alpha_1^{(1)} & \alpha_1^{(2)} \\ \alpha_2^{(1)} & \alpha_2^{(2)} \\ \alpha_2^{(1)} & \alpha_2^{(2)} \end{pmatrix}
\]
Understanding spectral clustering

Finding connected components in the perfect case:

Implications:

Now, if we take the rows of ϕ, we end up with 6 new vectors:

$$\phi = \begin{pmatrix} \alpha_1^{(1)} & \alpha_1^{(2)} \\ \alpha_2^{(1)} & \alpha_2^{(2)} \\ \alpha_1^{(1)} & \alpha_1^{(2)} \\ \alpha_2^{(1)} & \alpha_2^{(2)} \end{pmatrix} \Rightarrow y_1 = \begin{pmatrix} \alpha_1^{(1)} \\ \alpha_1^{(2)} \end{pmatrix}, y_2 = \begin{pmatrix} \alpha_2^{(1)} \\ \alpha_2^{(2)} \end{pmatrix}, y_3 = \begin{pmatrix} \alpha_1^{(1)} \\ \alpha_1^{(2)} \end{pmatrix}, y_4 = \begin{pmatrix} \alpha_2^{(1)} \\ \alpha_2^{(2)} \end{pmatrix}, y_5 = \begin{pmatrix} \alpha_2^{(1)} \\ \alpha_2^{(2)} \end{pmatrix}$$

In this new space, we have: $y_1 = y_3$; $y_2 = y_4 = y_5$... *which does look like our clusters!*

Run a k-mean (with k=2) algorithm on the y_i \(\Rightarrow \) Identification of the clusters
Understanding spectral clustering

What do we do in reality?

Algorithm:

INPUT: Cloud of N points

- **Find** the similarities, **build** the adjacency matrix W and **compute** L
- **Compute** the k eigenvectors of L for the eigenvalue 0
- **Concatenate** them in a matrix ϕ
- **Run** the k-means algorithm in the N rows of ϕ
- **Return** the labels of the clusters for each point

Questions:

- How do we define the notion of similarity? How do we build a good adjacency matrix?
- What if the graph we build is not « perfect »? The method still works? Why?
Understanding spectral clustering

Defining a good notion of similarity

• **Assumption:** N data points are sampled from a manifold with k connected components

• **Goal:** Recover the manifold by building a graph and identify the connected components

• **How?** Define the notion of similarity between pairs of points (x_i, x_j) with a kernel like:

$$W_{ij} = h\left(\frac{||x_i - x_j||^2}{\epsilon^2}\right), \quad \text{where} \quad h(x) = \begin{cases} 1 & \text{if } x < 1 \\ 0 & \text{otherwise} \end{cases}.$$

$\epsilon \rightarrow 0 \Rightarrow k = N$

$\epsilon \rightarrow +\infty \Rightarrow k = 1$
Understanding spectral clustering

Why does it work in practice?

- **Connected clusters**

- **Gaussian Kernel**

\[h(x) = e^{-x/4} \Rightarrow W \text{ has no } 0 \]

\[\Rightarrow \text{only 1 cluster?} \]

- **Graph cut**: This spectral method is used to solve a relaxed problem of graph cut

- **Perturbation theory**: The matrices we are working with are not too far from the ideal ones

\[\Rightarrow \text{It still works} \]
Limits of the method and how to overcome them

Limits:

- Necessity to use another clustering method in the last step
- Necessity to tune an hyperparameter ϵ to find a good number of clusters
- Method doesn’t cope with different density of points within the clusters (ϵ is global)

Fig. 3.1. An example with varying densities. Any spectral method that relies on a single global bandwidth (denoted by the circles) cannot properly divide the example into three clusters.
Limits of the method and how to overcome them

