
Discrete Mathematics 306 (2006) 2492–2497
www.elsevier.com/locate/disc

A note on k-cop, l-robber games on graphs�
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To Claude Berge, the inveterate player, who never really left us

Abstract

We give an algorithmic characterisation of finite cop-win digraphs. The case of k > 1 cops and k� l�1 robbers is then reduced to
the one cop case. Similar characterisations are also possible in many situations where the movements of the cops and/or the robbers
are somehow restricted.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

We use semi-standard conventions for graphs and digraphs. In particular, an undirected graph will have a set of
edges, E(G), while a digraph will have a set of arcs, A(G). All our graphs are finite.

Cops and Robber is a perfect information pursuit game played on a directed graph G = (V (G), A(G)), with loops
at some, but not necessarily all, vertices. All players must move and this implies that the digraphs under consideration
must have outdegree at least one if we wish to avoid trivialities (which we do). Fix an integer k > 0; this will be the
number of cops chasing the unique robber. A round consists of a pair of moves, a cops’ move, followed by a robber’s
move. At round 0, each of the k�1 cops chooses a vertex of G (they can share vertices), and the robber chooses a
vertex of G. At round i, i > 0, each cop moves from the vertex currently occupied to one of its out-neighbours, then
the robber does the same. The cops win the game if one of them occupies the same vertex as the robber (the robber
is caught). If this happens on a cops’ move, the game ends and the robber does not move in the last round; note that
it can also happen on a robber’s move. The robber wins if he can move never to be caught. A digraph is k-cop-win if
k cops have a winning strategy on it, and robber-win otherwise. Historically, 1-cop-win (undirected, reflexive) graphs
have been called cop-win.
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This game was first described for reflexive undirected graphs with one cop and one robber by Nowakowski and
Winkler [11], and Quilliot [12], independently. Both papers characterise the cop-win graphs. A good discussion of
previous work on Cops and Robber, and related pursuit games, can be found in [3,6].

Goldstein and Reingold (mentioned in [6]) have proved that, for fixed k, there is a polynomial time backtracking
algorithm that determines whether a finite, reflexive, undirected graph G is k-cop-win. On the other hand, they also
proved that when k is a parameter, it is EXPTIME-complete to decide whether k cops can win from a given initial
position on such a graph.

Cops and robber games on digraphs have not received as much attention. Cayley digraphs are considered in [8] and,
implicitly, in [5] (Alspach et al. [1] recently looked at the cop number of Cayley graphs on dihedral groups). In [6]
it is proved that when k is a parameter, it is EXPTIME-complete to decide whether a strongly connected digraph is
k-cop-win.

Beyond the one-cop case [11,12], no characterisations are known. It is a long standing open problem to characterise
the k-cop-win reflexive undirected graphs for k > 1. The reflexive digraphs on which a single cop can always win have
also not been characterised.

This paper is an attempt at a unified approach to both directed and undirected graphs, reflexive or not. While the
techniques are simple, they do allow for some progress and for a first consideration of digraphs. The algorithm, in
addition to being general, is easier and faster than algorithms previously used based on Theorem 1. A first version (not
giving strategy information) of the algorithm described in Section 2 of this paper has been implemented and used in an
honours thesis by Hole [9]. The full algorithm has been implemented in various ways by Benoit Thériault [13] as a part
of his M.Sc. thesis. He found that the order in which the vertex labels are updated influences the performance—updating
the cop vertices cxy before the robber vertices rxy is many times faster in his tests than the other order. He also found that
representing the positions of the cops (robbers) by vectors of length n (the order of the digraph) whose ith coordinates
give the number of cops at the ith vertex allows representing k! positions by one vector and so speeds up processing.
See [13].

In the next section, we give an algorithmic characterisation of cop-win finite digraphs. By an algorithmic charac-
terisation we mean that a digraph D is cop-win if and only if an auxiliary digraph MD , constructible in polynomial
time, has a certain labelling, also constructible in polynomial time. Any k-cop game is reduced to a 1-cop game in the
subsequent section. We conclude the paper by describing how our methods can be applied to some variants of the game.

We insist on the adjective “algorithmic”—while it is nice to know whether or not a digraph is k-cop-win, that
knowledge can only be obtained by running an algorithm on the digraph. It would certainly be nicer to have some
closed-form characterisation of such digraphs, so that we could say that certain classes of graphs are k-cop-win, as is
the case in the characterisation of cop-win undirected reflexive graphs in [11,12].

Theorem 1 (Nowakowski and Winkler, Quilliot). An undirected reflexive graph G is cop-win if and only if its vertices
can be ordered v1, v2, . . . , vn so that for each i, 1� i < n, there is a j, i < j �n such that{vs : vivs ∈ E(G), s� i} ⊆
{vs : vjvs ∈ E(G), s� i}.

