THE LEXICOGRAPHIC PRODUCT OF GRAPHS

By Gert Sabidussi

1. The automorphism group of the lexicographic product. The purpose of this section is to improve an earlier result [3] giving a necessary and sufficient condition under which the automorphism group of the lexicographic product of two graphs X, Y is equal to the wreath product ($[1 ; 81]$; [3, Definition 1]) of the groups of X and Y. Using the terminology and notation of [3] we have the following:

Theorem 1. Let X be any graph with $E(X) \neq \square$, and suppose that Y is such that $\left|V(Y ; y) \cap V\left(Y ; y^{\prime}\right)\right|<|Y|$ for any two distinct vertices y, y^{\prime} of Y. Then a necessary and sufficient condition that $G(X) \circ G(Y)=G(X \circ Y)$ is that Y be connected if $R \neq \Delta$, and that Y^{\prime} be connected if $S \neq \Delta$.

In [3], X and Y were assumed to be almost locally finite, and finite, respectively. Finite graphs trivially satisfy the condition that $\left|V(Y ; y) \cap V\left(Y ; y^{\prime}\right)\right| \leq$ $d(Y ; y)<|Y|$.

The proof of Theorem 1 will be broken up into a sequence of lemmas. Note first that if X and Y satisfy the hypotheses of the theorem, then $X \circ Y$ is not isomorphic to Y. For if it were, then $\left|V(X \circ Y ;(x, y)) \cap V\left(X \circ Y ;\left(x, y^{\prime}\right)\right)\right|<|Y|$ for any $x \in X$, and distinct vertices $y, y^{\prime} \varepsilon Y$. But if $d(X ; x) \geq 1$, then

$$
\left|V(X \circ Y ;(x, y)) \cap V\left(X \circ Y ;\left(x, y^{\prime}\right)\right)\right| \geq|V(X ; x) \times V(Y)| \geq|Y|
$$ It follows from this that if $\left|K_{x}\right|=1$, then $\phi Y_{x}=Y_{x^{\prime}}$ with $\left|K_{x^{\prime}}\right|=1$.

It therefore suffices to consider the case $|Y| \geq 2,\left|K_{x}\right| \geq 2$, and to prove that C_{x} is complete. Let $c_{1}, c_{2} \varepsilon C_{x}, y_{i} \varepsilon B_{c i}, i=1,2$, and suppose that $\rho_{X}\left(c_{1}, c_{2}\right)=2$. This assumption is made throughout the following sequence of lemmas.

Lemma 1. Let A, B, C, M, N be sets such that $|N|<|B|$, and $A \times B=$ $(C \times B) \cup M-N$, then $A \supset C$. If, moreover, $|M|<|B|$, then $A=C$.

This is obvious.
Lemma 2. $\quad V\left(X ; t_{y}\right) \subset V\left(X ; c_{1}\right) \cap V\left(X ; c_{2}\right)$ for each y ع Y with $d(Y ; y)<|Y|$.
Proof. Consider $W=V\left(X \circ Y ;\left(x, y_{1}\right)\right) \cap V\left(X \circ Y ;\left(x, y_{2}\right)\right)$. Since $\rho_{X}\left(c_{1}, c_{2}\right)=2$,

$$
\begin{equation*}
\phi W=\left(V\left(X ; c_{1}\right) \cap V\left(X ; c_{2}\right)\right) \times V(Y) \neq \square \tag{1}
\end{equation*}
$$

For W itself we obtain $W=(V(X ; x) \times V(Y)) \cup D$, where

$$
D=\{x\} \times\left(V\left(Y ; y_{1}\right) \cap V\left(Y ; y_{2}\right)\right)
$$

Received December 20, 1960. Written with the support of the National Science Foundation, Grant No. NSF-G14084.

