A Simple Proof of Menger’s Theorem

William McCuaig

DEPARTMENT OF MATHEMATICS
SIMON FRASER UNIVERSITY, BURNABY
BRITISH COLUMBIA, CANADA

ABSTRACT

A proof of Menger’s theorem is presented.

We use the notation and terminology of Bondy and Murty [1].

Let \(D \) be a directed graph. If \(\{u\}, \{v\}, \) and \(S \) are disjoint subsets of \(V(D) \) and \(u \) and \(v \) are nonadjacent, then \(S \) separates \(u \) and \(v \) if every \((u, v)\)-path has a vertex in \(S \).

Proofs of Menger’s theorem are given in [2–14].

Menger’s Theorem. If no set of fewer than \(n \) vertices separates nonadjacent vertices \(u \) and \(v \) in a directed graph \(D \), then there are \(n \) internally disjoint \((u, v)\)-paths.

Proof. The proof uses induction on \(n \). The theorem is trivial for \(n = 1 \). Suppose \(u \) and \(v \) are separated by no set of less than \(n + 1 \) vertices \((n \geq 1)\). By the induction hypothesis there are \(n \) internally disjoint \((u, v)\)-paths \(P_1, \ldots, P_n \). Since the set of second vertices of \(P_1, \ldots, P_n \) does not separate \(u \) and \(v \), there is a \((u, v)\)-path \(P \) whose initial arc is not on \(P_i \), \(i = 1, \ldots, n \). Let \(x \) be the first vertex on \(P \) after \(u \) which is also on some \(P_i \), \(1 \leq i \leq n \). Let \(P_{n+1} \) be the \((u, x)\)-section of \(P \). Assume \(P_1, \ldots, P_n \) have been chosen so that the distance in \(D - \{u\} \) from \(x \) to \(u \) is a minimum. If \(x = u \) we are done, so assume not.

In \(D - \{x\} \) there are \(n \) internally disjoint \((u, v)\)-paths \(Q_1, \ldots, Q_n \), again by the induction hypothesis. Assume \(Q_1, \ldots, Q_n \) have been chosen so that a minimum number of arcs in \(B = A(D) - \bigcup_{i=1}^{n+1} A(P_i) \) are used. Let \(H \) be the directed graph consisting of the vertices and arcs of \(Q_1 \),
..., \(Q_n \), together with the vertex \(x \). Choose some \(P_k \), \(1 \leq k \leq n + 1 \), whose initial arc is not in \(A(H) \). Let \(y \) be the first vertex on \(P_k \) after \(u \) which is in \(V(H) \). If \(y = v \) we are done, so assume not.

If \(y = x \) then let \(R \) be the shortest \((x, v)\)-path in \(D - \{u\} \). Let \(z \) be the first vertex of \(R \) on some \(Q_j \), \(1 \leq j \leq n \). Then the distance in \(D - \{u\} \) from \(z \) to \(v \) is less than the distance from \(x \) to \(v \). This contradicts the choice of \(P_1, \ldots, P_n, P_{n+1} \).

If \(y \) is on some \(Q_i \), \(1 \leq i \leq n \), then the \((u, y)\)-section of \(Q \) has an arc in \(B \). Otherwise, two paths in \(\{P_1, \ldots, P_n, P_{n+1}\} \) intersect at a vertex other than \(u, v, \) or \(x \). Now if we replace the \((u, y)\)-section of \(Q \) by the \((u, y)\)-section of \(P_k \) we get \(n \) internally disjoint \((u, v)\)-paths in \(D - \{x\} \) using less arcs in \(B \) than \(Q_1, \ldots, Q_n \). This is a contradiction.

A similar proof can be used for the undirected version of Menger's theorem.

References
