
1

Design, Resource Management and Evaluation of
Fog Computing Systems: A Survey

Ismael Martinez, Abdelhakim Senhaji Hafid, and Abdallah Jarray

Abstract—A steady increase in Internet of Things (IoT) appli-
cations needing large-scale computation and long-term storage
has lead to an over-reliance on Cloud computing. The resulting
network congestion in Cloud, coupled with the distance of
Cloud data centres from IoT, contribute to unreliable end-
to-end response delay. Fog computing has been introduced
as an alternative to cloud, providing low-latency service by
bringing processing and storage resources to the network edge.
In this survey, we sequentially present the phases required in
the implementation and realization of practical fog computing
systems: (1) design & dimensioning of a fog infrastructure,
(2) fog resource provisioning for IoT application use and IoT
resource allocation to fog, (3) installation of fog frameworks for
fog resource management, and (4) evaluation of fog infrastructure
through simulation & emulation. Our focus is determining
the implementation aspects required to build a practical large
scale fog computing infrastructure to support the general IoT
landscape.

Index terms— Fog computing, fog design & dimension-
ing, fog resource management, fog infrastructure evaluation,
simulation, Internet of Things (IoT), survey

I. INTRODUCTION

The benefits and varied use cases of Internet of Things
(IoT) technology have led to an increase in IoT adoption,
number of devices and applications, and volume of data
uploaded to Cloud systems. International Data Corporation
(IDC) predicts the number of connected IoT devices will
exceed 41 billion by the year 2025, generating more than
79 zettabytes of data [1]. Current Cloud systems are not
large enough to process and store this increase in IoT data
traffic [2], an issue that affects all IoT systems. Congested
networks towards a distant Cloud can result in relatively large
delay for latency sensitive IoT applications such as health
care [3], multimedia [4], and vehicular/drone applications [5,
6]. Furthermore, Cloud centralization can result in reduced
privacy of uploaded IoT data [7].

Fog is a layer of geo-distributed servers with computing,
memory, and network capabilities that serve as an intermediary
between IoT and Cloud layers. Compared to Cloud, fog servers
sit closer to IoT devices, providing reduced response time
latency able to service most latency sensitive IoT applica-
tions [8]. Although fog servers are much smaller in terms

I. Martinez is with the Department of Computer Science and Operations
Research, University of Montreal, Quebec, Canada H3C 3J7 (e-mail: is-
mael.martinez@umontreal.ca).

A. S. Hafid is with the Department of Computer Science and Opera-
tions Research, University of Montreal, Quebec, Canada H3C 3J7 (e-mail:
ahafid@iro.umontreal.ca).

A. Jarray is with the School of Electrical Engineering and Computer
Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada (e-mail:
ajarray@uottawa. ca).

Figure 1: High-level necessary features and components for a
complete fog system. Larger nodes have more resources.

of processing and storage capabilities than Cloud [9], the
larger number and geo-distribution of fog servers allow fog
to alleviate Cloud network congestion by servicing a large
load of IoT applications [8]. Indeed, an IoT application can
be fully serviced by local fog servers without propagation of
IoT data to fog or Cloud further into the network.

Despite a substantial amount of research proposals in fog
computing, there are very few documented implementations
of fog in large-scale environments [10]. A design and im-
plementation of a fog system requires several components
of the fog layer, as well as collaboration mechanisms with
IoT and Cloud. A detailed overview of these components and
collaboration mechanism are presented in [11, 12, 13], and are
summarized in Fig. 1.

We identify three broad stages in implementing and devel-
oping a fog system. First, in the absence of any fog system, a
fog infrastructure is built through consideration of IoT service
needs. Since large IoT traffic volume may cause increased
network congestion towards Cloud, building a localized fog
infrastructure close to high traffic areas is beneficial to internet
service providers and Cloud service providers alike.

Second, the approach the fog infrastructure interacts with
IoT and manages fog resources is defined. Fog resource
management aims to select fog nodes to best process IoT
data, and takes the form of algorithms or protocols imple-
mented within individual fog nodes or a fog layer controller.
In several cases, resource management relies on additional
hardware/software structures (e.g. fog orchestration controllers



2

or APIs) implemented within the fog infrastructure for ap-
propriate fog node selection. Therefore, we consider the re-
source management algorithms/protocols, and the additional
hardware/software structures separately. A fog service provider
(FSP) is the organization that manages the implemented fog
infrastructure, including IoT-fog interactions. Several proposed
resource management approaches minimize service cost and
latency to IoT users, which incentivizes IoT use of fog. Other
approaches increase energy efficiency to reduce FSP operation
costs. Therefore, efficient resource management for improved
IoT service is an important concern to FSPs.

Third, evaluation of the constructed fog infrastructure with
defined resource management protocols are evaluated to assess
service impact on different IoT applications. Evaluation tools
can be useful for IoT application developers to decide whether
application computation is best done locally, by fog, or by
Cloud. Tools for evaluation fog infrastructure use discrete-
event simulation or emulation, and allow for configurable
network conditions and IoT traffic patterns. To implement a
fog computing system that can successfully support an IoT
landscape, these three broad stages are focused into four key
phases which will be explored in subsequent sections.

Phase 1: Estimate the volume of IoT traffic to be supported
by fog, then design & dimension a fog infrastructure either
from scratch, or by extending existing infrastructure.

Phase 2: Determine the method of fog resource provision-
ing for IoT use, and of IoT resource allocation to fog.

Phase 3: If necessary for resource provisioning, allocation
and data migration, install a fog framework — additional
hardware and/or software for fog resource management.

Phase 4: Use fog evaluation tools to measure the efficiency
of the designed fog infrastructure and selected resource man-
agement approach in servicing IoT.

In this survey, we present a critical evaluation of solutions
that contribute to the practical end-to-end implementation of
fog computing. Our main contributions are as follows:

• Present and discuss existing models for fog design &
dimensioning.

• Present a structured classification of resource manage-
ment schemes based on initialization time and effec-
tiveness for dynamic and static IoT applications. We
also summarize optimization objectives and modeling
techniques used.

• Review current framework solutions for fog resource
management, and data migration, including an analysis
of hardware and software overhead that is generated.

• Identify limitations of current simulation/emulation tools
for the evaluation of fog infrastructures.

• Present open issues and research opportunities in practical
fog implementation and evaluation.

Our discovery and selection of presented publications is
meant to give a broad understanding of various proposed
implementations of fog. We did select publications that cover
the different facets of fog implementation. Indeed, publications
are selected if they cover the following topics: (1) fog design;
(2) fog resource management/orchestration; (3) fog evaluation,
simulation or emulation; (4) fog applications; and (5) fog
architecture. They are then categorized in the context of four

phases. In this manner, we present a wide range of perspectives
and approaches to fog implementation.

