
THE LIXICOGIAPHIC PRODUCT OF GRAPHS

B GEI S,BIDSSI

1. The automorphism group of the lexicographic product. The purpose of
this section is to improve an earlier result [31 giving a necessary and sufficient
condition under which the automorphism group of the lexicographic product
of two graphs X, Y is equal to the wreath product ([1; 81]; [3, Definition 1])
of the groups of X and Y. Using the terminology and notation of [3] we have
the following:

THEOREM 1. Let X be any graph with E(X) ’, and suppose that Y is
such that V(Y; y) (% V(Y; y’) < Y ]for any two distinct vertices y, y’ of Y.
Then a necessary and sucient condition that G(X) o G(Y) G(X o y) is that
Y be connected if R A, and that Y’ be connected if S A.

In [3], X and Y were assumed to be almost locally finite, and finite, respec-
tively. Finite graphs trivially satisfy the condition that V(Y; y) V(Y; y’) <-
d(Y; y) < Y ].
The proof of Theorem 1 will be broken up into a sequence of lemmas. Note

first hat if X and Y satisfy the hypotheses of the theorem, then X Y is not iso-
morphic to Y. For if it were, then V(X Y; (z, y)) V(X o Y; (x, y’)) < Y
for any x X, and distinct vertices y, y’ Y. But if d(X; x) >_ 1, then

V(X o Y; (x, y)) f’ V(X o Yi (x, y’))] >__ V(X; x) X V(Y) >_ Y I.
It follows from this that if K. 1, then tY. Y,, with K,, 1.

It herefore suffices to consider the case Y >_ 2, K, >_ 2, and to prove that
C, is complete. Let c c ,. C, y ,. B, i 1, 2, and suppose that px(C c) 2.
This assumption is made throughout the following sequence of lemmas.

LEMMXl. Let A, B, C, M, N be sets such that N < B I, and A X B
(C B) k.) M N, then A C. If, moreover, MI < B 1, thenA C.

This is obvious.

LEMM 2. V(X; t,) C V(X; c) (’ V(X; c) for each y ,. Y with d(Y; y) < Y i.
Proof. Consider W V(X o Y; (x, y)) ( V(X o Y; (x, y)). Since
(c c) 2,

(1) tW (V(X; c) ( V(X; c)) X V(Y) [.
For W itself we obtain W (V(X; x) X V(Y)) k.) D, where

D {x} X (V(Y; y) V(Y; y)).
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Hence for any y Y,
W--- (r(x o y; (x, y)) A) L) D,

whereA {x} X V(Y;y) C V(X Y; (x,y)). Therefore if we put U
{t} X V(Y; z), we obtain

(2) tW (V(X; t,) V(Y) L) U,) eA k.) D.

By hypothesis the cardinal of A is < Y [. Hence by (1), (2), and Lemm 1,
v(x t) C v(x; c,) v(x; c).
We shll henceforth denote V(X; c) V(X; c) by Q.

LEMM 3. Let w w be two distinct ertices of Y. Then

V(X; t.) V(X; t,) C Q

with equality if [t t.] X.

Proof. Let y y W, D, etc. be as in the proof of Lemma 2, and let w
wY,w w. Then

V(X Y; (x w)) ( V(X Y; (x w)) V(X x) X V( Y) D’,
where D’ {x} X (V(Y; w) ( V(Y; w.)). Hence

W V(X Y; (x, w)) V(X o Y; (x, w)) n’ D,
and therefore

(3) tW V(X o Y; (t,, z,)) V(X o Y; (t. z.)) h D’ k.) b D.

We now compare (1) and (3) distinguishing three cases:
Case (i): t, t, Here the right-hand side of (3) equals (V(X; t,) )<

V(Y)) L) D" tD’ kJ tD, where D" {t,} X (V(Y; z,) (% V(Y; z,)).
Hence by Lemma 1, V(X; t,) ( V(X; tw,) V(X; t,) Q.