Avoiding the use of an other clustering algorithm

- **What we have access to:**

\[
\varphi_1 = \sum_{i=1}^{k} \alpha_i^{(1)} 1_{S_i} = \begin{pmatrix} \alpha_1^{(1)} \\ \alpha_2^{(1)} \\ \alpha_1^{(1)} \\ \alpha_2^{(1)} \end{pmatrix} \quad ; \quad \varphi_2 = \sum_{i=1}^{k} \alpha_i^{(2)} 1_{S_i} = \begin{pmatrix} \alpha_1^{(2)} \\ \alpha_2^{(2)} \\ \alpha_1^{(2)} \\ \alpha_2^{(2)} \end{pmatrix} \quad \phi = \begin{pmatrix} \alpha_1^{(1)} & \alpha_1^{(2)} \\ \alpha_2^{(1)} & \alpha_2^{(2)} \\ \alpha_1^{(1)} & \alpha_1^{(2)} \\ \alpha_2^{(1)} & \alpha_2^{(2)} \end{pmatrix}
\]

- **What we want to have:** A matrix C containing, for each data point (i.e row), the one-hot encoding of its cluster

\[
C = \begin{pmatrix}
1 & 0 \\
0 & 1 \\
1 & 0 \\
0 & 1 \\
0 & 1
\end{pmatrix}
\]
Limits of the method and how to overcome them

Avoiding the use of an other clustering algorithm

- We want: \(C = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \) but remember that \(1_{s_1} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \); \(1_{s_2} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} \)

Then, if we re-write what we have: \(\phi = \begin{pmatrix} \alpha_1^{(1)} & \alpha_1^{(2)} \\ \alpha_2^{(1)} & \alpha_2^{(2)} \\ \alpha_1^{(1)} & \alpha_1^{(2)} \\ \alpha_2^{(1)} & \alpha_2^{(2)} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha_1^{(1)} & \alpha_1^{(2)} \\ \alpha_2^{(1)} & \alpha_2^{(2)} \end{pmatrix} := C \times A \)

With \(A \) the mixing matrix. Then, if we manage to find what \(A \) is, finding \(C \) is easy: \(C = \phi A^{-1} \)

- What is \(A \)?the concatenation of the linearly independent rows of \(\phi \) ... easy to find!
Limits of the method and how to overcome them

Using persistence to find the right number of clusters

\[W_{ij} = h\left(\frac{||x_i - x_j||^2}{\epsilon^2} \right) \]

\[\epsilon \to 0 \Rightarrow k = N \]
\[\epsilon \to +\infty \Rightarrow k = 1 \]
Limits of the method and how to overcome them

Defining a local kernel to counter the effect of non-uniform sampling

\[W_{ij} = h \left(\frac{||x_i - x_j||^2}{\epsilon^2} \right), \quad \text{where} \quad h(x) = \begin{cases} 1 & \text{if } x < 1 \\ 0 & \text{otherwise.} \end{cases} \]

What we want: \(W_{ij} = 1 \) if \(x_i \) similar to \(x_j \), 0 otherwise

Solution: Define a local notion of « density » \(q \) and rescale the kernel with it!

\[W_c(x, y) = h \left(\frac{||x - y||^2}{\epsilon^2(q(x)q(y))^{-1/2}} \right). \]

Question: How do we find \(q \)?
Limits of the method and how to overcome them

Defining a local kernel to counter the effect of non-uniform sampling

2. Find a kernel density estimate \(q(x_i) \). For example:

(a) Define the ad hoc bandwidth function \(\hat{\rho}_i = \sqrt{\sum_{j=1}^{k} ||x_i - x_{I(i,j)}||^2} \)
where \(I(i,j) \) is the index of the \(j \)-th nearest neighbor of \(x_i \).
Tune the bandwidth for the kernel density estimate in steps (b)-(f).
(b) Let \(\delta_l = 2^l \) for \(l = -30, -29.9, \ldots, 9.9, 10 \).
(c) Compute \(T_l = \sum_{i,j=1}^{N} \exp \left(\frac{-||x_i - x_j||^2}{4\delta_l^2 \hat{\rho}_i \hat{\rho}_j} \right) \).
(d) Estimate the local power law \(T_l = \delta_l^\alpha \) at each \(l \) by \(a_l = \frac{\log T_l - \log T_{l-1}}{\log \delta_l - \log \delta_{l-1}} \).
(e) Estimate the intrinsic dimension \(d = \max_{\delta_l} \{a_l\} \) and set \(\delta = \arg\max_{\delta_l} \{a_l\} \).
(f) Estimate the density
\[
q_i = q(x_i) = (4\pi \delta^2 \hat{\rho}_i^2)^{-d/2} N^{-1} \sum_{j=1}^{N} \exp \left(\frac{-||x_i - x_j||^2}{4\delta^2 \hat{\rho}_i \hat{\rho}_j} \right).
\]
Conclusion

Bibliography

Appendix
Similiarity graphs

How to construct a graph matrix from a dataset of points given pairwise similarities (or distances)?

