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We study infinite graphs in which every set of K vertices has exactly 1 common 
neighbours. We prove that there exist 2” such graphs of each infinite order CT if K 

is finite and that for K infinite there are 2* graphs of order A and none of cardinality 
greater than 1 (assuming the GCH). Further, we show that all a priori admissible 

chromatic numbers are in fact possible for such graphs. 0 1991 Academic Press, Inc. 

1. PRELIMINARIES 

Let K and iz be cardinals, finite or infinite. By a (generalized) friendship 
graph we mean a (simple, undirected) graph with the property that every 
set of K vertices has exactly 3, common neighbours. In order to avoid 
trivialities we assume that a friendship graph has at least K vertices and 
that K > 2. The class of friendship graphs with parameters K and 2 is 
denoted by 3; and the subclass consisting of the infinite ones by $“,. The 
idea and the name are old-Erdiis et al. [7] proved their Friendship 
Theorem in 1966; the name was coined by Wilf some time later. 

Let us first settle on some notation. A graph G here is a pair 
( V(G), E(G)) with the edge set E(G) being a subset of the set of two-ele- 
ment subsets of the vertex set V(G). For the most part we abuse notation 
and write XE G for XE V(G) and Sn G for Sn V(G). We also write SC G 
to indicate S c V(G). For x E G we write N(x) for the neighbourhood of x, 

* Partially supported by grants from the NSERC. 

30 
0095~8956/91 $3.00 
Copyright 0 1991 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



INFINITE FRIENDSHIP GRAPHS 31 

i.e., N(x) = ( y E G: (x, v> E E(G)). The set of common neighbours of a set 
TcG is the set N(T)=n.r.T N(x). Cardinals are considered as the least 
ordinals of a given power. 

The study of friendship graphs naturally separates into four parts: 

1. K and A finite 

l K finite 

l K infinite. 

2. FRIENDSHIP GRAPHS WITH K AND 2 FINITE 

2.1. Finite Graphs in $9: for Both Parameters Finite 

With the exception of K = 2 and II > 1, this case is closed. When K = 2 
and A= 1, the Friendship Theorem of Erdiis, Renyi, and Sos [7] says that 
there is exactly one friendship graph for any odd order (none of even) and 
that this graph contains a vertex adjacent to all others. For K > 2, the only 
friendship graph is the complete graph of order K + 3, [3, lo]. For K = 2 
and A> 1, the finite graphs in 32 are regular ( [S] and Erdiis quoted in 
[9]) and only a few examples are known (constructed mostly by Doyen). 
For a more detailed survey of these result and of other generalizations of 
the original friendship graph idea see Bondy [2] and Delorme and 
Hahn [S]. 

2.2. The Class 9: for Both Parameters Finite 

The paper by Delorme and Hahn essentially completes the study of this 
case. They obtain the following theorems, the second of which generalizes 
a similar result of Chvatal, Davies, Kotzig, and Rosenberg [4]. 

THEOREM 2.2.1. The class 9: is empty if and only if u > A+ 1. 

THEOREM 2.2.2. When 9;) is non-empty, it contains 2” non-isomorphic 
graphs of order o and chromatic number d for each infinite cardinal u and 
each d such that u+ 1 <d<N,. 

THEOREM 2.2.3. If A 2 2 and GE 92 is of order o then both G and its 
complement are regular of degree O. 

582b/52/1-3 
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THEOREM 2.2.4. Each vertex of a graph G E 9; of order u lies in a clique 
of order K - 1 whose (common) neighborhood has cardinality 0. 

Some of these results and their proof techniques are useful in the subse- 
quent sections. 

3. FRIENDSHIP GRAPHS WITH A INFINITE 

Clearly in this case St = $$ and we restrict our notation to 99:. Further, 
if 9: is non-empty, then K is strictly smaller than A. To see this, observe 
that in any graph in 3:) the union S of a K-element set with the set of 
its common neighbours cannot have cardinality equal to K since the 
neighbourhood of S is empty. The last theorem of the preceeding section 
can be extended as follows. 

LEMMA 3.10.1. Let G E 99: and let S be a clique of order p -C K+, the 
successor of K. Then S c K for some clique K of cardinality tc+. 