The remainder of this paper is organized as follows. Section
II provides an overview of fog including motivation, architec-
tures, and large-scale applications. Section III summarizes the
limitations of current surveys in fog computing. Section IV
reviews and compares current research in design & dimen-
sioning of fog infrastructures. Section V categorizes resource
provisioning & allocation schemes based on initialization
time and effectiveness for dynamic or static IoT applications.
Section VI surveys current proposals of fog frameworks for
resource management and data migration across all fog nodes,
and associated overhead. Section VII presents different simu-
lation/emulation tools for the evaluation of fog infrastructures.
In Section VIII, we discuss our findings, delineate the lessons
learned and feature research challenges and opportunities for
fog systems. Finally, Section IX concludes this paper.

II. OVERVIEW OF FOG COMPUTING

We present an overview of the differences and benefits of
fog to IoT when compared to Cloud and other edge technolo-
gies. Within the fog computing paradigm, we present several
fog architectures that have been proposed to provide different
ranges of IoT serviceability and inter-fog communication.
Benefits and advantages unique to fog are particularly impor-
tant to certain industries; hence, several industry applications
of fog have been proposed for both local and large-scale
implementations. Localization and geo-distribution of fog can
provide increased privacy, but pose other security issues.

A. Definition of fog

Fog is a highly virtualized network comprised of nodes
that provide processing and storage services to end devices
(IoT) [8]. Fog nodes at the network edge, i.e. close to IoT
devices, can provide computational support to IoT applica-
tions with minimal latency. Though typically at the network
edge, fog nodes may appear hierarchically anywhere between
the IoT layer and the distant Cloud [14]. This architectural
setup allows many IoT requests to be satisfied by fog, and
reduces the data volume reaching Cloud servers [15]. Since
Cloud is still required by IoT applications that require high
computation and long-term storage [16], the focus of fog is to
support low resource and latency-sensitive IoT applications.
According to [8], the main characteristics that define fog
as a non-trivial extension of Cloud are: a) low latency and
location awareness, b) wide-spread geographical distribution,
c) support for mobility, d) very large number of nodes, e)
predominant role of wireless access, f) heterogeneity, g) real-
time interactions, h) interoperability and federation, and i)
support for online analytic and interplay with Cloud. As a
result, fog nodes can provide location awareness, activity
awareness, time awareness, and energy awareness of IoT data
processing [17].

Each fog node can be described as a small server or “micro
data centre” [14] with available resources to support local
computation. Although a typical fog node has reduced resource
power compared to Cloud [9], the number of nodes in fog is



3

Figure 2: Examples and quantities of network devices per net-
work service layer. IoT sensors may send data to a primary IoT
device before data is transmitted and processed by fog/Cloud.

much larger [8]. The types and quantities of devices per system
layer are described in Fig. 2. We summarize the difference
between fog and Cloud in Table I. For the remainder of
this paper, the terms “fog node” and “fog server” are used
interchangeably.

Routing of data through fog often follows a path computing
process [18] in which data is propagated to nodes of increasing
size towards Cloud. Therefore, IoT, fog and Cloud layers
can be expressed in a hierarchical architecture as in Fig. 3.
Physically, fog servers are geo-distributed to be closer to IoT,
providing the network structure in Fig. 4. Since each fog server
has network connectivity, an IoT application may access any
fog node either directly, or through a network access point.

A single physical IoT device may run multiple IoT appli-
cations. An IoT application that requires external computation
or storage submits an IoT request to fog or Cloud. Each
IoT request can be processed by one or more fog servers by
partitioning into multiple tasks. Allowing for a request to be
partitioned over several fog servers can result in parallelized
execution of tasks, and decreased end-to-end response latency.
We define a static IoT application as running on a fixed-
location IoT device with frequent requests; otherwise, it is
a dynamic IoT application.

B. Comparison of fog with other edge technology

Edge computing was introduced to bring storage and pro-
cessing capabilities closer to IoT users for localized and low-
latency computation [19, 20, 21]. Though the greatest benefits
of edge computing occur when edge servers are in close
proximity of data sources, edge computing is defined as being
any computing and network resource between IoT users and
cloud [19, 20]. Therefore, fog is seen as one implementation
of edge computing [19, 20, 21]. Two other well-known imple-
mentations are cloudlet computing and mobile edge computing
(MEC) [21].

A cloudlet is a small cluster of computers, forming a “data
centre in a box” [22], and may be referred to as a micro-
cloud [23] in some literature. Cloudlet computing refers to
any implementation of cloudlets in the vicinity of end users.
Cloudlets provide one-hop, high-bandwidth and low-latency
wireless access to IoT users.

(a) Single fog layer hierarchy (b) Multi-tier fog layer hierarchy

Figure 3: IoT data is often transmitted to fog prior to being
transferred to Cloud, therefore the IoT-fog-Cloud system is
often viewed as a hierarchy. Within the fog layer, many routing
protocols restrict data propagation to larger fog nodes (i.e.
more resources), creating a multi-tier fog hierarchy.

Figure 4: IoT-fog-Cloud physical network architecture. Larger
nodes have more resources. Network links may be wired or
wireless, and may involve intermediate routers/switches.

MEC, also known as mobile cloud computing [24], is a
form of edge computing implemented within the Radio Access
Network, and is therefore specific to mobile devices. MEC
nodes are co-hosted at Radio Network Controllers or base
stations, such as cell towers [25]. As a result, MEC nodes are
always one-hop communication distance from active mobile
users, and provide real-time processing of mobile requests.
However, MEC does not provide edge services beyond direct
network connectivity [25].

Fog nodes may be dedicated devices, but may also be
legacy devices augmented with storage and computation re-
sources [21]. This allows the fog infrastructure to be flexible
since any device may become a fog node. However, fog nodes
may be several hops from IoT users, and may require coopera-
tion between multiple fog nodes for IoT processing. Although
cloudlets and MEC nodes have no intercommunication, they
are dedicated devices with high resource capabilities and direct



4

access to edge users. Hence, a cloudlet or MEC node is meant
to process all IoT requests in full without further propagation.
Cloudlets are depicted as being located within hotspot areas,
such as hospitals or educational institutions [26], and MEC
nodes are co-hosted with base stations [25]. Compared to fog
nodes, MEC nodes and cloudlets may provide lower latency
due to higher resource capabilities and one-hop proximity, but
have lower implementation flexibility [21].

Across fog computing, cloudlet computing, and MEC, var-
ious service providers may own and manage a small subset
of available devices. Without standardization of connectivity
software, local IoT users may be limited to using a subset of
nearby edge devices. When considering a large scale imple-
mentation towards Smart City technology, these restrictions
can become a road-block for a fully connected digital ecosys-
tem [27]. It is therefore encouraged for all edge computing
to implement network protocols and software interfaces that
provide unified IoT connectivity.