One can deduce from the theorem that chordal graphs and bridged graphs are cop-win, see [2].

2. One cop, one robber

Consider a digraph D on which a game of cop and robber is played. After each move, the situation of the game can
be described simply by saying where each player is and whose turn it is to move. This can be accomplished easily
by considering V (D) × V (D) × {c, r}. For ease of reading, we will use cxy and rxy instead of (x, y, c) and (x, y, r),
respectively. Thus, we can read cxy as on cop’s move, the cop is at x and the robber at y, and read rxy analogously. We
will refer to both cxy and rxy as configurations.

We can, and will, associate with a digraph D its move digraph M = MD on vertex set VM = CM ∪ RM , where
CM = {cxy : x, y ∈ V (D)} and RM = {rxy : x, y, ∈ V (D)}. There is an arc from cxy to rwy if x �= y and xw ∈ E(D),
and there is an arc from rxy to cxz if x �= y and yz ∈ E(D). Observe that M has 2|V (D)|2 vertices and at most 2|A(D)|
arcs, and can be constructed in time O(|V (D)|2). The arcs of M from a vertex cxy represent the possible moves for the
cop, those from rxy for the robber.

The following lemma is obvious.
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Lemma 2. There is a path from pxy to p′
x′y′ in M(D) if and only if there is a sequence of moves, starting with p’s

move, which takes the cop from x to x′ and the robber from y to y′.

Corollary 3. If the digraph D is 1-cop-win then there is a vertex cxy ∈ VM and a path from cxy to pzz for some
z ∈ V (D) and p ∈ {c, r}.

Our purpose now is to prove a qualified converse of the corollary (the plain converse is clearly false, as a cycle of
length at least four shows).

One characterisation of cop-win reflexive graphs given in [11] is in terms of a relation � on the vertices of the graph.
The relation is defined recursively by setting x�0x for each vertex x of the graph. For each ordinal �, define �� by
x��y if and only if for each u ∈ N(x) there exists v ∈ N(v) such that u��v for some � < �. Let � be the least ordinal
such that �� = ��+1 and define � = �� (note that �� |V |). The graph is cop-win if and only if x�y for all
vertices x and y. This characterisation also applies to infinite graphs.

The algorithm below bears a strong resemblance to the recursive definition of � (but the similarity was discovered
after the fact). It labels each vertex v of MD with a non-negative integer �(v) which indicates the number of rounds,
that is, of cop’s moves, to a cop’s win. If it is the robber’s move and the vertex label is k, the cop will need k moves
after the robber has moved.

set �(v) = ∞ for all v ∈ VM

set �(cxx) = �(rxx) = 0 for each x ∈ V (D)

repeat until no change results
for each pair (x, y), x �= y

if �(cxy) = ∞, set �(cxy) := 1 + min{�(rx′y) : x′ ∈ N+(x)}
for each pair (x, y), x �= y

if �(rxy) = ∞, set �(rxy) := max{�(cxy′) : y′ ∈ N+(y)}.

Since for each pair of vertices of D (x, y) only two vertices of MD are considered at each iteration, and since the label
of a vertex is never changed once it is not ∞ (an easy induction on the number of times the main loop of the algorithm
is executed), the algorithm terminates in at most O(|V (D)|2) iterations, each of which takes at most O(|V (D)|3) steps.

We prove that the algorithm does what it is meant to in a lemma. Let us call a strategy from a configuration cxy

optimal for the cop if no other strategy gives a win in fewer moves. A strategy is optimal for the robber from a position
rxy if no other strategy forces a longer game (this includes an infinite game, i.e. a robber’s winning strategy).

Lemma 4. Let D be a directed graph and MD its move digraph. Then

(1) the cop has an optimal winning strategy in t rounds from the configuration cxy if and only if �(cxy) = t when the
algorithm terminates;

(2) the robber has an optimal strategy in t rounds from the configuration rxy if and only if �(rxy)= t when the algorithm
terminates.

Proof. The case t =∞ is clear for both cxy and rxy . For t finite, we proceed by induction on t. We have that �(cxy)= 0
if and only if x = y and in this case there is nothing to prove. If �(rxy) = 0, it is because x = y or �(cxy′) = 0 for all
y′ ∈ N+(y), and so the claim is true here as well.

(1) Now �(cxy) = t if and only if we have �(cxy) = 1 + min{�(rx′y) : x′ ∈ N+(x)}, otherwise the algorithm could
not have terminated. Thus, in this case, the cop’s move will be to an x′ that realises the minimum and from which,
by the induction hypothesis, the cop can win in t − 1 rounds. Conversely, if the cop can win from cxy in t rounds,
there is an x′ ∈ N+(x) such that the cop wins in t − 1 rounds from cx′y′ for any y′ ∈ N+(y). This means that
�(cx′y′)� t − 1 for all y′ ∈ N+(y), that is, �(rxy) = t − 1, by the induction hypothesis, and so �(cxy) = t .