Hence for any $y \varepsilon Y$,

$$
W=\left(V(X \circ Y ;(x, y))-A_{y}\right) \cup D
$$

where $A_{y}=\{x\} \times V(Y ; y) \subset V(X \circ Y ;(x, y))$. Therefore if we put $U_{y}=$ $\left\{t_{y}\right\} \times V\left(Y ; z_{y}\right)$, we obtain

$$
\begin{equation*}
\phi W=\left(V\left(X ; t_{\nu}\right) \times V(Y) \cup U_{\nu}\right)-\phi A_{\nu} \cup \phi D \tag{2}
\end{equation*}
$$

By hypothesis the cardinal of A_{y} is $<|Y|$. Hence by (1), (2), and Lemma 1, $V\left(X ; t_{y}\right) \subset V\left(X ; c_{1}\right) \cap V\left(X ; c_{2}\right)$.

We shall henceforth denote $V\left(X ; c_{1}\right) \cap V\left(X ; c_{2}\right)$ by Q.
Lemma 3. Let w_{1}, w_{2} be two distinct vertices of Y. Then

$$
V\left(X ; t_{w_{1}}\right) \cap V\left(X ; t_{w_{v}}\right) \subset Q
$$

with equality if $\left[t_{w_{1}}, t_{w_{2}}\right] \notin X$.
Proof. Let y_{1}, y_{2}, W, D, etc. be as in the proof of Lemma 2, and let w_{1}, $w_{2} \varepsilon Y, w_{1} \neq w_{2}$. Then

$$
V\left(X \circ Y ;\left(x, w_{1}\right)\right) \cap V\left(X \circ Y ;\left(x, w_{2}\right)\right)=V(X ; x) \times V(Y) \cup D^{\prime}
$$

where $D^{\prime}=\{x\} \times\left(V\left(Y ; w_{1}\right) \cap V\left(Y ; w_{2}\right)\right)$. Hence

$$
W=V\left(X \circ Y ;\left(x, w_{1}\right)\right) \cap V\left(X \circ Y ;\left(x, w_{2}\right)\right)-D^{\prime} \cup D
$$

and therefore
(3) $\quad \phi W=V\left(X \circ Y ;\left(t_{w_{2}}, z_{w_{1}}\right)\right) \cap V\left(X \circ Y ;\left(t_{w_{2}}, z_{w_{2}}\right)\right)-\phi D^{\prime} \cup \phi D$.

We now compare (1) and (3) distinguishing three cases:
Case (i): $t_{w_{1}}=t_{w_{2}}$. Here the right-hand side of (3) equals $\left(V\left(X ; t_{w_{1}}\right) \times\right.$ $V(Y)) \cup D^{\prime \prime}-\phi D^{\prime} \cup \phi D$, where $D^{\prime \prime}=\left\{t_{w_{1}}\right\} \times\left(V\left(Y ; z_{w_{1}}\right) \cap V\left(Y ; z_{w_{2}}\right)\right)$. Hence by Lemma 1, $V\left(X ; t_{w_{1}}\right) \cap V\left(X ; t_{w_{2}}\right)=V\left(X ; t_{w_{1}}\right)=Q$.

Case (ii): $\left[t_{w_{1}}, t_{w_{2}}\right] \varepsilon X$. Here
(4) $\quad \phi W=\left(V\left(X ; t_{w_{1}}\right) \cap V\left(X ; t_{w_{2}}\right)\right) \times V(Y) \cup A_{1} \cup A_{2}-\phi D^{\prime} \cup \phi D$,
where $A_{i}=\left\{t_{w_{i}}\right\} \times V\left(Y ; z_{w_{i}}\right), i=1,2$. The conclusion again follows from Lemma 1. Similarly in case (iii): $\rho_{X}\left(t_{w_{1}}, t_{w_{z}}\right)=2$.

Corollary 1. Let $t \varepsilon C_{x}$ be such that $\left|B_{t}\right| \geq 2$. Then $V(X ; t)=Q$.
Corollary 2. If $t \in V\left(C_{x}\right) \cap Q$, then $\left|B_{t}\right|=1$.
Proof. If $\left|B_{t}\right| \geq 2$, then by Corollary $1, t \varepsilon Q=V(X ; t)$, a contradiction.
Corollary 3. Let $t \varepsilon C_{x}$. (i) If $t \& Q$, then $d\left(C_{x} ; t\right) \leq 1$. (ii) If $t \varepsilon Q$, then $\rho_{X}\left(t, t^{\prime}\right) \leq 1$ for each $t^{\prime} \varepsilon C_{x}$.

