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We give necessary and sufficient conditions for the existence of infinite generalized friendship 
graphs and show that there are 2 c non-isomorphic ones of each admissible order c and 
chromatic number. Further we prove that such graphs and their complements are almost always 
regular of degree equal to the order and that various generalizations of the Friendship Theorem 
do not hold for infinite generalized friendship graphs. 

Introduction 

A friendship graph (our are simple and either finite or  infinite) is one in which 
every pair of vertices has exactly one common neighbour.  I t  is well known (see, 
for example,  [9, 13, 14, 19]) that  friendship graphs either consist of triangles all 
joined at one  vertex or are regular of infinite degree. The  finite case of this result 
is known as the Friendship Theo rem  and is often expressed in the following way: 

Every finite friendship graph contains a vertex adjacent to all other vertices. Finite 
friendship graphs are rare. In contrast,  infinite ones abound,  there are 2 c of them 
of order  c, for each infinite cardinal c, by a result of [4]. Several generalizations of 

friendship graphs have been studied. Skala [17] considers graphs in which any two 
vertices either are adjacent  or  have exactly one  common  neighbour. Bose and 
Shrikhande [2] and Le  Conte  de Poly [5] require that each pair  of vertices have 
exactly )t >I 1 common  neighbours. Carstens and Kruse [3], Plesnik [16] and 
Sudolsl~ [18] ask that  any set of t vertices have exactly )t ~ 1 common neigh- 
bours. Yet  another,  described by Doyen  [7], uses three parameters :  for any two 
disjoint sets of t and u vertices, respectively, there are ~ vertices which are 

adjacent  to the t-set and non-adjacent  to the u-set.  
We shall call generalized friendship graphs those which have at least t + X  

vertices and in which every set of t vertices has exactly )t (common) neighbours. 
The  class of generalized friendship graphs will be  denoted by qd~ and its subclass 
consisting of infinite graphs by ~,~. The  parameters  t and ~ are positive integers 
and, in order  to avoid trivialities, we assume that  t>--2'and ~ ~ 1 .  Note  that  the 

notat ion (~t ~ remains meaningful for all positive t and )t. 
The  finite graphs in qd, ~, t ~ 3, have been  completely characterized. They are just 
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the complete graphs Kt+x ([3], [18]). The  finite graphs in ~ ,  h >~2, are regular 
by a result of [5] and Erd6s (cited in [2]); Mulder [15] also gives a proof. Erd6s 
does more by showing that all graphs in ~ are regular for h I> 2. Some necessary 
conditions for the existence of finite generalized friendship graphs with t = 2 are 
found in [2] and some examples constructed by Doyen  [7]. Our  purpose is to look 
at ~ ,  h~>2. We answer Doyen 's  question as to the existence of infinite 
generalized friendship graphs and show that not only are they regular (when they 
exist) but that there are many of them. 

Resulls 

We shall denote the cardinality of a set S by IS[ and the common neighbour- 
hood of a set S of vertices, defined as f"k~s N(x) ,  by N(S).  Notat ion not explained 
is that of [1]. Let  us repeat  the often crucial assumption: 

t~>2 and h1>l .  

The following lernma is fundamental.  

1. Let G ~ . ~  be of order c and let x be a vertex of G. Then either'x has 
degree c or N(x)  contains ;t-sets ~ such that suplN(L)l = c. 

l ~ t .  Let  G ~  be of order  c and let x be any of its vertices. If d ( x ) = c  there 
is nothing to prove. Hence only the case d ( x ) < c  need be considered. Note that 
t < c and observe that each of the c t-element subsets of V(G)  containing x has its 
h neighbours in N(x).  Since there are strictly fewer than c h-sets in N(x)  there is 
one with c neighbours or infinitely many ones, say ~ ,  with suplN(L)[ = c. [ ]  

There  is a useful corollary. 

f ,  O l ~ a ' y  1. I[ G ~  is not regular of degree [V(G)I, then t>  h. 

l[~mf. If G has a vertex of degree less than [V(G)I and if t---<h then any t-subset 
of a ),-set L with d(x)<IN(L)I<~IV(G)I contradicts G being in ,~x. [ ]  

Proposition 1. Let G ~ ~ be of order c. There is a clique S in G with t -  1 vertices 
and with N(S)  infinite. 

l i b e l .  We induct on t. For  t = 2 the claim is just Lemma 1. For  t > 2, let x be a 
vertex of infinite degree in G and let H be the subgraph of G induced by N(x).  
Now H ~ J ~ - I  and contains a clique T on t - 2  vertices with N(T)  infinite, by 
hypothesis. Put S = T O{x}. [ ]  

Several interesting consequences are at hand. 