Proof. Construct a sequence {x %: a < JC + ) so that x, is in the common 
neighbourhood of S u (xg : /? < a}. This is always possible since 3, > IC is 
infinite; the desired clique is S u {x, : a < K’ >. m 

3.1. K FINITE 

The results of [5] provide the maximum possible number of graphs of 
each cardinality and each possible chromatic number when both K and I 
are finite. The upper bound of K0 on the chromatic number in 
Theorem 2.2.2 comes from Corollary 5.6 of [6]. In the case of A infinite the 
upper bound given by the corollary is 1. We give here a direct and different 
proof of this result of L-63. 

THEOREM 3.1.1 (Erdos and Hajnal [6]). Let ,U be an infinite cardinal 
and let G be a graph with chromatic number x(G) > p+. Then the complete 
bipartite graph K,,+ + is a subgraph of G for all finite n. 

Proof Fix n. The proof is by induction on IGI. Suppose that x(G) 3 p + 
but K,,P+ is not a subgraph of G. Fix an enumeration { g,}, ( ,G, of G. We 
construct a disjoint family (S, > of subsets of G such that 1 us < o: S,( < 
I4 +P, and ifgEG\U,,. S, then g is adjacent to fewer than n elements 
of UP < a S,. Assume S,, /I < a, to be constructed and let 5 be the least such 
that gr 4 LJ++$ Set 

To= b&J u s,m 
D<a 

T k+I=Tk~U {N(X):XcTk,IXI=n) (k < 4, 
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and 

s,= u Tk- u s,. 
ktw B<a 

Note that, by the induction hypothesis, lT,-J < /a[ + ~1, and hence (by 
induction on k) &I 6 Ial + ,U (k < cr)), and so IS,1 d Ial + p. Further, the 
construction guarantees that if g E G\UB G tl S, then IN(g) n lJg G tl S,I < n. 

Now ULx<,G,& = G and IS,( < Ial +p < ICI, so as K,,I+ is not a sub- 
graph of the graph (S, ) induced by S,, we must have x( (S, )) < p for 
each a. Fix a good p-colouring c, : S, -+ p of (S, ). We inductively con- 
struct a good colouring c of G, using as colours the pairs in p x CU. Suppose 
that c has been defined on Up < a S,. For s E S,, let m be the least such that 
c(x) # (c,(s), m) for all x~N(s) n UBCGLSB (there is such an m since 
(N(s) n Us,,Spl < n), and set c(s) = (c,(s), m). We note that the restriction 
of c to Up d aS, is now a good colouring, for if s is adjacent to t then if s, 
tE UBCaSB, the induction hypothesis applies, if tE UBeaSB, SES,, then 
c(s) # c(t) by construction, and if s, t E S,, then c,(s) # c,(t) and this 
ensures that c(s) # c(t). Therefore c is a good colouring of G with p. No = ,U 
colours, contradicting the hypothesis that x(G) 3 ,B +. 1 

The proof of the next theorem is a direct and simple adapatation of the 
analogous result of [S, Lemma 2 and Proposition 61. We give it here 
because we wish to draw certain conclusions on the basis of some features 
of the constructions. Lemma 2 of [S] is essentially a closure observation 
which depends on the finiteness of IC; it is reproduced here with slight 
changes. We also modify the proof of Proposition 6 of [S] so that it can 
be used whether K is finite or infinite. For consistency of notation in this 
paper these appear in the following definitions and lemmas. 

DEFINITION 3.1.1. Let G be any graph not containing the complete 
bipartite graphs i?Ql+. The closure G* of G (with respect to IC and 1) is the 
limit of the sequence ( Gj: i < a) obtained by putting Go = G and, for each 
0 < i < co, constructing Gj as follows. For every set K of IC vertices in Gj- 1 
having p common neighbours, add A - p new independent vertices together 
with the new edges joining each vertex of K to each new neighbour. 

Obviously in the case of 3, infinite this just means adding 1 new 
neighbours whenever the set K has fewer than A of them. The definition, 
however, makes sense even for finite A. 

The following adapts Lemma 2 of [S] (which, in turn, adapted a result 
of cw 

LEMMA 3.1.1. Let G be an infinite graph of order Q not containing KK,A+ 
and having chromatic number d, K + 1 <d< A+. Then G* is in 9:, is of 
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order CT’, and has chromatic number d. If H is a finite subgraph of G* of mini- 
mum degree at least K + 1 then H is in fact a subgraph of G. 