Proof. (i): If $d\left(C_{x} ; t\right) \geq 2$, let $t_{1}, t_{2} \varepsilon V\left(C_{x} ; t\right), t_{1} \neq t_{2}$. Then by Lemma 3, $t \varepsilon V\left(X ; t_{1}\right) \cap V\left(X ; t_{2}\right) \subset Q$, a contradiction. (ii): If $\rho_{X}\left(t, t^{\prime}\right) \geq 2$, then by Lemma 3, $t \varepsilon Q=V(X ; t) \cap V\left(X ; t^{\prime}\right)$.

Corollary 4. If $V\left(C_{x}\right) \cap Q \neq \square$, then C_{x} is a star whose center is the only vertex of C_{x} belonging to Q. If $V\left(C_{x}\right) \cap Q=\square$, then each component of C_{x} has at most two vertices.

Proof. Suppose two distinct vertices t_{1}, t_{2} of C_{x} belong to Q. By Corollary 3 (ii), $\left[t_{i}, c_{1}\right] \in C_{x}, i=1,2$. Hence $d\left(C_{x} ; c_{1}\right) \geq 2$ contrary to Corollary 3 (i). Thus $\left|V\left(C_{x}\right) \cap Q\right| \leq 1$. If $V\left(C_{x}\right) \cap Q=\square$, then by Corollary 3 (ii) each vertex of C_{x} is of degree 0 or 1 , and hence each component of C_{x} is either a single vertex or a single edge. If $V\left(C_{x}\right) \cap Q=\left\{c_{0}\right\}$, then by Corollary 3 (ii) every vertex of $C_{x}-c_{0}$ is adjacent to c_{0}, and no two such vertices are adjacent to each other (Corollary 3 (i)). Hence C_{x} is a star with center c_{0}.

Lemma 4. If Y contains two distinct vertices w_{1}, w_{2} such that $V\left(X ; t_{w_{1}}\right) \cap$ $V\left(X ; t_{w_{2}}\right) \neq Q$, then $V\left(X ; t_{w_{1}}\right) \cap V\left(X ; t_{w_{2}}\right) \cup\left\{t_{w_{i}}\right\}=Q, i=1$ or 2 , and $\left|V\left(Y ; y_{1}\right) \cap V\left(Y ; y_{2}\right)\right| \geq 1+\min \{d(Y ; y): y \varepsilon Y\}$.

Proof. We use the same notation as in the proof of Lemma 3. By Lemma 3, $\left[t_{w_{1}}, t_{w_{2}}\right] \varepsilon X$. Hence

$$
\begin{equation*}
\phi W=A \cup A_{1} \cup A_{2}-\phi D^{\prime} \cup \phi D \tag{5}
\end{equation*}
$$

where $A=\left(V\left(X ; t_{w_{1}}\right) \cap V\left(X ; t_{w_{2}}\right)\right) \times V(Y)$. Note that A, A_{1}, A_{2} are disjoint.

By hypothesis and Lemma 3 there exists a $t \varepsilon Q-\left(V\left(X ; t_{w_{1}}\right) \cap V\left(X ; t_{w_{2}}\right)\right)$. $T=\{t\} \times V(Y)$ is disjoint from A, and hence $T \subset A_{1} \cup A_{2} \cup \phi D$. Since $|\phi D|<|Y|=|T|, T$ meets $A_{1} \cup A_{2}$, say $T \cap A_{1} \neq \square$. Then $t=t_{w_{1}} \varepsilon Q$, and hence $T \cap A_{2}=\square$. Therefore $T \subset A_{1} \cup \phi D$ so that

$$
\begin{equation*}
\phi D \supset T-A_{1}=\left\{t_{w_{1}}\right\} \times\left(V(Y)-V\left(Y ; z_{w_{1}}\right)\right) \neq \square . \tag{6}
\end{equation*}
$$