(2) If �(rxy) = t , then the robber has a move to a y′ ∈ V (D) such that �(cxy′)) = t and to no z with �(cxz) > t , lest the
algorithm be contradicted. By the first part, the cop’s optimal strategy is in t rounds, that is, the robber survives for
t moves. Conversely, suppose that the robber has an optimal strategy of t moves from rxy . Then the cop cannot win
in fewer than t rounds, that is, max{�(rxy′) : y′ ∈ N+(y)}) = t and so �(rxy) = t . �
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Theorem 5. Let D be a directed graph and let MD be its move digraph. Then D is 1-cop-win if and only if there is a
vertex x ∈ V (D) such that for all y ∈ V (D), �(cxy) < ∞ in MD .

Proof. Follows from Lemma 4. �

Corollary 6. A finite strongly connected directed graph is cop win if and only if, in MD , �(v) < ∞ for all v ∈ VM .

Corollary 7. A finite undirected graph D is cop-win if and only if, in MD , �(v) < ∞ for all v ∈ VM .

The algorithm gives an easy way for each player to optimise his move. If the cop is at x and the robber at y, the
cop will move to x′ such that �(cxy) := 1 + min{�(rx′y) : x′ ∈ N+(x)}, while the robber will move to y′ such that
�(rxy) := max{�(rxy′) : y′ ∈ N+(y)}. Indeed, the name of the vertex x′ (or y′, respectively) can simply be included
in the labels of cxy and rxy by replacing �(pxy) by �′(pxy) = (�(pxy), z

′), with z′ = x′ or y′ depending on whether
p = c or r. The algorithm is easy to modify to update as needed. The length of an optimal game (that is, one where
both players use an optimal strategy, including in their choice of starting vertices) is also given by the algorithm—it is
L(D) = minx∈V (D)maxy∈V (D){�(cxy)}. Indeed, this is a simple way to test if the (di)graph D is cop-win; it is so if and
only if L(D) < ∞. Further, L(D) can be computed (updated) throughout the execution of the algorithm and so can be
a part of the output at almost no additional cost.

3. More cops, more robbers

The algorithm of the preceding section can be used to test if k�1 cops can catch 1� l�k robbers, provided that
“catch” means that each robber shares a vertex with at least one cop. For k cops (and, analogously, for l robbers) to be
on at most k vertices means that they are at a point in V k . For a point u ∈ V k write [u] = {u1, u2, . . . , uk}. It is now
natural to introduce the following.

Fix integers 0 < l�k and a digraph D = (V , A) with minimum outdegree at least 1. Define Ck(D) = (V k, Ak)

by setting Ak = {(u, v) : u, v ∈ V k, vi ∈ N+
D(ui), i = 1, 2, . . . , k}. Define Rl(D) = (V l, Al) similarly. Thus, a

move by either the cops or the robbers on D corresponds to moves by one cop on Ck(D) or by one robber on Rk(D).
It remains to connect the two. The (k, l, D) game graph D is the disjoint union of copies of Ck(D) and Rl(D).
Formally, D = ((V k × {c}) ∪ (V l × {r}), A(c) ∪ A(r)) where A(c) = {((u, c), (v, c)) : u, v ∈ V k, (u, v) ∈ Ak} and
A(r) = {(u, r), (v, r)) : u, v ∈ V l, (u, v) ∈ Al}. The game can now be played on D: the cops move from vertex to
vertex of V k × {c} while the robbers move on V l × {r} (the cops choose their position first, the robbers second, then
they alternate). The cops win if at some stage they are at some (u, c) with the robbers at (v, r) such that [v] ⊆ [u].

The algorithm can be applied to D directly.
If we insist that the game be played on a whole connected graph, we can augment the model somewhat. The k, l, D

augmented game digraph D∗ is constructed from D by first adding two new control vertices � from which arcs go to all
the vertices of Ck(D), and �, from which arcs go to all the vertices of Rl(D), and by adding the arcs indicating how the
cops control the space around them on D. Thus, V (D∗) = V (D) ∪ {�, �}, �, � /∈ V (D), and A(D∗) = A(D) ∪ {(�, x) :
x ∈ V k × {c}} ∪ {(�, y) : y ∈ V l × {r}} ∪ {(u, v) : u = ((x1, x2, . . . , xk), c), v = (y, r), y ∈ �k

i=1N
+(xi)}.

Note that the augmented game digraph is never reflexive (� and � do not have loops) and that D∗ may be reflexive
even though D is not (cops can trade places).

Theorem 8. A digraph D is k-cop-win if and only if the augmented game digraph D∗ is 1-cop-win.