Our focus for the remainder of the paper will be largely
on fog – i.e. systems where there exists intercommunication
among nodes. We will use cloudlet and MEC when appropri-
ate.

C. Fog Architecture

Many fog architectures in literature use a single layer
stretching from IoT to Cloud layer, allowing any two fog
devices to share data [3, 28, 29, 30]. This is the most general
and flexible representation of the fog layer, with each fog node
varying in distance from the edge and quantity of resources.

Intharawijitr et al. [31] propose a layer of horizontally
placed fog nodes that cannot communicate with sibling nodes;
instead, each fog node is restricted to communicate with only
IoT and Cloud layers. In practice, processing latency can be
reduced by having IoT upload data to the nearest fog node,
and permitting fog nodes to migrate data amongst themselves
if more resources are needed [28, 29].

Some fog architectures are represented as multi-tier hierar-
chies, with data sharing available across different fog layers
but not within the same layer. Fog nodes are divided by
computation power, memory, storage capacity, and proximity
to IoT devices. IoT devices upload data to the first fog layer,
which then uploads to higher layers until a fog node is
found with sufficient resources. This architecture has been
represented with two layers [32, 33] and three layers [34, 35].
iFogSim [36] defines a structure of multiple fog layers based
on distance from Cloud, while [37] represents fog as a tree
of fog nodes rooted by Cloud. Instead of tiers/layers of fog
nodes, [29] and [38] define clusters of fog devices, with intra-
fog and inter-fog communications. Similarly, [39] partitions
fog nodes into clusters and has a hierarchy within partitions
of the nodes.

Tang et al. [33] proposed a hierarchical architecture with
Smart Cities in mind; the first layer sits at the network edge,
the second layer is composed of larger fog nodes covering
neighbourhoods, and the third layer uses largest fog nodes
connected to Cloud to support city services. Arkian et al. [17]
develop crowd-sensing applications supported by IoT and fog

for small scale city services such as parks. Sun and Ansari [40]
propose a hierarchical extension to MEC that connects to fog.
Each cellular base station is connected to the fog infrastructure
to alleviate edge traffic and handle large mobile data streams.

D. Motivation

The large incentive of using fog computing is its ability to
process IoT data with real-time or latency-sensitive require-
ments. Use cases that benefit from fog cover health care,
autonomous vehicles, and multimedia.

1) Health Care: Gill et al. [41] propose to use body
sensors with fog to help diagnose heart disease. It has also
been proposed to use fog with wearables and sensors [3,
28] to provide real-time assisted living services to patients
in hospitals or health care centres.

2) Autonomous Vehicles: Loke et al. [6] proposed an asset
management concept for autonomous drone technology. A
fog server can provide control signals for drone navigation,
given a line-of-sight between a drone and the fog server.
Fog servers can also relay traffic condition information from
smart vehicles [5, 29], creating area-wide, real-time traffic
sharing; this ultimately reduces road accidents. Coupled with
smart traffic lights [42], fog increases the efficiency of route
navigation.

3) Multimedia: Due to the per-instance and real-time pro-
cessing fog can provide, fog has been proposed to deliver
processing to multimedia, such as gaming, video streaming,
and augmented reality [4]. Video surveillance applications can
use fog for facial recognition, diminishing the response time
of appropriate authorities in the event of an incident [37, 43].
Surveillance cameras at the scene of an incident can create
bursty data; a decentralized fog infrastructure can process
different data in different fog nodes, resulting in an overall
quicker emergency response [43].

For IoT applications in health care, smart vehicles and
multimedia, a difference of milliseconds in response time
can lead to a significant impact on event outcome. In these
cases, fog computing can provide overwhelming benefits in
supporting IoT applications at the network edge.

E. Industry Applications

Applications of fog computing systems have been proposed
in several industries to take advantage of the unique traits of
fog. Applications range from local to large-scale implementa-
tions.

1) Internet of Vehicles: Fog and road-side units (RSUs) can
collect traffic information from smart vehicles. Integrating fog
with an Internet of Vehicles (IoV) infrastructure can allow cars
to participate in sharing real-time traffic conditions throughout
the city [5, 29]. Other fog applications of IoV infrastructure
use clusters of slow moving or parked cars as the fog itself [44,
45]. Sookhak et al. [45] propose incentives for participating
such as free parking, free Wi-Fi or free shopping vouchers,
while Hou et al. [44] show how non-smart cars may be
upgraded with hardware and/or software in order to take part.
For fairness and participation motivation, it is proposed that
incentives for participating vehicles correspond to the quantity



5

and type of contributed resources [46, 47], and provide privacy
& security to vehicles and users [46].

2) Health Care: Santos et al. [3] argue the use of fog for
e-health monitoring systems by providing a stochastic analysis
of fog server reliability when backed by Cloud. They conclude
that fog-Cloud system failures are small enough (under 0.3%)
that they do not nullify the benefits of fog. Ahmad et al. [48]
consider the use of fog to provide better control of data privacy
& security of smart phone health applications.

Gateways act as intermediaries between sensor networks
and Cloud systems; Rahmani et al. [49] envision the use
of fog-enabled smart e-Health Gateways to support local
computation and storage for body-worn or implanted sensors
in a smart hospital or home. Medical cyber-physical systems
(MCPS) provide seamless connection between healthcare de-
vices and computational resources. Gu et al. [28] introduce a
fog infrastructure to support MCPS.

3) User Provided Fog: More generally, Consumer as a
Provider platforms allow for user devices such as phones
and modems to act as fog devices and are made available
to the public [50, 51]. With a large enough user base, this fog
infrastructure can become very large in scale covering a wide
area such as a city.

4) Smart Cities: The concept of a Smart City is to improve
the life of citizens through integrated monitoring and adaption
of city services [52]. Examples include Smart Grid, Smart
Transportation, and crowd-sensing applications.

Smart Grids are electricity networks updated with smart
meters and shared customer usage information to service
providers. This incoming information determines how much
electricity should be generated and where it should be sent.
Okay and Ozdemir [53] propose the use of fog computing for
scalable real-time electrical usage monitoring and improved
privacy of information sharing.

Smart Transportation applications attach IoT sensors to
public transportation such as buses and subway trains to share
real-time information on transport location and delays [54].
Road-side and fog computing infrastructures can facilitate
optimal route calculations and collision avoidance for smart
cars, including self-driving cars, via real time traffic conditions
over connected vehicles [5, 29]. Smart traffic lights optimize
traffic by flow using vehicular sensors and traffic cameras [55].