By Corollary $4, t_{w_{1}} \varepsilon Q$ implies $t_{w_{2}} \& Q$, whence $\phi D^{\prime} \supset A_{2}$. Thus $\left|D^{\prime}\right| \geq\left|A_{2}\right| \geq$ $\min \{d(Y ; y): y \varepsilon Y\}$. Since $V\left(X ; t_{w_{1}}\right) \cap V\left(X ; t_{w_{2}}\right) \subset Q, \phi D^{\prime} \subset \phi D$. Hence $\phi D \supset A_{2}$, and since A_{2} is disjoint from $\left\{t_{w_{1}}\right\} \times\left(V(Y)-V\left(Y ; z_{w_{1}}\right)\right)$, we have $\left|V\left(Y ; y_{1}\right) \cap V\left(Y ; y_{2}\right)\right|=|\phi D| \geq 1+\min \{d(Y ; y): y \varepsilon Y\}$.

Proof of the completeness of C_{x}. We assume as in the preceding lemmas that there exist $c_{1}, c_{2} \varepsilon C_{x}$ such that $\rho_{X}\left(c_{1}, c_{2}\right)=2$.

Case (i): $\quad V\left(C_{x}\right) \cap Q \neq \square$. By Corollary $4, C_{x}$ is a star whose center c_{0} is the only vertex of C_{x} in Q. By Corollary $2,\left|B_{c_{0}}\right|=1$, say $B_{c_{0}}=\left\{y_{0}\right\}$. Note first that if $y \varepsilon Y, y \neq y_{0}$, then $\left[y, y_{0}\right] \varepsilon Y$. For if y and y_{0} are not adjacent, then by Lemma 3, $c_{0} \varepsilon Q=V\left(X ; t_{y}\right) \cap V\left(X ; c_{0}\right)$, a contradiction. Next let $P=\left(w_{0}, \cdots, w_{r}\right)$ be a path of Y joining $w_{0} \varepsilon B_{c_{1}}$ with $w_{r} \varepsilon B_{c_{2}}$, and suppose that $y_{0} \notin P$. Then ($t_{w_{0}}, \cdots, t_{w_{r}}$) is a path of C_{x} joining c_{1} and c_{2} and not containing c_{0}. But this is impossible since c_{0} is the center of C_{x}. It follows that $B_{c_{1}}$ and $B_{c_{2}}$ belong to different components of $Y-y_{0}$, and hence $V\left(Y ; y_{1}\right) \cap$ $V\left(Y ; y_{2}\right)=\left\{y_{0}\right\}$. Note finally that $V\left(X ; c_{0}\right) \cap V\left(X ; c_{1}\right) \neq Q$, hence by Lemma 4 , and the connectedness of $Y,\left|V\left(Y ; y_{1}\right) \cap V\left(Y ; y_{2}\right)\right| \geq 2$, a contradiction.

Case (ii): $\quad V\left(C_{x}\right) \cap Q=\square$. In this case C_{x} is disconnected. For if $\left|C_{x}\right|=2$,
then $V\left(C_{x}\right)=\left\{c_{1}, c_{2}\right\}$, and since $\rho_{X}\left(c_{1}, c_{2}\right)=2, C_{x}$ is disconnected. If $\left|C_{x}\right| \geq 3$ the disconnectedness of C_{x} is a consequence of no component of C_{x} having more than two vertices. C_{x} being disconnected, Y is likewise disconnected. It follows from this that there is at most one $t_{0} \varepsilon C_{x}$ with $\left|B_{t_{0}}\right| \geq 2$. Otherwise by Corollary $1, R \neq \Delta$, and then by hypothesis Y is connected, a contradiction. We shall call a component of Y small if its order is ≤ 2. Note that if K is a component of Y with $V(K) \cap B_{t_{0}}=\square$, then K is small.

Let w_{1}, w_{2} be vertices of two distinct small components of Y. Then $\rho_{X}\left(t_{w_{1}}, t_{w_{2}}\right)=2$, and by Lemma 3, $Q=V\left(X ; t_{w_{1}}\right) \cap V\left(X ; t_{w_{2}}\right)$. Moreover, $d\left(Y ; w_{i}\right) \leq 1<|Y|, i=1,2$, hence by Lemma $2, V\left(X ; t_{w_{i}}\right) \subset Q=V\left(X ; t_{w_{1}}\right) \cap$ $V\left(X ; t_{w_{2}}\right), i=1$, 2 , i.e. $t_{w_{1}} R t_{w_{2}}$, a contradiction. Therefore Y has at most one small component Z.