Proof. It is easy to see that G* is in $9’2. Since K < cu, any set of K 
vertices of G* is contained in each Gi for all ia i, and has iz common 
neighbours in every such Gj. It is equally easy to see that x(G*) = x(G) 
provided x(G) > K + 1 since at each stage we add independent vertices, each 
having degree at most K in Gi. Noting that each vertex of G,\G,- I has 
degree at most K we see that if H is a finite subgraph of G* of minimum 
degree K + 1, it must lie entirely in G. 1 

The next definition, an improvement on the idea of [4], allows the 
construction of the maximum number of non-isomorphic friendship graphs. 
Before giving it, we recall that given a positive integer m, the graph whose 
vertex set is (0, I>” and whose edges join pairs of points which differ in 
precisely one coordinate is called the m-cube. It is a well-known fact that 
an m-cube is a bipartite regular graph of degree m. We denote by C, the 
graph obtained from the m-cube by deleting the vertex (0, 0, . . . . 0) and all 
edges incident with it; also, we denote by u, and v, two special vertices 
of C, of even distance and such that d( v,) = m and d(u,) = m - 1 (for 
example, we can take u, = (1, 0, 0, . . . . 0) and v, = (1, 1, 0, 0, . . . . 0)-their 
distance is 2 and the degrees are as required). 

DEFINITION 3.1.2. Let n > m > 2 be fixed integers. For an infinite 
ordinal ,U and a function F: ,u(*) --+ (m, n > (where p(*) is the set of two- 
element subsets of ,u) we denote by G(p, F) the ordinal graph obtained 
from p (considered as an independent set) by adding, for each pair (a, p> 
(a < p < p), a copy of the graph Ck, where k = F( (a, a}), in which a is 
identified with uk and p with ok. 

Note that since the cubes are bipartite and the distance between the 
special vertices u and v is even, the ordinal graph G(p, F) we have defined 
has chromatic number 2. 

LEMMA 3.1.2. Let m and n be given, n > m > 2. If p and v are ordinals 
and Fp: p(*) + (m, n ), F,: vC2) + (m, n> functions, then the ordinal graphs 
G(P, E;) and WV, FJ are isomorphic if and only if (p, F,) = (v, F,). 

ProoJ: We show that both ,U and F can be recovered from G(p, F). 
First, observe that the elements of ,u correspond to the vertices of G(p, F) 
of infinite degree. Let a, p be two such vertices and let H,,, be the subgraph 
obtained from G(p, F) by deleting all vertices of infinite degree other than 
a, p. The two-connected component of H,,, containing a and p is CF(a,P, 
and a < /3 if and only if d( cc) < d(P) in this component. Since d(P) is either 
m or n in H,,,, this recovers F as well. 1 
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COROLLARY 3.1.1. There are 21p1 ordinal graphs with given m, n, p. 

ProoJ Each of the p pairs of elements of 11 can be joined by one of 
c?m cl* I 

From the results just described we obtain an extension of Theorem 2.2.2 
to A infinite. 

THEOREM 3.1.2. Let A be infinite and IC finite and let u 2 A and 
Ic<d<A+. Then ~91 contains 2” pairwise non-isomorphic graphs of order u 
and chromatic number d. 

ProoJ: It is sufficient to produce 2” pairwise non-isomorphic graphs not 
containing KK, 1 + of order 0 and given chromatic number d and in which 
each vertex belongs to a finite induced subgraph of minimum degree at 
least K + l-the closure lemma guarantees the rest. But this is easy. Unlike 
in the case of 3, finite, the graphs needed come ready-made. To wit, let 
n > m > rc + 1 and let G(p, P) be an ordinal graph. Since it has chromatic 
number 2, the graph G,, obtained from it by the addition of a disjoint 
copy of the complete graph on d vertices, d > rc + 1, has chromatic number 
d. Since G(p, I;) can clearly be recovered from GF,d, the graphs G,, and 
G Fl, df are isomorphic if and only if (I;, d) = (F’, d’). 1 

The analogue of Theorem 2.2.3 is not quite true when K is finite and il 
infinite. That is, while GE $92 is regular, its complement need not be. For 
example, the graph G = K v S, the join of the graphs K and S (all vertices 
of K are adjacent to all vertices of S) obtained from the complete graph K 
on 1 vertices and the independent set S of order less than A is in 9: and 
is regular of degree II, but in the complement the vertices of K have degree 
0 while those of S have degree (S( - 1. 

On the other hand, this failure of Theorem 2.2.3 is rare; it happens only 
for graphs of order A. In fact, we have the following. 