Bittencourt et al. [56] propose a fog architecture that pro-
vides real-time IoT application allocation and processing, es-
pecially suited for mobile IoT such as smart phones and smart
cars within a city. Non-invasive and low-cost static sensors can
be set up in densely populated public areas to provide real-
time crowd-sensing services when used alongside fog [17].
Installed in an outdoor park setting, crowd-sensing devices
can passively determine in which areas the most activity is
taking place, resulting in awareness of possible maintenance
or updated amenities. This concept can be extended to other
Smart City use cases such as monitoring air pollution or noise
pollution from mounted sensors on outdoor and indoor public
transportation respectively.

Unmanned Aerial Vehicles (UAVs) can be quite useful
in providing additional computation services to IoT in a
Smart City environment. One approach is to dispatch UAVs

over environments of large IoT traffic to provide direct IoT
support [57, 58]. Since these UAVs exhibit cloudlet and MEC
functionality, they are designed to process the full amount of
IoT resource requirements without propagation, which may
create large resource and energy demands on UAVs. A more
robust fog-enabled approach is to dispatch a UAV over low
service areas and connect to the surrounding IoT and fog
infrastructure [59]. Low service areas may be a result of
abnormally high IoT traffic, a failed fog node, or areas that
are challenging for human or manned vehicle access.

More city focused use cases include Smart Agriculture,
Smart Health & Well-being, Smart Waste Management, Smart
Water Management, Smart Greenhouse Gas Control, Smart
Retail Automation [60], Smart Pipeline Monitoring [33],
Noise Pollution Mapping, Urban Drainage Networks [10],
augmented reality [15], City Structure Health Monitoring,
Environmental Monitoring, and Public Safety & Security [55].
Together, they become components of a sustainable Smart City
supported by fog for real-time information queries [55, 60].

F. Privacy & Security

Fog provides computation and storage resources over
servers that are geographically distributed, providing a means
to isolate IoT data computation and/or storage to localized fog
servers. This layout allows sensitive IoT data, such as health
care, to never leave the vicinity, keeping the data from being
collected and used by unwanted parties such as tech giants [7].

The distribution of fog nodes and servicing of heteroge-
neous IoT can lead to security issues between nodes. Dzousa
et al. [61] propose a policy-based management framework to
support secure communication, collaboration, and interoper-
ability of requested resources in fog. Liu et al. [62] use hash
puzzles distributed to nearby vehicles to eliminate possible
denial-of-service attacks to smart traffic light systems with fog
capabilities.

Network security and congestion can pose a problem to
fog in providing low-latency services. The CloudWatcher
framework [63] uses OpenFlow [64] to monitor the network
for intrusion detection and other security risks.

The majority of research into privacy-preserving com-
munication and data security uses homomorphic encryption
from IoT, or attribute-based encryption between an IoT-fog
pair [65]. Since the focus of this survey is in the implemen-
tation of fog regardless of IoT behaviour, we do not further
discuss privacy & security issues in fog beyond an awareness
of their existence.

III. EXISTING SURVEYS ON FOG COMPUTING

Hu et al. [66] explore the characteristics and benefits of fog
when used with IoT and Cloud. They present a comparison
between Cloud computing and fog computing paradigms.
They also present an in-depth description of computation,
storage, and communication technologies used in fog. Dolui et
al. [21] discuss the concepts, benefits and technologies of edge
computing. They provide a detailed comparison of the three
main paradigms of edge computing: fog computing, cloudlet
computing, and mobile edge computing (MEC).



6

Table I: Differences between fog and Cloud layers.

Feature Fog Cloud

Latency Low High

Distribution Geographically
distributed

Centralized

Distance to
network edge

Close Far

Number of
nodes

Millions Thousands

Resource size Small Large

Access Predominantly
wireless

Wired and
wireless

Heterogeneity High Low

Interaction
with IoT

Real-time Batch processing

Owned &
Managed

Various service
providers

Few large
organizations

Mukherjee et al. [67] study advancements and benefits
derived from integrating fog into current technologies, such
as virtualized fog data centres, fog radio access networks,
and software-defined network (SDN) enabled fog architec-
tures. Resource allocation models and techniques are discussed
alongside mathematical models of fog components such as
latency, energy consumption, and resource sharing.

Mouradian et al. [68] present a comprehensive review of
major contributions in fog covering six criteria of heterogene-
ity, QoS management, scalability, mobility, federation, and
interoperability. Ghobaei-Arani et al. [69] provide a systematic
and comprehensive literature review of resource management
issues and solutions in fog computing. They classify mech-
anisms and techniques into application placement, resource
scheduling, task offloading, load balancing, resource alloca-
tion, and resource provisioning. Brogi et al. [70] present an
exhaustive overview of resource allocation solutions within
fog. Surveyed contributions are further classified based on an
algorithmic perspective which looks at solution methodology,
and a modeling perspective which looks at constraints and
optimization metrics. Neither [68, 69, 70] consider the time
overhead of resource provisioning & allocation prior to IoT
processing. Indeed, though the assigned fog servers to an
IoT application may provide optimal latency, the assignment
process may be too slow for time-sensitive IoT applications.

Naha et al. [71] review the publication trends of fog com-
puting and Cloud computing alike, and present a taxonomy
of fog research publications by requirements of infrastructure,
platform and application. They provide an overview of other
technological architectures analogous to fog such as edge
computing and dew computing. Mahmud et al. [11] identify
key challenges and properties of fog computing, and use
them to provide a taxonomy of aspects in fog computing
such as fog node configuration, nodal collaboration, service
level objectives, applicable networking system and security
concerns. Ahmed et al. [12] select and review 30 actual or
proposed fog applications. The selected contributions have
little overlap, and cover a broad range of industries, uses
and communication methodologies. Selected reference appli-

cations are used to study reasons for using fog, required
fog hardware platforms, assumed data distribution methods
among fog, leveraged fog service models, privacy & security
requirements, and application workload characteristics on fog.
Yi et al. [72] describe the issues potentially faced when
designing and implementing a fog system, such as in IoT
communication interface, computation offloading, accounting,
and resource management. Yi et al. [65] describe the privacy &
security issues that arise from IoT-fog communication. Geo-
distributed and edge location features of fog can expose an
IoT device’s location to a small radius around the connected
fog node, in addition to possible exposure of application data
and usage frequency to fog. From the IoT perspective, the
owner of a fog node is not always evident, resulting in trust
and security issues when connecting to an arbitrary and close
fog server.

Markus and Kertesz [73] provide a taxonomy of simulation
tools and environments for fog and edge computing. They pro-
pose a taxonomy of available simulators modelling fog, edge,
Cloud and IoT networks to aid researchers in distinguishing
the right tool for different research needs.

