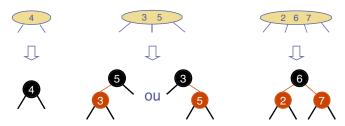
Arbres Rouges-Noirs

Correspondance entre les arbres (2,4) et les arbres rouges-noirs

- On peut voir un arbre rouge-noir comme étant la représentation d'un arbre (2,4) par un arbre binaire de recherche dont les noeuds sont colorés rouge ou noir
- En comparaison avec les arbres (2,4), les arbres rouges-noirs ont
 - □ La même complexité logarithmique
 - ☐ Plus simple à implémenter car on a une seule sorte de noeud



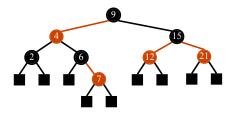
IFT2015, A2009, Sylvie Hamel Université de Montréal

Arbres Rouges-Noirs

1

Arbres rouges-noirs

- Un arbre rouge-noir peut aussi être défini comme étant un arbre binaire de recherche qui satisfait les propriétés suivantes:
 - Propriété de racine: La racine est noir
 - Propriété externe: Les noeuds externes sont **noirs**
 - ☐ Propriété interne: Les enfants d'un noeud rouge sont noirs
 - Propriété de profondeur: Tous les noeuds externes ont la même profondeur **noir**, qui est définie comme étant le nombre d'ancêtre interne **noir**

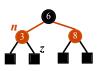


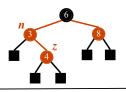
Hauteur d'un arbre rouge-noir

- ullet La hauteur d'un arbre rouge-noir gardant en mémoire n éléments est en $O(\log n)$
 - Preuve: La hauteur d'un arbre rouge-noir est au plus le double de la hauteur de l'arbre (2,4) lui correspondant, qui est de $O(\log n)$
- L'algorithme de recherche dans un arbre rouge-noir est exactement le même algorithme que pour la recherche dans un arbre binaire de recherche
- ullet On a donc que la complexité en temps de la recherche dans un arbre rouge-noir est en $O(\log n)$

Insertion dans un arbre rouge-noir

- O Pour insérer un élément (k,v) dans un arbre rouge-noir, on exécute l'algorithme d'insertion d'un arbre binaire de recherche et on colore rouge le nouveau noeud z, sauf si z est la racine
- Exemple: Insérer un élément de clé 4
 - □ Les propriétés de racine et de profondeur, de même que la propriété externe sont préservées
 - ☐ Si le parent n de z est **noir**, on préserve aussi la propriété interne et on a terminé l'algorithme d'insertion
 - ☐ Sinon, on a un **double rouge** et on doit modifier l'arbre pour rétablir la propriété interne.





IFT2015, A2009, Sylvie Hamel Université de Montréal

Arbres Rouges-Noirs

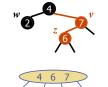
4

Remédier à un double rouge

Oconsidérons un double rouge: v, le parent rouge, z, le fils rouge et considérons w. le frère de v.

Cas 1: w est noir

- on peut voir le double rouge comme un remplacement incorrect d'un 4-noeud
- Restructuration: On exécute le bon remplacement du 4-noeud



Cas 2: w est rouge

- on peut voir le double rouge comme un débordement dans un arbre (2,4)
- Recoloration: On performe l'équivalent d'un fractionnement

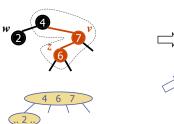
IFT2015, A2009, Sylvie Hamel Université de Montréal

Arbres Rouges-Noirs

5

Cas 1: Restructuration

- Oconsidérons un double rouge: v, le parent rouge, z, le fils rouge et considérer w, le frère de v. Lorsque w est noir, on exécute une restructuration
- Cela revient à exécuter le remplacement correct du 4-noeud
- La propriété interne est restorée et les autres propriétés sont préservées



IFT2015, A2009, Sylvie Hamel Université de Montréal

Arbres Rouges-Noirs

6

Cas 1: Restructuration (suite)

 Il y a 4 configurations possibles demandant une restructuration, dépendant de l'emplacement des deux noeuds rouges formant le double rouge

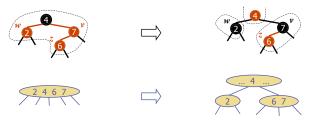
IFT2015, A2009, Sylvie Hamel Université de Montréal

Arbres Rouges-Noirs

7

Cas 2: Recoloration

- Considérons un double rouge: v, le parent rouge, z, le fils rouge et considéroms w, le frère de v. Lorsque w est rouge, on exécute une recoloration
- On recolore le parent v et son frère w en **noir** et le grand-parent (le parent de v) devient **rouge**, sauf si c'est la racine
- Cela correspond à exécuter le fractionnement d'un 5-noeud
- Il est possible que le **double rouge** se propage chez le grand-parent



IFT2015, A2009, Sylvie Hamel Université de Montréal

Arbres Rouges-Noirs

8

Complexité en temps d'une insertion

Algorithme insérer(k, v)

- 1. On exécute chercher(*k*) pour trouver le noeud d'insertion *z*
- 2. On insère le nouvel élément (k, v) dans le noeud z et on colore z rouge
- 3. Tant que *doubleRouge(z)*
 - **si** estNoir(frère(parent(z))) $z \leftarrow restructure(z)$

sinon

 $z \leftarrow recolore(z)$

- La hauteur d'un arbre rouge-noir gardant en mémoire n éléments est en O(log n)
- L'étape 1 prend un temps O(log n), étant donné qu'on doit visiter O(log n) noeuds lors de la recherche
- \bigcirc L'étape 2 prend un temps O(1)
- L'étape 3 prend un temps O(log n), étant donné qu'on exécute au plus
 - \square $O(\log n)$ recolaration, chacune prenant un temps O(1)
 - Au plus une restructuration prenant un temps O(1)
- L'insertion d'un élément dans un arbre rouge-noir prend donc un temps O(log n)