THEOREM 3.1.3. Let GE S: be of order CJ 2 3,> co. Then G is regular of 
degree TV. Moreover, if XC G, 0 < 1 XJ < IC, then 1 N( X)1 = TV. If CT > 2 then the 
complement G of G is also regular of degree u. 

ProoJ: The case cr = iz is trivial. Suppose, therefore, that 0 > II. We first 
show that G is regular. Let XC G have cardinality less than K. There is no 
loss of generality in assuming that I(X)/ = K - 1. Now each g in G-X is 
such that N(X u ( g 1) c N(X) and has cardinality A. In particular, g E N( Y) 
for some K-element subset Y of N(X). Since K is finite and ) N(X) 1 b il 
infinite, there are only IN(X)/ such Y and each N(Y) contains at most A 
elements. This means that CJ ,< A. IN(X)1 and, as 0 > A, we must have 
0 = IN(X This establishes the regularity of G. 
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The proof of regularity of the complement G of G when u > il is essen- 
tially that in [ 51. We proceed by induction on K > 2. Let y E G and denote 
by H the subgraph of G induced by N(v). Suppose first that K = 2. Then 
(by the first part of the proof) for each x E H, IN(x) n HI = II < 0 = IHI. 
Thus x has degree CJ in R and, a fortiori, in G. As each vertex of G lies in 
some N(u), this completes the case of K = 2. Assume now that K > 2. With 
y and H as above we note that HE C!?t- 1, whence the degree of any vertex 
of H is 0 in j?? and hence in G. The fact that each x lies in some N( JJ) 
completes the proof. 1 

3.1.1. Maximum Independent Sets in Graphs in 9”, 

For each finite K and each p > 1 we constructed graphs in 99’2 of order 
p in which the cardinality of any maximum independent set is p. Is this the 
case for all graphs in 9:? Clearly not: the graphs G = K v S described just 
before Theorem 3.1.3 have order II and a maximal independent set of size 
ISI < A. For ,U > il, however, we have the following: 

THEOREM 3.1.4. Let GEM: be of order ,u > A. Then G contains an 
independent set of cardinality ,u. 

Proof. We consider two cases. First, assume that the colinality of p is 
cf (p) > A. If there is no independent set of power p then the chromatic 
number of G is at least A+ and, by Theorem 3.1.1., G contains a K,,,+, a 
contradiction. 

Next, assume that cf (p) < A. Fix a set T of cardinality k - 1 of vertices 
in G and let N = N(T). By Theorem 3.1.3, I NI = p. The subgraph induced 
by N has chromatic number at most 2, as above, so there is either an 
independent set of power p and we are done or a sequence of independent 
sets I,, a < p, satisfying 

1. I,cN 

2. IUatcc &I < l&l =Pa>A 
3. lim a < cf(p) A = P- 

Observe that for UE N, IN(u) n NI = A. Let now Zi =la\uuEJ, N(u), 
where J, = uBKor I,. Clearly IunEJ, N(u) u NI <A. IJ,I < I J,I < IZ,I. Thus 
IrkI = pL, and Z= Ua < cf(Pc) ZL is an independent set of size ~1. 1 

3.2. u Infinite 

3.2.1. Graphs of Order A in 5%‘: 

Recall that K < J. in this case and that every clique of order less than K + 
can be extended to a clique of order K+. We give two constructions which 
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produce 2’ members of 9; of cardinality 2. First, we construct graphs of 
chromatic number 2. 

CONSTRUCTION. Let /1 be any graph of order at most 1 and let G be the 
complement of the disjoint union of /1 with an independent set of 
cardinality 1. Then G E 59; since for any Tc G with 1 TI < K we have 
IN( T)I 2 il - 1 TI = A. Clearly taking non-isomorphic ordinal graphs (on 1) 
as /i will produce non-isomorphic graphs in 9: and hence, by 
Corollary 3.1.1, we have 2’ non-isomorphic elements of 9:. It is trivial to 
observe that the chromatic number of each such graph is 2 and that the 
complements of these graphs are not regular. 

In order to construct graphs of chromatic number p, K + d p 6 A we need 
a slightly different technique. Let K(p, 1) be the complete p-partite graph 
with vertex partition (Pa} a < ~ and IP, I = a. 