Case (ii) [t, ,t,] X. Here

(4) tW (V(X; t,) V(X; t,)) X V(Y) A A D’ D,
where A {t,,,} X V(Y; Zw,), i 1, 2. The conclusion again follows from
Lemma 1. Similarly in case (iii): p(t, t,) 2.

ConoL,nv 1. Let C be such that B, >- 2. Then V(X; t) Q.

COaOLV 2. If V(C) V’ Q, then B, 1.

Proof. If B, >- 2, then by Corollary 1, Q V(X; t), a contradiction.

ConohnY3. LettuCe. (i) IftQ, thend(C;t) _< 1. (ii) IftQ, then
p.(t, t’) <_ 1 for each t’ C

Proof. (i): If d(C ;t) _> 2, let t, t V(C ;t), t t. Then by Lemma 3,
t V(X; t) V(X; t) C_ Q, a contradiction. (ii): If p(t, t’) >_ 2, then by
Lemma 3, Q V(X; t) (% V(X; t’).
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COROLLAnY 4. If V(C) ( Q ], then C is a star whose center is the only
vertex of C belonging to Q. If V(C) Q [-, then each component of C has
at most two vertices.

Proof. Suppose two distinct vertices tl t2 of C belong to Q. By Corollary
3 (ii), [t cl] e C i 1, 2. Hence d(C cl) >_ 2 contrary o Corollary 3 (i).
Thus V(C) Q -< 1. If V(C) Q [:], then by Corollary 3 (ii) each
vertex of C is of degree 0 or 1, and hence each component of C is either a
single vertex or a single edge. If V(C) Q {Co}, then by Corollary 3 (ii)
every vertex of C co is adjacent to co, and no two such vertices are adjacent
to each other (Corollary 3 (i)). Hence Cx is a star with center co
LEMMA 4. If Y contains two distinct vertices wi w2 such that V(X; twl)

V(X; tw,) Q, then V(X; twl) ’ V(X; t) k.) Its,} Q, i 1 or 2, and
IV(Y; y) V(Y; y.)] >_ 1 + min {d(Y; y) :y Y}.

Proof. We use the same notation as in the proof of Lemma 3. By Lemma 3,
Its,, tw,] X. Hence

(5) tW= A)AA-4)DD,
where A (V(X; tw,) V(X; two)) V(Y). Note that A, A A. are dis-
joint.
By hypothesis and Lemma 3 there exists a

T It} X V(Y) is disjoint from A, and hence T C A A2 ) (n. Since
]D] < Y[ T ], T meets A ) A, say T A [-]. Then tw, t Q,
and hence T A [-]. Therefore T C A tD so that

(6) D T A {t,} (V(Y) V(Y;z))

By Corollary 4, tw, Q implies tw Q, whence
rain {d(Y; y) :y e Y}. Since V(X; tw,) V(X; two) C Q, D’ C D. Hence
tD A and since A is disjoint from {two} X (V(Y) V(Y; zw,)), we have
IV(Y; yl) ( V(Y; y.)l [DI >_ 1 -l- min {d(Y; y) :y Y}.
Proo] o] the completeness o] C We assume as in the preceding lemmas

that here exist c c C such tha p:(c c2) 2.
Case (i): V(C) f Q [:]. By Corollary 4, C is a star whose center Co

is the only vertex of C in Q. By Corollary 2, Bo 1, say Bo {yo}. Note
first that if y Y, y yo then [y, yo] Y. For if y and yo are not adjacent,
then by Lemma 3, Co Q V(X; t) V(X; Co), a contradiction. Next le
P (Wo w) be a path of Y ioining Wo Bo with w B and suppose
hat yo P. Then (two two) is a path of C joining c and c and not con-
taining Co. But this is impossible since Co is the center of C. I follows tha
B, and B, belong to differen components of Y Yo and hence V(Y; y)
V(Y; y) {yo}. Noe finally that V(X; Co) f’ V(X; c) Q, hence by Lemma 4,
and he connectedness of Y, V(Y; y) V(Y; y) >- 2, a contradiction.