IFT2015, A2009, Sylvie Hamel Université de Montréal

Arbres Rouges-Noirs

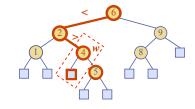
9

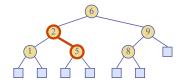
Suppression dans un arbre rouge-noir

 Pour supprimer un élément de clé k dans un arbre rouge-noir, on exécute l'algorithme de suppression d'un arbre binaire de recherche

Supprimer dans un arbre binaire de recherche (rappel)

- Pour enlever un élément de clé k dans un arbre binaire de recherche, on commence par exécuter l'algorithme chercher(k).
- Si k est dans l'arbre l'algorithme chercher(k) se terminera dans un noeud interne w
- Si l'un des enfant de w est une feuille, on enlève cette feuille et w
- Sinon...





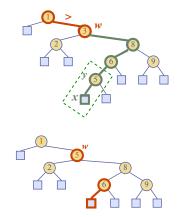
IFT2015, A2009, Sylvie Hamel Université de Montréal

Arbres Rouges-Noirs

11

Supprimer dans un arbre binaire de recherche (suite)

- Si k est dans l'arbre, l'algorithme chercher(k) se terminera dans un noeud interne w. Si les fils de w sont tous les deux des noeuds internes alors
- - ■On trouve le noeud interne y qui suit w lors d'un parcours symétrique de l'arbre et son fils gauche x
 - On enlève l'entrée dans w et on la remplace par l'entrée dans y
 - ■On enlève les noeuds y et x



IFT2015, A2009, Sylvie Hamel Université de Montréal

Université de Montréal

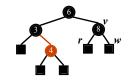
Arbres Rouges-Noirs

12

14

Suppression dans un arbre rouge-noir

- O Pour supprimer un élément de clé k d'un un arbre rouge-noir, on exécute l'algorithme de suppression d'un arbre binaire de recherche
- Soit v, le noeud interne et w, le noeud externe enlever lors de la suppression. Soit r, le frère de w.
 - ☐ Si soit v ou r était rouge, on colore r noir et on a terminé
 - Sinon (v et r était **noir**), enlever v va causer une violation de la propriété de profondeur et demander une restructuration de l'arbre. On appelera cette situation **double noir** au noeud r.



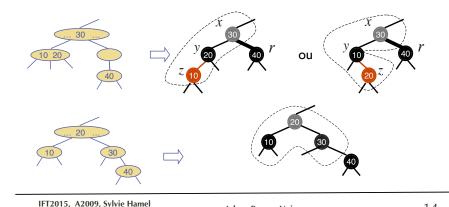
IFT2015, A2009, Sylvie Hamel Université de Montréal

Arbres Rouges-Noirs

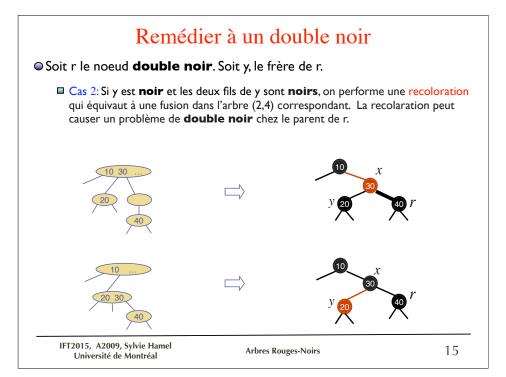
13

Remédier à un double noir

- Soit r le noeud **double noir**. Soit y, le frère de r.
 - Cas 1: Si y est **noir** et a un fils z **rouge**, on performe une restructuration qui équivaut à un transfert dans l'arbre (2,4) correspondant. À la suite de cette restructuration, toutes les propriétés des arbres rouges-noirs sont rétablies.



Arbres Rouges-Noirs

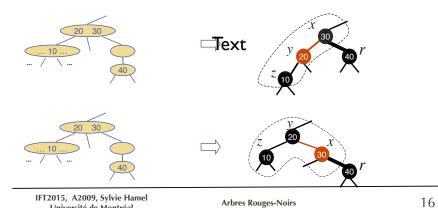


Remédier à un double noir

● Soit r le noeud **double noir**. Soit y, le frère de r.

Université de Montréal

■ Cas 3: y est **rouge**, on performe un ajustement qui équivaut à choisir une représentation différente d'un 3-noeud dans l'arbre (2,4) correspondant. L'ajustement va nous ramener soit dans le cas 1, soit dans le cas 2



Insertion:	Remédier à un double rouge		
Opérations arbres rouge-noir	Opérations arbres (2,4)	Résultats	
Restructuration	Changement de représentation d'un 4-noeud	Le double rouge est enlevé	
Recoloration	Fractionnement	Le double rouge est enlevé ou il se propage vers le haut	

Suppression: Remédier à un double noir		
Opérations arbres rouge-noir	Opérations arbres (2,4)	Résultats
Restructuration	Transfert	Le double noir est enlevé
Recoloration	Fusion	Le double noir est enlevé ou il se propage vers le haut
Ajustement	Changement de représentation d'un 3-noeud	Suivi d'une restructuration ou d'une recoloration

IFT2015, A2009, Sylvie Hamel Université de Montréal

Arbres Rouges-Noirs

17