\(\epsilon \)-neighborhood graph

\(k \)-nearest neighbor graph

fully connected graph : connect all points with pairwise similarities \(> 0 \)

\(k \)-nearest and fully connected => weight the connected edges with pairwise similarities

\epsilon \)-neighborhood => unweighted graph
Weighted adjacency matrices

W Directed graph

$w_{ij} \geq 0$

W Undirected graph
Degree matrices

Degree of a vertex $v_i \in V$: $d_i = \sum_{j=1}^{n} w_{ij}$

$$D = \begin{pmatrix} d_1 & & & \\ & d_2 & & \\ & & \ddots & \\ & & & d_n \end{pmatrix}$$

$D_{22} = 4$
Graph Laplacian matrices

Given an n x n symmetric weight matrix describing the affinity between pairs of points

\(W_{ij} = 1 \) if \(\| x_i - x_j \| < \epsilon \) or

\[W_{ij} = s(x_i, x_j) = \exp \left(-\frac{\| x_i - x_j \|^2}{2\sigma^2} \right) \]

\[
D = W1 \\
\hat{W} = D^{-1}WD^{-1} \\
\hat{D} = \hat{W}1
\]

- Unnormalized
- Symmetric
- Random walk
- Diffusion map

\[
L_{un} = D - W \\
L_{sym} = I - D^{-1/2}WD^{-1/2} \\
L_{rw} = I - D^{-1}W \\
L_{dm} = I - \hat{D}^{-1}\hat{W}
\]
Graph Laplacian matrices

L has the following properties:

- $\forall f \in \mathbb{R}^n$, $f^T L f = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2$
- L is symmetric and positive semi-definite
- The smallest eigenvalue is 0, the corresponding eigenvector is 1
- $0 = \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$

$L = D - W$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.5</td>
<td>-1</td>
<td>-1.5</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>-1</td>
<td>4</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-1.5</td>
<td>-3</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
\[L = D - W \]

\[f'Lf = f'Df - f'Wf = \sum_{i=1}^{n} d_i f_i^2 - \sum_{i,j=1}^{n} f_i f_j w_{ij} \]

\[= \frac{1}{2} \left(\sum_{i=1}^{n} d_i f_i^2 - 2 \sum_{i,j=1}^{n} f_i f_j w_{ij} + \sum_{j=1}^{n} d_j f_j^2 \right) = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2. \]

- => L is positive definite. It is symmetric from the symmetry of W and D.
- The smallest eigenvalue is 0 with the eigenvector 1 because L=D-W (and diagonal elements of D are sums of row elements of W)
- Since L is positive positive semi-definite, its eigenvalues are \(\geq 0 \)
W-connected components

Classes of points x_i such that $x_i \sim x_j$ if $W^p_{ij} \neq 0$ for some $p > 0$
W-connected components

THEOREM - The multiplicity k of the eigenvalue 0 of L is the number of W-connected components.

Moreover, for: L_{un}, L_{rw}, L_{dm}, the eigenspace associated with 0 is spanned by the indicator functions 1_{S_i} of the W-connected components S_i.

$$1_A = (f_1, \ldots, f_n)^\top \quad \text{where} \quad f_i = \begin{cases} 1 & \text{if } i \in A \\ 0 & \text{otherwise} \end{cases}$$

$$L = D - W$$
\[\forall \mathbf{f} \in \mathbb{R}^n, \mathbf{f}^\top \mathbf{L} \mathbf{f} = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij}(f_i - f_j)^2 \]"
W-connected components

PROOF (2/2) - with k distinct connected components

\[
L = D - W
\]

\[
L \sim \begin{pmatrix}
L_1 & & \\
& L_2 & \\
& & \ddots \\
& & & L_k
\end{pmatrix}
\]

L_i : graph laplacian of the i-th connected component

\[
\Rightarrow \{\lambda\}_L = \bigcup_{i=1}^{k} \{\lambda\}_{L_i}
\]

And the corresponding eigenvectors are the 1_{S_i}