Case (ii): V(C) ( Q [:]. In this case C is disconnected. For if C 2,
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then V(Cx) {cl, c.}, and since px(cl, c2) 2, Cx is disconnected. If Cx >__ 3
the disconnectedness of C is a consequence of no component of C having
more than two vertices. C being disconnected, Y is likewise disconnected.
It follows from this that there is at most one to C with B,o >- 2. Other-
wise by Corollary 1, R 4, and then by hypothesis Y is connected, a con-
tradiction. We shall call a component of Y small if its order is _< 2. Note
that if K is a component of Y with V(K) Bo [], then K is small.

Let wl w2 be vertices of two distinct small components of Y. Then
px(t, t) 2, and by Lemma 3, Q V(X; tl) ( V(X; t). Moreover,
d(Y w,)

_
1 < Y 1, i 1, 2, hence by Lemma 2, V(X; t,) C Q V(X; t) (%

V(X; t,), i 1, 2, i.e. t,Rt a contradiction. Therefore Y has at most
one small component Z.
Suppose Z has two vertices v2. If V(X; t,) (% V(X t,) Q, then by

the same argument as in the preceding paragraph t,Rt,, Hence V(X; t) (%

V(X; t,,) Q. Therefore by Lemma 4, t. Q. i 1 or 2, contrary to the
ssumption tha .V(C) Q [". Thus Z consists of a single vertex. We
claim thatZ yory2. If cl t0,hen[c,to] C. HenceB Y2},
and y. is not djacent to any vertex in Bo Thus the component of Y cou-
raining y2 is small, i.e. y2 Z. Suppose then tha c to If d(C c) O,
then the component of Y containing y is y. If d(C c) 1, let V(Cx c).
If to, then B, {y}, and [y, y] is a small component of Y distinct from Z.
Therefore to and then [c2 to] C otherwise d(C to)

_
2, contrary to

Corollary 3 (i). As before, [c2, to] C implies Z y2.

We may therefore assume without loss of generality tha Z yl Then
d(Y; y) 0, and by Lemma 2,

(7) (x; c) c v(z; c).
It also follows that V(C) {cx, c:}, and to c. Next, d(Y; y) 0 implies
V(X o Y; (x, yl)) V(X; x) X V(Y). Hence

(S) V(X ) Y; (x, y2)) {x} X r(Y; y2) V(X o.Y); (x, yl)).

Also

(9) CV(X o Y); (x y,)) V(X c) X V( Y)
By (8) and (9),
V(X;c) X V(Y) k.) {c2} X V(Y;z,)- ({x} V(Y; y)) V(X;c) X V(Y).

If the inclusion (7) is proper, ({x} X V(Y; y)) must contain a set of the
form {u} V(Y), u V(X; c). But ({z} V(Y; y)) C {c} V(Y).
Hence V(X; c) V(X; c2), contrary o the disconnectedness of Y. This
completes the proof of the completeness of C.
The remaining part of the proof of Theorem 1 is identical with that given

in [3; 695, 696].

2. Lexicographically idempotent graphs. We wish to make two remarks
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concerning the maximal complete subgraphs of such graphs. The first is that
if X is idempotent and has no isolated vertices, then its maximal complete
subgraphs are. infinite and uniformly distributed over X in the sense described
by Theorem 2. The second is that the order of the maximal subgraphs is not
in any way determined by the order of X. In order to show this we define the
lexicographic product of infinitely many graphs and point out some of its
properties.

LEMM 5. If X is an idempotent graph without isolated vertices, then every
maximal complete subgraph of X is infinite.