Proof. Suppose the cops have a winning strategy on D. We describe a winning strategy for the cop in the one-cop game
on D∗. The cop begins by choosing �. This forces the robber to start at � or in Rl(D), otherwise he is immediately
caught. The cop then moves to the vertex of Ck(D) corresponding to the cops’ initial move on D. The robber’s move
puts him in Rl(D) whatever his starting point was. The cop then moves among the vertices of Ck(D) according to the
cops’ winning strategy on D. By the construction of D∗, the robber is eventually caught. Hence, D∗ is cop-win.

Suppose that the robbers have a winning strategy on D. On D∗, the cop must start by choosing a vertex in Ck(D)

or �, otherwise the robber plays on Ck(D) and can never be caught. The robber starts by choosing � if the cop is at �
or the vertex of Ck(D) corresponding to the robbers’ winning initial position in D if the cop is in Ck(D). In the first
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case, the cop’s next move gets him to a vertex in Ck(D) while the robber moves to the vertex of Rl(D) corresponding
to the robbers’ initial winning position D. The robber then mirrors, on Rk(D), their winning strategy on D and so wins
on D∗. �

4. Variants of the game

The move digraph, the game graph and the augmented game graph can all be defined for infinite digraphs with
no vertices of out-degree zero. By changing our labelling algorithm into a transfinite recursion as in [11], the infinite
k-cop-win digraphs of this type can also be characterised.

Variations of the game in which the movements of the cops and/or robber are somehow constrained have been
considered in [3,10]. In [10] the cops and robber must use disjoint sets of edges, except that loops may be used by either
player. The restriction where the cops must always move so as to stay within distance one of each other is considered in
[3]. Another variation, in which the subgraphs induced by the vertices occupied by the cops must always be connected,
is also mentioned in [3].

The move digraph, defined in Section 2, can be used to algorithmically characterise the 1-cop-win finite digraphs
on which the cop and robber must use disjoint sets of arcs between distinct vertices, and both can use loops. All that is
needed is to define the arcs of M so that they correspond only to moves along the appropriate arcs.

The game digraph, defined in Section 3, can be used for any situation in which any arrangement of cops that can
occur during the game is a legal starting position, and both the cops and the robber may use any arc of D. This is
accomplished by redefining the graph Ck(D) to have as vertices the arrangements of cops that are allowed according
to the rules of the game. As an example, consider the game in which the subgraphs induced by the vertices occupied
by the cops must always be connected. In this case, the vertices of CD are the k-tuples (a1, a2, . . . , ak) ∈ V (D)k such
that {a1, a2, . . . , ak} induce connected subgraphs of D (on at most k vertices).

Nothing stops us now from generalising further: as long as the rule for the cops’and the robber’s moves are expressible
by adjacencies in D, the approach remains valid.

The requirement that all the robbers be caught at the same time seems not really to be a restriction in the sense that
if a robber is caught, the cop that got her can always mimic her moves and stay with her, until all the others are caught,
provided each gets caught on a cops’ move (or all are caught robber’s moves) so that some do not become free while
others get caught. This, however is not the case. Consider the graph D consisting of two cycles, say x0, x1, . . . , xs

and y0, y1, . . . , yt , s, t �6, with edges xixi+1, yiyy+1, addition modulo s, t , respectively, as well as x0y0, x2y2. If a
robber is willing to meet a cop face to face (and then escape), two cops cannot catch two robbers. If each robber
must avoid occupying the same vertex as a cop unless forced to, then two cops can catch the two robbers on this
graph.

A more interesting and realistic version seems to be one in which the robbers get caught one by one and sent of
to jail, freeing the cops to pursue the others (modelled by the addition of a vertex J which receives arcs from all the
vertices to which robbers have access and by the addition of the rule that the robbers next move must be to J if she
shares a vertex with a cop). But this is just a k cops, 1 robber version as all the robbers but one can be ignored while
the single one is caught. The length of the game could be influenced, however, but we do not understand very much
the function which gives, for naturals k, l and a (k, l)-cop-win graph, the length of the shortest game of k cops and l
robbers.

5. Open questions

It is clear that, for any finite digraph D, putting a cop at every vertex guarantees that the cops win. Therefore, there
is a least number of cops needed to win on D; this is called the cop number of D. The cop number of graphs belonging
to various classes has often been considered in the literature. See [2–6,10], for example. Nothing is known about the
version with l robbers.

We still have no structural characterisation of cop-win digraphs that would allow us to show that some classes of
digraphs contain only cop-win graphs. A theorem like that of [11,12] seems elusive.

As with a characterisation, it would be nice to have a closed-form bound on the length of the game, perhaps in terms
of some other parameters. This is elusive as most “obvious parameters” do not work. For example, for each t there is a
chordal, diameter two, finite graph on which the game takes t rounds. See [7].
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