THEOREM 3.2.1. Let p be given, K -C p < A. Then $9’: contains 2’ pair-wise 
non-isomorphic graphs of order 2 and chromatic number p. 

ProoJ Let n be an ordinal graph of order 1. Let Gn be the graph 
obtained from K(p, 2) by identifying the vertices of precisely one of the 
independent sets, say (without loss of generality) PO, with those of /i, 
thereby giving the graph induced by P,, the structure of /i. By abuse of 
notation we call this induced graph /1 as well. Now G, E 9:. To see this, 
let 7’ be a subset of G, of cardinality at most K. Since K < ,u, there is an cc, 
O<a<p, with P,nT=@. But P, c N(T) and so IN( = A. As for the 
chromatic number of G, recall that /1 is two-chormatic and so G, has 
chromatic number p. We also note that the graph thus constructed is essen- 
tially multipartite and hence is perfect. 

It remains to prove that non-isomorphic ordinal graphs give non- 
isomorphic friendship graphs by the above construction. Let Go and G’ be 
two graphs obtained as above from ordinal graphs /1’ and A’, respectively. 
Let PL, a < ~1, i = 0, 1, be the partitions of the vertex sets of G’ and let, as 
before, A’ be the graph induced by Pi in G’. Let 4: Go + G’ be an 
isomorphism. We claim that &no) = /1l. Observe first that d(/1’) cannot 
intersect more than two of the Pi since such an intersection would imply 
the existence of a triangle in a bipartite (ordinal) graph. Suppose now that 
d(JO) intersects Pi and PA. Then one of the two, say Pi, contains all the 
vertices which are of finite degree in &A’). Since no vertex of /i is adjacent 
to all the vertices of finite degree in /1, Pin &A”) = 0. So #(A’) c AA. 
Since 4-l is an isomorphism, it follows that 4(/i”) = /il. 1 

3.2.2. Graphs of Order p > 2 in 992 

In the last section we constructed many examples of graphs in 9’: of 
cardinality 3, and chromatic number ,u, where k+<p< A. In this section we 
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investigate the possibility that 5JG may contain graphs of cardinality greater 
than 2. With the continuum hypothesis we are able to settle the question 
negatively. Theorems 3.2.2, 3.2.3, and 3.2.4 below establish a connection 
between this problem and two other combinatorial questions. With 
Theorem 3.2.4 it follows from Theorem 3.2.2 that there is no graph GE 9”, 
with IGJ > il”. If we assume the generalized continuum hypothesis (GCH) 
then Theorem 3.2.3 gives us the stronger conclusion that there is no such 
graph with IGI > A. 

THEOREM 3.2.2. The existence of a graph G in 9: with cardinality p 
greater that the maximum of 2” and A entails the existence of an almost 
disjoint family of power p of u-element subsets of 2. 

Proof Fix G in $9: and assume ( GI = p > il. 2”. Fix T c G with ) TI = K. 
Now let S = N(T) be the set of neighbours common to the elements of T 
and note that ISI = 2. We now inductively choose a sequence ( T,: a < p} 
of K-element subsets of S and a sequence {x, : a < p} of elements of G so 
that 

(9 ILn TDl <K if ct#P 

(ii) X, 4 N( T’) for any x-element subset T’ of TP for /I < a. 

Suppose, therefore, that TD and xp, p < a, have been chosen so that (i) and 
(ii) are satisfied. Note that the family of those T’ of power K contained in 
T8 for some p < a has at most 2” . Ial members. Hence the union of the 
neighbourhoods N( T’) has cardinality at most 2” . Ial . )1. < ,U for a < ,u. Thus 
we may choose X, in the complement of this union and outside S u T. 
Consider now Tu {x~}. This set has power K. Also we find S’ = 
N( T u {x, > ) c N(T) = S. Chose T, c S’ of cardinality K. It remains to 
check that I TX n TYl < K for y < a. But T’ = TM n TY has power K, contra- 
dicting the choice of x,, for we should have X, E N( T’). This completes the 
proof. 1 

The existence of families of almost families of x-subsets of 1 was 
investigated by Tarski [ 111, who showed, assuming GCH, that there is 
such a family il + if and only if K and il have the same cofmality (see also 
Baumgartner [ 1 ] ). 

The second and apparently more fruitful translation of the problem 
actually gives an equivalent combinatorial problem. 