Across these surveys, open issues and research challenges
in fog computing are discussed [11, 12, 66, 67, 71, 72], appli-
cations of fog computing to IoT use cases are summarized [12,
66, 67, 68, 71], and gaps in current research towards future
work are identified [66, 71, 72]. Some survey review individual
components of the fog computing system such as resource
provisioning & allocation and fog frameworks [68, 69, 70],
security & privacy [11], and fog simulation software [73]. All
discussed open issues address algorithmic enhancements to re-
source management techniques of existing fog infrastructures.
Additional hardware may also mitigate these issues at the
cost of generated overhead. However, changes and additions
to fog design are not covered. Our survey, on the other
hand, provides a holistic view of the applicability, challenges,
overhead, and limitations of proposed fog systems, irrespective
of fog technology used.

To conclude, we summarize the limitations of existing
surveys as follows: (1) none covers the four phases to realize
fog systems; (2) none covers design & dimensioning of fog
systems; (3) none analyzes the generated overhead of frame-
work implementations; (4) none covers the multiple migration
scenarios between fog servers; (5) none considers resource
provisioning allocation time overhead prior to IoT request
processing [68, 69, 70]; and (6) none considers changes to
fog design to mitigate open issues.

In this paper, we intend to detail the full fog implementation
process, beginning with an IoT environment without any avail-
able fog system. We review and compare the current contribu-
tions for designing & dimensioning a fog infrastructure. We
identify efficiency, assumptions, shortcoming, and generated
overhead of resource provisioning & allocation schemes, and
fog frameworks. We review the features and efficiency of
simulation/emulation tools for the evaluation of a designed fog
infrastructure, implemented resource provisioning & allocation
mechanism, and conceptualized fog framework. Finally, we
identify the limitations and open issues of all components of
fog implementation.



7

IV. FOG DESIGN & DIMENSIONING

For users and organizations wishing to implement their own
fog infrastructure to support local edge devices, Mahmud et
al. [11] outline the ground work for what components and
mechanisms are necessary in fog (see Fig. 1). This does not
however give insight into the location and quantity of installed
resources of each fog node, known as design and dimensioning
respectively.

Design of edge networks to provide low-latency access and
processing to IoT has been studied with cloudlet computing,
which involves no intercommunication between cloudlets [74,
75, 76, 77]. In most cases, cloudlets are designed to be one-hop
away from IoT devices; however Ceselli et al. [76] propose an
augmentation to MEC where data is routed from base stations
to a nearby cloudlet. Though other contributions are only inter-
ested in network placement of cloudlets, Fan and Ansari [77]
dimension the number of cloudlet servers installed in each
designed cloudlet location. Building a dedicated computing in-
frastructure with high resources may be costly, and underused
in most cases. A fog system provides more network flexibility
and geo-distribution of smaller devices, potentially covering
and servicing a much wider IoT ecosystem. To our knowledge,
there are currently only two contributions that develop an
optimal fog design scheme. Both schemes optimize fog node
locations and installed computing & memory resources while
satisfying IoT QoS requirements.

Yu et al. [5] consider fog to provide real time processing
for autonomous vehicles. They propose a fog design & dimen-
sioning scheme of RSUs, fog nodes, and Internet Gateways
which work together to provide real-time traffic information
to enhance and facilitate automated navigation and collision-
avoidance. Given a set of candidate locations, candidate re-
source configurations, and a known number of connecting
vehicles for a certain location and time period, the location and
resource amounts of RSUs, fog nodes and Internet Gateways
are optimally found via a Mixed Integer Linear Program
(MILP) in an arrangement that minimizes infrastructure costs.
RSUs may be fog nodes themselves (coupled variant) or are
separate from fog nodes (decoupled variant); both variants are
tested and compared. They conclude that a decoupled model
allows design flexibilities that result in a more economical
and cost-effective scheme. For scalability, a heuristic algorithm
based on the decoupled model is used.

Regarding vehicular traffic, the model assumes a known
static set of vehicle resources accessing the network across
different regions, which may not be true in practice. Although
having a set of candidate locations for fog nodes is practical,
the model also assumes a finite candidate set of dimensioning
configurations. The solution to this model is thus dependent on
the completeness of such a set. Finding the optimal placement
of RSUs and Gateways increase the complexity of the model,
while the inclusion of RSUs also restricts the application of
this model to IoV.

Martinez et al. [78] propose a fog design & dimensioning
scheme to support the general IoT landscape. For a given
area, the future IoT data volume and the resulting stochastic
network congestion distributions are estimated, which affect

the approximated IoT-fog end-to-end communication delay.
An IoT request with k tasks is represented by a Task De-
pendency Graph of k nodes, and the set of physical candidate
fog node locations are represented by a bidirectional graph.
Tasks and task dependency links are mapped to physical
fog locations and fog infrastructure paths respectively. A fog
design & dimensioning scheme is defined to find a mapping
that satisfies fog node resource capacities, fog infrastructure
bandwidth capacities, and IoT QoS requirements.

An MILP model (fog-DC-MILP) is used to find an exact
optimal fog infrastructure by minimizing infrastructure de-
ployment costs. Due to the intractability of the fog-DC-MILP
model, a Column Generation model (fog-DC-CG) is proposed.

Simulation and scalability testing between fog-DC-MILP
and fog-DC-CG show a significant reduction in solution com-
putation time of fog-DC-CG with near-optimal cost. Further-
more, fog design & dimensioning solutions of both models
are similar. This indicates fog-DC-CG is a practical alternative
model to fog-DC-MILP.

For each candidate fog node, they define a maximum
amount of each resource that can be installed, allowing for
resource configurations selected from a continuous set. This
aims to remove the concern of discrete resource configuration
set completeness observed [5]. The designed & dimensioned
infrastructure [78] is extensible, allowing for current fog nodes
to be upgraded or extra fog nodes to be added to the current
infrastructure if IoT data volume increases.

They use a discrete set of IoT devices, each uploading
data at a rate following a Poisson Process. They compute a
percentile estimation of expected IoT traffic and resulting con-
gestion to produce a deterministic upper bound. This allows
for simple modifications to beginning percentile parameters to
increase or decrease traffic estimation, resulting in a change
in the fog design & dimensioning solution.

Due to the models extensibility, it is reasonable to make an
underestimate of expected IoT traffic and extend the designed
& dimensioned infrastructure based on future performance.
These two contributions [5, 78] are summarized and compared
in Table II.

V. FOG RESOURCE PROVISIONING & IOT RESOURCE
ALLOCATION

Fog resource provisioning refers to the reservation of com-
putational and memory resources within fog nodes for use
by IoT applications. IoT resource allocation refers to the
assignment of resource requirements for an IoT request to
the fog. It is clear that resource provisioning and resource
allocation are two sides of the same coin, since a fog node
needs to provision its resources for the allocation of IoT
requests. For all resource provisioning & allocation schemes,
several consistent infrastructural assumptions include: 1) exis-
tence of a pre-defined fog infrastructure, 2) all fog nodes are
reachable and available from any IoT device, 3) any pair of
IoT device and fog node experiences static network congestion
and/or latency, and 4) uploaded data format and response is
homogeneous.