Suppose Z has two vertices v_{1}, v_{2}. If $V\left(X ; t_{v_{1}}\right) \cap V\left(X ; t_{v_{2}}\right)=Q$, then by the same argument as in the preceding paragraph $t_{v_{2}} R t_{v_{2}}$. Hence $V\left(X ; t_{v_{1}}\right) \cap$ $V\left(X ; t_{v_{2}}\right) \neq Q$. Therefore by Lemma $4, t_{v_{1}} \varepsilon Q . \quad i=1$ or 2 , contrary to the assumption that $V\left(C_{x}\right) \cap Q=\square$. Thus Z consists of a single vertex. We claim that $Z=y_{1}$ or y_{2}. If $c_{1}=t_{0}$, then $\left[c_{2}, t_{0}\right] \notin C_{x}$. Hence $B_{c_{2}}=\left\{y_{2}\right\}$, and y_{2} is not adjacent to any vertex in $B_{t_{0}}$. Thus the component of Y containing y_{2} is small, i.e. $y_{2}=Z$. Suppose then that $c_{1} \neq t_{0}$. If $d\left(C_{x} ; c_{1}\right)=0$, then the component of Y containing y_{1} is y_{1}. If $d\left(C_{x} ; c_{1}\right)=1$, let $t \varepsilon V\left(C_{x} ; c_{1}\right)$. If $t \neq t_{0}$, then $B_{t}=\{y\}$, and $\left[y, y_{1}\right]$ is a small component of Y distinct from Z. Therefore $t=t_{0}$, and then $\left[c_{2}, t_{0}\right] \notin C_{x}$; otherwise $d\left(C_{x} ; t_{0}\right) \geq 2$, contrary to Corollary 3 (i). As before, $\left[c_{2}, t_{0}\right] \notin C_{x}$ implies $Z=y_{2}$.

We may therefore assume without loss of generality that $Z=y_{1}$. Then $d\left(Y ; y_{1}\right)=0$, and by Lemma 2 ,

$$
\begin{equation*}
V\left(X ; c_{1}\right) \subset V\left(X ; c_{2}\right) \tag{7}
\end{equation*}
$$

It also follows that $V\left(C_{x}\right)=\left\{c_{1}, c_{2}\right\}$, and $t_{0}=c_{2}$. Next, $d\left(Y ; y_{1}\right)=0$ implies $V\left(X \circ Y ;\left(x, y_{1}\right)\right)=V(X ; x) \times V(Y)$. Hence

$$
\begin{equation*}
\left.V\left(X \circ Y ;\left(x, y_{2}\right)\right)-\{x\} \times V\left(Y ; y_{2}\right)=V(X \circ Y) ;\left(x, y_{1}\right)\right) \tag{8}
\end{equation*}
$$

Also

$$
\begin{equation*}
\left.\phi V(X \circ Y) ;\left(x, y_{1}\right)\right)=V\left(X ; c_{1}\right) \times V(Y) \tag{9}
\end{equation*}
$$

By (8) and (9),
$V\left(X ; c_{2}\right) \times V(Y) \cup\left\{c_{2}\right\} \times V\left(Y ; z_{\nu_{2}}\right)-\phi\left(\{x\} \times V\left(Y ; y_{2}\right)\right)=V\left(X ; c_{1}\right) \times V(Y)$.
If the inclusion (7) is proper, $\phi\left(\{x\} \times V\left(Y ; y_{2}\right)\right)$ must contain a set of the form $\{u\} \times V(Y), u \varepsilon V\left(X ; c_{2}\right)$. But $\phi\left(\{x\} \times V\left(Y ; y_{2}\right)\right) \subset\left\{c_{2}\right\} \times V(Y)$. Hence $V\left(X ; c_{1}\right)=V\left(X ; c_{2}\right)$, contrary to the disconnectedness of Y. This completes the proof of the completeness of C_{x}.