InJinite generalized friendship graphs 263 

Proposition 2. I[ 5~ #¢, then t ~ < h + l .  

Proot .  Any  t-set in the neighbourhood of the clique found in Proposition 1 
already has t - 1  neighbours. [ ]  

In what follows we assume ;t I> 2. Note,  however, that the results remain true if 
)t = 1 for graphs other  than the graph consisting of c triangles all joined at one  
vertex (c infinite). 

Proposition 3. I[ G ~.9, x is of order c then it is regular of  degree c. 

Ptoo l .  In view of Corollary 1 and Proposition 2 only the case t = k + 1 requires 
proof. We assume t ~> 3 since ;t ~> 2. If x is a vertex of G whose degree is less than 
c, its neighbourhood contains vertices Yi with sup d(y i )=  c, by Lemma 1. The 
infinite graphs induced by N(yi) contain x, are in 3~tx_l and are, therefore,  regular 
of degree d(yi). Hence d (x )=  c in any case. 

Coromtl~ 2. Each vertex of a graph G ~ ,9 , ~ of order c lies in a ( t -1)-c l ique S with 

I N ( S ) I  = c .  

10'root. The  inductive construction of Proposition 1 can begin at any vertex, by 
Proposit ion 3. [ ]  

We also note that each maximal clique in G has order  k, t + 1 ~< k ~< t + ~t. 

ll~l~asilion 4. The complement of a graph of order c in ~ is regular of degree c. 

l l ~ t .  Let  G e~¢) be of order  c. Let  x be an arbitrary vertex of G and let 
y ~ N(x) .  Consider the graph H induced by N(y).  Since G ~ 5~, H e ~ - 1 .  If t = 2, 
H is A-regular. Hence  x already has c non-neighbours in H, a fo r t io r i  in G. If 
t > 2 the complement  of H is regular of degree c by hytx)thesis. [ ]  

Proposition 5. Let  O ~ 5~ be of  order c, and let S U T be a proper partition of  
V(G). Then N(S) # T. 

Proot .  If [S]<c,  Proposition 4 says that each x ~ S  has c non-neighbours in T. If 
ISl = ITI = c then any t-set in, say, S has too many neighbours whenever  N ( S ) =  
T. [ ]  

So far we have only been concerned with conditions necessary for the non- 
emptiness of 5~. The remainder of the paper  deals with the sufficiency of the 
basic condition, that is, t ~<)t + 1. Although there are straightforward ways of 
constructing graphs in 3t, x for t<~) t+ l ,  we want to do more. Inspired by the 



264 C. De/orme, G. Hahn 

elegant technique of [4], we show that for each d, t +  1 ~< d ~<Ro, and each infinite 
cardinal c, the class ~,~, t <~)t + 1, contains 2 c non-isomorphic graphs of order  c 
and chromatic number  d. Our  basic tool is a modified m-cube. An m-cube is a 
graph on the vertex set {0, 1}% m a positive integer, with two vertices adjacent if 
and only if the m-tuples differ in exactly one  coordinate. For  m > 2 we obtain the 
graph C~ be deleting one vertex and specifying two vertices u and v of even 
distance, with d (u )=m  and d ( v ) =  m - 1 .  Since the m-cube  is bipartite and 
regular of degree m, C~ is bipartite with minimum degree m -  1. Note  that no 
automorphism of C~ interchanges u and v. Let  now X be a well ordered  set of 
infinite cardinality c, let m > n > 2 be integers and let F be a function from the set 
of unordered pairs of elements of X into {m, n}. With X, m, n, F given, we 
construct the graph GF as follows. Begin with X as the vertex set. For  each pair 
a </3 in X insert a new copy of CFt~a), identifying u with a and v with/3. We 
claim that if F ~  F '  then GF and GF are not isomorphic. To see this, observe that 
from Gr~ we can recover X with its order,  as well as F. Indeed, the elements of X 
are the vertices of G~ of infinite degree and m, n and F can be obtained by 
considering certain subgraphs of GF. Let  a , /3  be distinct vertices of infinite degree 
in Gp and let H~B be obtained from Gr~ by deleting all the vertices of infinite 
degree other  than a and/3. The  2-connected component  of/- /~a containing ~t and 
/3 is CFC~.a) and a </3 if and only if d(a)> d(/3) in this component .  