Let K < 1. Say that a family 9 of A-element subsets of a fixed l-element 
set S is (K, A)-friendly if and only if 

(i) for F’ c 9, if IR’I> 1 then In 9’1 < K, and 

(ii) for 9’ c 9, if 19’1 < K then I n9’l = ;1. 
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Then we have 

THEOREM 3.2.3. For p 2 A there is a graph GE %“, of power p just in case 
there is a (K, A)-friendly family 9 of cardinality ,LL 

ProoJ First note that we may assume ,U > A (by Theorem 3.2.1 and the 
fact that ( Fa s J,: a < A), where Fx = J is trivially (K, A)-friendly). Assume 
that G E Sk has cardinality p. Fix a K-element set T in G and its A-element 
neighbourhood N(T) = S. Consider the family 9 = (F, : x E G\( S u T)} of 
A-subsets of S where Fx = N( Tu 1.~1). Note that Fvx c S. 

To see that (i) holds, suppose that 9’ c F and IF’1 > 2. If there is a 
T’ c n 9’ such that 1 T’I = K then JN(T’)I > 3, since x E N(T’) for each 
x E G such that Fx E 9’, and this is a contradiction. 

To verify (ii), assume that 9’ c 9 and 19’1 < K. Let T’ = (x: F, ~9’). 
Then /T’~<K and so ITuT’I=K. But N(TuT’)cI;, (xET’) and so 
I(-) 9’12 IN(Tu T’)I =A. 

Finally, note that Fx = F for at most 1 values of x (otherwise G 4 9’“,), 
and hence IGI < IFI .;2. Thus 19’1 =p. 

For the converse suppose that 9 is a (K, A)-friendly family of subsets of 
S 19 ) = ,U > A. Form a graph G with vertex set S u (xF: FE 9 > and such 
that S induces a complete subgraph, (x,: FE Y} is an independent set, 
and there is an edge joining an element s and a singleton xF (FE 9) just 
in case s E F. If So c S and & c Y- each have cardinality at most K, then 
n FO\S, is a subset of N( So u (xF: FE FO}), and so IN( T)I > 2 whenever 
I TI < K. On the other hand, if Tc G is such that I TI = K and (N(T)/ > A, 
then F’ = {FE 9: X~E N(T)} has cardinality greater than ;Z and, since 
TC n F’, we find In 9’1~ , K, which contradicts (i). Hence G E 9’:. 1 

We complete this section by giving a result which immediately gives that 
9; contains no members of size larger than 2, assuming the GCH. 

THEOREM 3.2.4. If 9 is a (K, A)-friendly family, then 191 d 
SUP,<A VK =&Y 

ProoJ: For a contradiction assume 19 I 2 ,U = (AK) +. For FE F let 
aF < A be the least such that (Fn a,[ > K. Then aF < 2, since I FI = A > K. 
Now for a < A set FZ = (FE 9: a, = a >. Since p is a regular cardinal, 
there is an ct<ll such that 19J 3~. For Sea, ISI =K, let 
e = {I; E 9$ : F n a = S}. Again, since ~1 is regular and p > Ial K, it follows 
that there is an SE ~6~) such that I9J 3 ,u. But then SC n e and 
I%[ 2 p > ;2, and this is a contradiction. 1 

Remark. The reader will note that we have proven the nonexistence of 
graphs in 9”, of cardinality greater than il for any A such that 2” 6 A for 
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a < 2. With the GCH this implies that there are no graphs in 59: of power 
greater than A. Note also that in the proof of Theorem 3.2.4 only the first 
part of the definition of a (K, A)-friendly family is used. 

3.2.3. Maximum Independent Sets in Graphs in St 

As with K finite we can ask about the size of maximum independent sets 
in the graphs in 9;. Here the problem becomes easier: for each p< il there 
is a graph in $92 of order 1 in which any maximal (and, hence, maximum) 
independent set has cardinality p. These are the complete ;l-partite graphs 
K(& p) with each class of the partition of cardinality ,u. 

4. COMMENTS AND QUESTIONS 

There are essentially two sets of questions that remain. First, in view of 
the remark at the end of the preceding section it makes sense to ask why 
the second part of the definition of a (K, il)-friendly family is not used in the 
proof of the last theorem while it is needed in the proof of Theorem 3.2.3. 

The second series of questions stems from the GCH not being assumed. 
Is the upper bound of 2 on the order of graphs in St for 1 infinite still 
valid? What if we assume A to be regular? What happens at singular 
cardinals? These seem rather difficult. 
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