8

Table II: Description of contributions in fog design & dimensioning.

Scope Yu et al. [5] Martinez et al. [78]

Main Contribution Scalable design & dimensioning for fog nodes,
RSUs and Gateways to support autonomous
vehicles.

Scalable fog design & dimensioning to support
general IoT systems with near-optimal imple-
mentation cost.

Supported IoT devices Smart Vehicles. General IoT devices.

Pre-defined device candidates Fog nodes, RSUs, Gateways. Fog nodes.

Predicted IoT traffic Discrete vehicular traffic set. Percentile of stochastic IoT traffic predictions.

Resource dimensions Selected from discrete pre-defined set. Continuous up to a maximum capacity.

Extensible — Fog nodes can be added to current fog infras-
tructure to account for increased IoT traffic.

Congestion — Accounts for possible network congestion by
designing fog under worst-case network scenar-
ios.

For IoT applications that intend extended use by the same
fog servers, the server partitions a module of reserved re-
sources. Once a module is set for an IoT application, all
requests from that application are immediately processed
by the module for reduced long-term latency. However, the
reservation of fog resources itself may take time, and may
not be useful for IoT applications which require immediate
and infrequent processing. Module migration is the process
of freeing module resources in the current fog node, and re-
provisioning the module in a different fog node or Cloud. Any
IoT processing data or storage present in the current fog node
is transferred to the new module.

The allocation schemes [9, 31] assume each IoT is com-
prised of a single task, while Agarwal et al. [30] propose to
process each request by a single fog node, split into multiple
tasks if there are insufficient resources. In both cases, the
entirety of the IoT data need only be processed by a single
fog node. Instead of mapping each IoT request separately,
Yousefpour et al. [43] go further by clustering IoT devices
together that run the same service, and map those services to
fog node modules. Since all computation of an IoT application
is done on a single fog server, many requests can result in a
large processing queue and high latency.

Taneja et al. [79] report that each IoT request is in fact
comprised of multiple tasks — stemming from multiple sen-
sors and actuators — that are too taxing to be processed on a
single fog node. Therefore, an IoT application’s multiple tasks
are split among one or more fog nodes. The multiple tasks of
a single IoT request are often depicted as a directed acyclic
graph, with each directed link representing a dependency
between tasks [79, 80]. Hence, fog processing of tasks may
require the same task workflow order. Similar approaches are
to allocate application tasks to different fog nodes either via
algorithms [37, 79, 80], policies [16, 36, 56] or optimization
models [32].

In our review of current literature in this space, we did
observe that all proposed models fell into one of three classifi-
cations based on prompt or optimal service to IoT applications.
The fog layer may reserve resources for future IoT use
based on accurate IoT traffic predictions. When IoT requests
arrive, it is assumed the resources are available and immediate
processing takes place. Schemes that follow this approach are

known as prior provisioning and prompt allocation schemes.
Since IoT traffic predictions require additional computation

effort and may be faulty, most schemes will provision re-
sources only once IoT requests have arrived. There are two
general approaches to resource allocation using on-demand
provisioning: prompt allocation and small batch allocation.
When an IoT allocation is promptly serviced, it is sent to the
nearest fog node for processing, regardless of cost. Models that
follow this approach are known as on-demand provisioning
and prompt allocation schemes, and are ideal for dynamic
IoT support. Another approach is for a fog resource manager
to accumulate a small batch of IoT requests, and find the
optimal allocation of IoT tasks that optimize some metric
(e.g. latency, resource cost). Once a module is provisioned
for an IoT request, all future requests from the same IoT
application are provided immediate service by the module.
Hence, small batch allocation provides efficient IoT processing
for the life-span of the provisioned module. Models that
follow this approach are known as on-demand provisioning
and small batch allocation schemes. Though these schemes
provide more efficient long-term IoT support, execution of
these schemes are significantly slower than prompt allocation
methods. Therefore, small batch allocation schemes are better
suited for static IoT applications. A summary of these three
classifications of resource provisioning & allocation schemes
is provided in Table III and Fig. 5.

A. Prior provisioning and prompt allocation

Aazam and Huh [14, 81] propose the analysis of fog
resource usage data of IoT devices to determine the relinquish
probability a new service request will be abandoned within a
time frame. IoT devices with low relinquish probability, i.e.
will continue fog usage for long periods, are offered slightly
lower usage prices as well as higher allocated resources by fog.
Behavioural analysis of previously connected IoT ensures that
enough resources are reserved by fog for future predicted IoT
traffic, and allows for an immediate connection and processing
of IoT data upon a new request. For IoT devices that have
never connected prior, a default low relinquish probability
is assumed, and resource pricing and quantity are calculated
accordingly in real-time. This concept is extended in [82, 83]



9

Table III: Process of resource provisioning & allocation schemes by prompt or optimal service.

Resource Allocation

Prompt Small Batch
R

es
ou

rc
e

Pr
ov

is
io

ni
ng

Pr
io

r

rReserves resources in fog based on historic predictions
of future IoT traffic.r IoT requests are allocated immediately to reserved
resources.

NA

[14], [81], [82], [83]

O
n-

de
m

an
d

rAn IoT request arrives to a fog node; the fog node
verifies if it has sufficient resources.

rGroups several IoT requests for batch resource provi-
sioning & allocation.r If yes, it processes the IoT request. Otherwise, it

propagates request to a further node.
r IoT requests are distributed in fog to optimize effi-

ciency.

[29], [43], [30], [47], [56], [84], [85] [4], [9], [17], [28], [31], [32], [79], [80],

[86], [87], [88], [89], [90], [91], [92]

to also consider historical quality of experience (QoE) of IoT
based on end-to-end delay, jitter, packet loss, latency, and
blocking probability. This approach more efficiently predicts
future resource consumption for real-time allocation for mul-
timedia [82] or haptic sensors [83].

Although an IoT application’s QoS is satisfied, QoE may
be low and thus requires different fog node connections or
more fog resources on future requests. Instead of requiring
the allocated fog node to satisfy the required latency of the
IoT application, [14, 81, 82] focus on providing high fog
utilization assuming any fog node could satisfy the IoT latency
requirements. On the other hand, [83] ranks potential fog
nodes for IoT allocation by latency, and verifies the latency
suitability of the fog node before assigning resources.