The remaining part of the proof of Theorem 1 is identical with that given in $[3 ; 695,696]$.
2. Lexicographically idempotent graphs. We wish to make two remarks
concerning the maximal complete subgraphs of such graphs. The first is that if X is idempotent and has no isolated vertices, then its maximal complete subgraphs are infinite and uniformly distributed over X in the sense described by Theorem 2. The second is that the order of the maximal subgraphs is not in any way determined by the order of X. In order to show this we define the lexicographic product of infinitely many graphs and point out some of its properties.

Lemma 5. If X is an idempotent graph without isolated vertices, then every maximal complete subgraph of X is infinite.

Proof. The union of a tower of complete subgraphs of X being complete, it follows from Zorn's lemma that X has a maximal complete subgraph. Let \mathfrak{M} be the set of all maximal complete subgraphs of X, and $\operatorname{put} m=\min \{|A|: A \varepsilon \mathfrak{M}\}$. Suppose that m is finite. Let $A_{0} \varepsilon \mathfrak{M}$ be of order m, and let ϕ be an isomorphism of X onto $X \circ X$. Then ϕA_{0} is a maximal complete subgraph of $X \circ X$. If $\phi A_{0} \subset X_{a}$ for some $a \varepsilon X$, let $b \varepsilon X$ be adjacent to a, then the maximal subgraph Y_{0} of $X \circ X$ with $V\left(Y_{0}\right)=\{(b, b)\} \cup V\left(\phi A_{0}\right)$ is a complete subgraph of $X \circ X$, contrary to the maximality of ϕA_{0}. (X_{a} denotes the maximal subgraph of $X \circ X$ with $\left.V\left(X_{a}\right)=\{a\} \times V(X).\right)$ Hence

$$
\begin{equation*}
\phi A_{0} \subset X_{a} \tag{10}
\end{equation*}
$$

for each $a \varepsilon X$. For given $a \varepsilon X$ let $B_{a}=X_{a} \cap \phi A_{0}$. Either $B_{a}=\square$ or else B_{a} is a maximal complete subgraph of X_{a}. For if B is a complete subgraph of X_{a} properly containing B_{a}, then the maximal subgraph Z_{0} of $X \circ X$ with $V\left(Z_{0}\right)=$ $V(B) \cup V\left(\phi A_{0}\right)$ is a complete subgraph of $X \circ X$ properly containing ϕA_{0}, a contradiction.
By (10) there exist $a_{1}, a_{2} \varepsilon X, a_{1} \neq a_{2}$, such that $B_{a i} \neq \square, i=1,2$. Since m is finite, $\left|B_{a i}\right|<m, i=1,2$. Let A_{i} be the maximal subgraph of X with $V\left(A_{i}\right)=\left\{x \varepsilon X:\left(a_{i}, x\right) \varepsilon B_{a_{i}}\right\}, i=1,2$. Since $B_{a_{i}}$ is a maximal complete subgraph of $X_{a_{i}}, A_{i} \varepsilon \mathfrak{M}$. But $\left|A_{i}\right|=\left|B_{a_{i}}\right|<m$, a contradiction. It follows that m is infinite.

Theorem 2. Let X be an idempotent graph without isolated vertices, A a finite complete subgraph of X, K an infinite complete subgraph of X. Then there exists a maximal complete subgraph B of X such that $A \subset B$ and $|B| \geq|K|$.

Proof. We use induction on $|A|$. If $|A|=1$, i.e. if A is a single vertex x, let $\phi x=(a, b)$, where $\phi: X \approx X \circ X$, and let $a^{\prime} \varepsilon X$ be adjacent to a. Let $K_{a^{\prime}}$ be a subgraph of $X_{a^{\prime}}$ isomorphic to K, then the maximal subgraph C of X with $V(C)=\phi^{-1}\left(V\left(K_{a}\right) \cup\{\phi x\}\right)$ is complete, $x \varepsilon C$, and $|C|=|K|$. Any maximal complete subgraph B of X containing C will then satisfy the conditions of the theorem.