Proof. The union of a tower of complete subgraphs of X being complete, it
follows from Zorn’s lemma that X has a maximal complete subgraph. Let 9X be
the set of all maximal complete subgraphs of X, and put m min
Suppose that m is finite. Let Ao, !IX be of order m, and let be an isomorphism
of X onto X o X. Then CA0 is a maximal complete subgraph of X o X. If
CA0 C Xa for some a, X, let b X be adjacent to a, then the maximal subgraph
Yo of X o X with V(Yo) {(b, b) L) V(A0) is a complete subgraph of X o X,
contrary to the maximality of bA0 (Xo denotes the maximal subgraph of
X o X with V(Xo) {al X V(X).) Hence

(10) CAo (E X
for each a X. For given a, X let B X SAo. Either B [-I or else
B is a maximal complete subgraph of Xo. For if B is complete subgraph of
Xa properly containing B, then the maximal subgraph Zo of X
V(B) L) V(dAo) is a complete subgraph of X o X properly containing CAo
a contradiction.
By (10) there exist al, as X, al # a., such that Ba, # [[], i 1, 2. Since

m is finite, Bo, < m, i 1, 2. Let A be the maximal subgraph of X with
V(A) /xX (a,x) Bo,},i 1, 2. SinceBa, is a maximal complete
subgraph of Xa,, A X. But A B, < m, a contradiction. It follows
that m is infinite.

THEOREM 2. Let X be an idempotent graph without isolated vertices, A a finite
complete subgraph of X, K an infinite complete subgraph of X. Then there exists
a maximal complete subgraph B of X such that A C B and

Proof. We use induction on A I. If A 1, i.e. if A is a single vertex
x, let x (a, b), where X X X, and let a’ X be adjacent to a. Let
K,, be a subgraph of X, isomorphic to K, then the maximal subgraph C of
X with V(C) -I(V(K,) L) {$x}) is complete, x, C, and[ C] K [. Any
maximal complete subgraph B of X containing C will then satisfy the conditions
of the theorem.
Now assume the theorem true for all complete subgraphs of X of order < n.

LetA CXbecomplete, A n. Letxl, ,x,,s_< n, be the vertices
of X for which B, X,, (h CA [-]. Each B, is complete. Case (i): s 1.
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In this case repeat the construction in the preceding paragraph, replacing x
by A. Case (ii)" s >_ 2. Then Bx, < n, i 1, s, hence by induction
hypothesis there exists a complete subgraph B of X, with B, C B and B >-
K I. Moreover the maximal subgraph C of X with V(C) -1 (.). V(B,))

s complete, has order >_ K ], and contains A.
We will now give an example of a connected idempotent graph X showing

that the order of the maximal complete subgraphs of X is independent of
We shall make use of the following general construction.

Let IX. a A be a family of graphs indexed by a totally ordered set A, and
let x. X. a ,. A. PurR (X. x(.)) a A, and define the lexicographic
product X II. R. as follows. Let W be the Cartesian product of the
sets V(X.), a ,. A, and denote by p. W ---> V(X.) the projection of W onto
its a-th coordinate. Then

(i) V(X) {xW’p.x x(). for almost allaeA};
(ii) Ix, y] E(X) if and only if [paoX, p.oy] E(X.o), where ao is the smallest

a A such that p.x p.y.
The product so defined has the following properties"
(a) If each X. is connected, then X is likewise connected.
(b) A n.a.s.c, that X be complete is that each R. be complete.
(c) If B is a non-empty proper subset of A such that B < A B, then

It follows from (c) that if B < A B and if A, B, and A B are order-
isomorphic, then any graph of the form II., R. is idempotent provided
R. R for each a, A. If A is the set of rationals with, the usual order we
denote the graph II.,a R. R. R, by R*.
We can now give the example mentioned above. Let n be an infinite cardinal,

N a set of cardinal n, x ()
Z N. Define S (X, x ()) by V(X) {x () k.) N,

E(X) {[x, x()] x. N}. Then S* is idempotent, connected, S* n, but
S* has no uncountable complete subgraph.
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