B. On-demand provisioning and prompt allocation

Agarwal et al. [30] propose a resource provisioning scheme
that does not rely on any current or historical information
from IoT or fog. The proposed algorithm begins with an IoT
application sending its request to an arbitrary fog node within
communication range, usually the nearest node. If the fog node
has enough resources to process the request, it will do so;
otherwise, the request is partitioned into several tasks, and
are sequentially processed by the limited fog resources. If no
resources are available in that particular fog node, the IoT
request is propagated to Cloud. In this worst case scenario, the
propagation to Cloud may result in high latency and unsatisfied
IoT QoS. Intermittent fog resource sharing among the fog
could allow the initial fog node to know which other fog
nodes have enough resources [93], and forward accordingly
thus keeping latency low.

Bittencourt et al. [56] extend this idea by introducing three
possible fog processing policies. In all cases, an IoT applica-
tion is assigned to the first fog node with which it connects,
but the processing order of IoT applications differs. If no
resources are available at the fog node, Cloud propagation is
applied. The concurrent strategy performs fog processing on
IoT data regardless of current available resources; applications
within a fog node are processed in parallel, and the allocation
indifference to current resources could lead to high processing
latency. The First-Come-First-Serve (FCFS) strategy processes

IoT requests in the order of their arrival to a fog node. The
delay-priority strategy processes the IoT application with the
lowest QoS latency requirement first, and re-orders the next
IoT application to process as new requests arrive. Simulations
show that the FCFS and delay-priority strategies yield the
lowest latency, whereas the concurrent strategy yields the
lowest amount of data transferred to Cloud.

For vehicular fog settings where mobile vehicles require
computation from static or slow-moving vehicles, Peng et
al. [84] propose a multi-attribute double auction mechanism
for base stations to match and pair vehicular fog nodes with ve-
hicular IoT users. The mechanism allows vehicular fog nodes
to announce their resource attributes, reputation and asking
price, which is met with IoT announcements of resource and
latency requirement, and bidding price. The formulated one-
to-one assignment algorithm for resource matching executes in
under 8 milliseconds for up to 100 vehicular fog nodes and up
to 100 vehicular IoT devices. This scalable matching algorithm
adds very little to the overall near instant computation provided
by the allocated vehicular fog node. Similarly, Zhou et al. [47]
introduce a contract-based mechanism for IoT request off-
loading to nearby smart vehicles. A contract is designed and
offered to a vehicle based on the amount of resources and time
in return for a reward; IoT users requiring fog computation are
paired to a vehicular fog via a pricing-based stable matching
algorithm.

Zhang et al. [29] introduce a cooperative fog computing
architecture to deal with big IoV data. It allows for data migra-
tion between fog nodes for mobile smart cars. As a result, two
separate resource allocation strategies are considered based on
available resources at the nearest fog server. Each fog node
in this system has a finite set of Virtual Machines (VMs)
which partition fog resources for IoT use. If the number of
VMs in a fog server is sufficient to process an incoming IoT
application, intra-fog resource management will allocate the
application to VMs that minimize fog energy-consumption via
convex optimization. If data migration is required, a min-max
optimization model is used to determine to which fog node
data should be transferred to minimize the transfer rejection
probability. The delay of data transfer between fog nodes is
measured at 30 – 70 ms, providing low additional delay to the



10

allocation process.
Yousefpour et al. [43] address the problem of dynamically

deploying or releasing IoT services on fog nodes by means
of two possible greedy algorithms that comply with QoS
requirements. Both algorithms determine periodically from
which fog node modules should be released and transferred
to Cloud, in order to free resources for future IoT requests.
The min-cost algorithm aims to allocate IoT services to the
fog node that would provide the lowest resource allocation
cost; it similarly releases IoT services that incur large resource
costs. The min-viol algorithm allocates IoT services with high
demand and releases services with low demand from fog
nodes. The response latency inherently increase for modules
released to Cloud, and thus results in a QoS violation.

Xia et al. [85] propose two ordering-based heuristics to
search and select fog nodes to which an IoT application is
allocated. With anchor-based fog node ordering (AFNO), fog
nodes are ordered by its latency to an anchor IoT application.
Dynamic component ordering (DCO) attempts to allocate
IoT tasks until a constraint failure in the search occurs; the
components are reordered with the failed tasks being allocated
first, and may require several reorders for a successful appli-
cation allocation. Ordering fog nodes by latency adds sorting
overhead to AFNO, resulting in lower execution times with
DCO allocation. For up to 20,000 fog nodes, DCO executes
in under 100 ms for a single IoT application, allowing for
real-time resource allocation and execution.

Reinforcement learning (RL) is a machine learning tech-
nique that aims to make improved decisions over time based
on the reward or penalty incurred by previous actions [86].
In many RL approaches to resource allocation [87, 88, 94],
this training process is divided into two parts: 1) receive
IoT request, feed through RL model and take action, and
2) update RL model based on action reward/penalty. This
process prioritizes the resource allocation decision, providing
real-time support to IoT. Since RL techniques improve with
time, the RL models are initialized with random values to
start, meaning the initial resource allocation decisions may
not be optimal. If the RL model is trained with batches of
IoT requests, then the request data is saved in memory until
enough requests are accumulated for training [94]. Since RL
can be computationally taxing, it is often proposed to use a
separate fog server to conduct all RL modeling [87, 88].

Sun et al. [94] use power consumption of fog nodes as a
reward/penalty to model an energy-efficient resource allocation
scheme. The action taken defines which fog processors to turn
on or off, and to which layer to send an IoT request (fog or
Cloud). Wei et al. [87] use a single fog server to compute all
RL model updates, which receives and distributes IoT requests
to the remaining fog servers. The formulated model aims to
optimize response latency of resource allocation and content
cashing.

Wang et al. [88] propose a RL model for fog allocation
in IoV environments for minimizing response latency. All
IoT requests are sent to an independent and centralized fog
sever, where all RL model updates are computed. The fog
server returns a decision to the mobile device of which layer
to access: cellular network, device-to-device network, or fog

network. Then, the mobile device sends another request to the
appropritate network for processing. This procedure requires
communication with two separate nodes which may increase
latency. Furthermore, although QoS requirements of IoT, en-
ergy consumption of fog and total latency are considered, the
resource capacities of each fog node are not. It is assumed that
each layer can always process incoming IoT requests, and the
main consideration is the best distribution to do so.

C. On-demand provisioning and small batch allocation

Zeng et al. [89] research fog supported Software Defined
Embedded Systems with client-side computation support. In
this scenario, client-side computation incurs a certain cost
with client-side computation latency, whereas fog incurs a
different resource cost, and both transmission and computation
latency. For each IoT device, computation placement (client-
side or fog) is formulated as a Mixed Integer Non-linear
Program (MINLP) to minimize overall processing latency.
This MINLP is linearized, and re-formulated as a three-stage
heuristic. Although it may be convenient to assume an IoT
device has client-side processing capabilities, this assumption
is not practical for a general IoT ecosystem.