Now assume the theorem true for all complete subgraphs of X of order $<n$. Let $A \subset X$ be complete, $|A|=n$. Let $x_{1}, \cdots, x_{s}, s \leq n$, be the vertices of X for which $B_{x i}=X_{x i} \cap \phi A \neq \square$. Each $B_{x i}$ is complete. Case (i): $s=1$.

In this case repeat the construction in the preceding paragraph, replacing x by A. Case (ii): $s \geq 2$. Then $\left|B_{x i}\right|<n, i=1, \cdots, s$, hence by induction hypothesis there exists a complete subgraph B_{i} of $X_{x_{i}}$ with $B_{x_{i}} \subset B_{i}$ and $\left|B_{i}\right| \geq$ $|K|$. Moreover the maximal subgraph C of X with $V(C)=\phi^{-1}\left(U_{i=1}^{s} V\left(B_{i}\right)\right)$ s complete, has order $\geq|K|$, and contains A.

We will now give an example of a connected idempotent graph X showing that the order of the maximal complete subgraphs of X is independent of $|X|$. We shall make use of the following general construction.

Let $\left\{X_{\alpha}: \alpha \varepsilon A\right\}$ be a family of graphs indexed by a totally ordered set A, and let $x_{\alpha}^{(0)} \varepsilon X_{\alpha}, \alpha \varepsilon A$. Put $R_{\alpha}=\left(X_{\alpha}, x_{\alpha}^{(0)}\right), \alpha \varepsilon A$, and define the lexicographic product $X=\prod_{\alpha \in A} R_{\alpha}$ as follows. Let W be the Cartesian product of the sets $V\left(X_{\alpha}\right), \alpha \varepsilon A$, and denote by $p_{\alpha}: W \rightarrow V\left(X_{\alpha}\right)$ the projection of W onto its α-th coordinate. Then
(i) $V(X)=\left\{x \varepsilon W: p_{\alpha} x=x_{\alpha}^{(0)}\right.$ for almost all $\left.\alpha \varepsilon A\right\}$;
(ii) $[x, y] \varepsilon E(X)$ if and only if $\left[p \alpha_{0} x, p_{\alpha_{0}} y\right] \varepsilon E\left(X_{\alpha_{0}}\right)$, where α_{0} is the smallest $\alpha \varepsilon A$ such that $p_{\alpha} x \neq p_{\alpha} y$.
The product so defined has the following properties:
(a) If each X_{α} is connected, then X is likewise connected.
(b) A n.a.s.c. that X be complete is that each R_{α} be complete.
(c) If B is a non-empty proper subset of A such that $B<A-B$, then

$$
\prod_{\alpha \in A} R_{\alpha} \approx \prod_{\alpha \in B} R_{\alpha} \circ \prod_{\alpha \in A-B} R_{\alpha}
$$

It follows from (c) that if $B<A-B$ and if A, B, and $A-B$ are orderisomorphic, then any graph of the form $\prod_{\alpha \varepsilon A} R_{\alpha}$ is idempotent provided $R_{\alpha} \approx R$ for each $\alpha \varepsilon A$. If A is the set of rationals with the usual order we denote the graph $\prod_{\alpha \varepsilon A} R_{\alpha}, R_{\alpha} \approx R$, by R^{*}.

We can now give the example mentioned above. Let n be an infinite cardinal, N a set of cardinal $n, x^{(0)} \& N$. Define $S_{n}=\left(X, x^{(0)}\right)$ by $V(X)=\left\{x^{(0)}\right\} \cup N$, $E(X)=\left\{\left[x, x^{(0)}\right]: x \varepsilon N\right\}$. Then S_{n}^{*} is idempotent, connected, $\left|S_{n}^{*}\right|=n$, but S_{n}^{*} has no uncountable complete subgraph.

References

1. M. Hall, Jr., The Theory of Groups, New York, 1959.
2. F. Harary, On the group of the composition of two graphs, this Journal, vol. 26(1959), pp. 29-34.
3. G. Sabidussi, The composition of graphs, this Journal, vol. 26(1959), pp. 693-696.

Tulane University
and
McMaster University