Let  now t and ;t be given and let G be any graph not containing the complete 
bipartite graph Kt.x+l. Let  Go = G and, given Gi, obtain Gi+l by adding X - r new 
distinct vertices for every set of t vertices in Gi having r neighbours in G,, 
together with the edges joining the t-set to these ;t - r new neighbours. Note that 
the chromatic number  of Gi is preserved in G,+~ provided it is at least t + l ,  as is 
the absence of K~x+x. Let  G * =  U,~N G~, N denoting the set of non-negative 
integers. 

It is easy to see that G*~C,x: for  any t-set S there is a least i such S ~ V(Gi) 
and, hence, IN(S)I = X in G~, j > i. Further,  if H is a finite subgraph, there is a 
least i such that H ~  G~. If i > 0  then the vertices of H in G,\G,_~ have degree at 
most t. 

This proves a lemma: 

Lemma 2. Let G be an infinite graph of order c not containing Kt.x+l and having 
chromatic number d, t + l ~ d ~ R o .  Then G * ~ 5 ,  ~ is of order c and chromatic 
number d. If H is a finite subgraph of G* of minimum degree at least t + 1 then H is 
in fact a subgraph of G. 

We can now prove a proposition: 

Pl~imsifion 6. There are 2 c d-chromatic graphs of order c in ~ whenever 
t~<) t+ l ,  ) t ~ 2  and t+l~<d~<R0. 
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Proof .  We will construct 2 c graphs of order  c which axe non-isomorphic, have 
chromatic number  d and contain no Kt.~+l. They will further have the property 
that non-isomorphic G and H yield non-isomorphic G* and H*.  Let  m and n be 
integers, m > n > t + 1. Let  X be a well-ordered set of infinite order  c and F any 
function from the set of unordered pairs of elements of X into {m, n}. The  graph 
GF contains no K,.~+I since d(u, ~)~>2 and Ck contains no K2.3. Also, since Ck is 
bipartite and the distance between the special vertices u and v is even, GF is 
bipartite, hence 2-chromatic. Finally, there are 2 * functions F that give non- 
isomorphic GF. For  each d, t + 1 ~<d ~<R0, let Ga be a finite graph of girth at least 
5 and chromatic number d. These exist, see [6], [8] or  [12]. Let  G~ o = Ua~N Ga be 
the disjoint union of the Gd. For  each F and each d, t + 1 ~< d ~< N0, let GF.a be the 
disjoint union of GF with Gd. The  graphs GF.d and GF,.a, axe clearly non- 
isomorphic if (F, d ) #  (F', d'). The  graphs * GF.d axe in ~t  ~ and have chromatic 
humber  d and order  c. It remains to show that the G * a  are also non-isomorphic. 
Observe that GF can be recovered as the infinite connected subgraph induced by  
the set of vertices which lie in finite subgraphs of degree at least t + 1 in G*.a, by 
Lemma 2. This completes the proof. [ ]  

Remark. We have proved the following theorems. 

Theorem 1. The class ~t  x either is empty or contains 2 c non-isomorphic graphs of 
order c and chromatic number d, for each c and each d, t + l < - d < - R  o. It is 
non-empty if and only if t<~A+l .  

Theorem 2. Let  X~>2 and let G • , 9 ~  be of order c. Then both G and its 
complement are regular of degree c. 

As in [4], we observe that the bounds for the chromatic number  are best 
possible. The  lower bound follows from the remark following Corollary 2, the 
upper  from Corollary 5.6 of [4] which says that any graph of chromatic number 
d > N0 contains arbitrarily large complete bipartite graphs. 

Our  construction being slightly different f rom that of [4], the answer given in 
that paper  to its referee 's  suggestion is re-inforced: there are 2 c graphs, of order  c 
in 5~ of each admissible chromatic number, which are not obtained by the 
construction of [4]. It suffices to use another  'arrow' graph to join the vertices 
tx </3 < ~ in addition to the graph F given in [4]. One possibility is to take two 
copies Ft  and /~2 of /~ and identify the vertices a of F1 and b of F2. The  two 
special vertices required will be a of F2 and b of F1. See [4]. 

Finally, a word about the Friendship Theorem. There  are three obvious 
generalizations of it which we sum up as: for any G • cat there is a partition of 
V ( G )  into X O  Y such that N ( X ) =  Y and ]X]•{1, t - l ,  h}. We have shown this 
to be invalid for infinite graphs other  than the graphs consisting of triangles all 
joined at one vertex. 
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For  finite graphs these  genera l iza t ions  hold  trivially if t I> 3 by the  results  of [3] 

and  [18]. If t = 2 ,  A I>2, it is easy to see tha t  they fail for graphs which are no t  

complete .  
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