Souza et al. propose a resource provisioning scheme where
fog node resources are partitioned into slots of fixed size, with
IoT requests requiring a set number of slots. In particular, it
is assumed that an IoT request either requires a small number
of slots and can thus be processed anywhere in the fog, or
requires a large number of slots and can thus only be processed
by second-tier fog nodes. Formulated as an MILP, this resource
provisioning simulation setup is wildly simplistic and requires
more dynamic parameters to approximate a practical fog
system scenario.

Zhang et al. [90] introduce massive data centre opera-
tors (MDCOs) as a middle-man between fog and IoT. A
Stackelberg game is played between fog and MDCOs, and
MDCOs and IoT devices to determine an optimal resource
price and amount provided by fog and MDCO to maximize
fog utilization.

Ali et al. [92] propose a many-to-one matching game
between a set of fog nodes and IoT devices. Each device will
rank a potential pair based on perceived latency and utilization,
and are subsequently matched with their highest feasible
choice. Although the matching algorithm itself is quick, node
discovery followed by utilization and latency calculations for
ranking cannot be done in real-time. Therefore, this method
is ideal for small batch allocation.

When an IoT request is assigned to a fog node with
insufficient available resources and is immediately propagated
to Cloud, it is said that the request is rejected by the fog
node. Assuming that fog may not have enough resources to
service all IoT devices in the region, Intharawijitr et al. [31]
formulate a model that minimizes the blocking probability
of resource allocation, which is the average number of IoT
workloads rejected by fog. For an IoT workload, three fog
selection policies are explored: a random fog node, the fog
node with lowest-latency to the application, or the fog node
with maximum available capacity. Simulation results conclude



11

the lowest-latency policy minimizes the blocking probability
of IoT applications.

Skarlat et al. [9] formulate resource provisioning over the
fog-Cloud system as an MILP to maximize fog utilization. The
simulated evaluation concludes a decrease in response latency
by 39% over default provisioning policies in CloudSim [95].
The same problem is formulated as a genetic algorithm with
an evaluated increase of 150% cost of the MILP solution, and
around 64% of applications assigned to fog.

Taneja and Davy [79] model each IoT application request as
a set of dependent IoT tasks that may be processed by different
fog nodes. The resource requirements of all current batch IoT
tasks are sorted in ascending order, and a fog node satisfying
the task resource requirements is selected for each task. By
efficiently placing IoT applications on fog, increased fog
utilization implicitly decreases the total response time, network
usage and energy consumption compared to Cloud placement
strategies. Karamoozian et al. [80] solve the resource allo-
cation problem using a gravitational search algorithm. This
meta-heuristic algorithm denotes each possible solution with
a mass, and iteratively updates the particle masses based on
their interactions with each other. At termination, the heaviest
mass (solution) is selected.

Whereas [79, 80] represents each IoT application as a
directed acyclic graph of IoT application tasks, Ni et al. [96]
represent IoT tasks as a priced-timed Petri net which includes
task transition time and price costs, in addition to task depen-
dencies. The presented heuristic algorithm [96] allocates IoT
applications to fog by prioritizing the minimization of response
latency, followed by the maximization of fog credibility based
on time cost, price cost, and resource capacity. The fog cred-
ibility is based on historical data of response rate, execution
efficiency, reboot rate and reliability.

The focus of resource provisioning by Salaht et al. [97] is to
first and foremost satisfy QoS requirements of IoT applications
without further consideration of fog utility, resource cost or la-
tency. Formulated as a Constraint Programming problem [97],
it aims to create a scalable, generic and easily upgradeable
placement service. Using the Smart Bell application [85] for
comparison, the MILP model [85] executes in 343 seconds,
whereas the Constrained Programming model [97] executes
on the same application with the same parameters in 0.559
seconds without loss of solution QoS. We observe that con-
siderations of cost optimality are ignored for a faster solution
which may still prove too slow for real-time allocation of
latency-sensitive IoT applications.

Donassolo et al. [98] introduce Optimized Fog Service
Provisioning (O-FSP) resource allocation scheme to minimize
IoT service cost and increase fog utilization. Based on avail-
able fog node resources and IoT QoS requirements, O-FSP
follows a greedy approach to allocate IoT applications by
resource cost. Although O-FSP succeeds in providing high fog
infrastructure utilization and low resource costs, the execution
time of O-FSP is not evaluated.

Gu et al. [28] support medical systems by reserving fog
resources in the form of a VM assigned to the medical
device. The resource provisioning problem is formulated as an
MINLP, linearized, and reworked into a two-phase heuristic to

minimize resource costs. Video streaming services can benefit
from low latency of fog, but creates a carbon footprint as a
result [4]. In response, Do et al. [4] formulate the resource
allocation of these services as a convex optimization to mini-
mize carbon footprint. They then develop an iterative heuristic
inspired by proximal algorithms and Alternating Direction
Method of Multipliers to serve video streaming services with
guaranteed bandwidth and low carbon footprint. The Mist [17]
crowd-sensing infrastructure also reserves VMs in fog for
IoT use; the placement of VMs in fog are formulated as a
linearized MINLP, and solved to allocate IoT with minimal
VM deployment cost.

VI. FOG COMPUTING FRAMEWORKS

Fog orchestration is defined by using a control layer to
periodically monitor the available resources and request allo-
cations to each fog node [99, 100]. Instead of an IoT request
being uploaded directly to the fog layer, it is uploaded to
the control layer which then distributes the application to fog
nodes or Cloud accordingly. Fog frameworks can be seen as
specific applications of fog orchestration to facilitate resource
provisioning & allocation via a fog orchestration controller
(FOC) or an API; the basic functionality of fog frameworks is
shown in Fig. 6. If a module migration is required between fog
nodes under the same FOC, the sending fog node will either
consult the FOC to determine where to send the module, or
send the module to the FOC for re-distribution. The fog layer
may be partitioned into groups of fog nodes, each group with
a separate FOC. In this case, a module migrated outside a
cluster is sent to the FOC, which communicates with other
FOCs to determine the module destination. If an API model
is used for migration, a fog node will query other fog nodes
to determine where to migrate data.

The frameworks covered in this section provide resource
management of fog nodes via hardware and/or software ex-
tensions. By monitoring fog resource availability, a framework
can distribute IoT requests to the fog without fog rejection,
thus minimizing latency. In addition, certain frameworks allow
data migration between fog nodes when an initial fog node has
insufficient resources.

A. Non-fixed fog topologies

Chen et al. [38] define fog-as-a-service-technology (FA2ST)
as a fog framework that can support any IoT application, i.e.
regardless of use case, with the objective of providing value-
added fog services compared to Cloud. Importantly, FA2ST
provides on-demand fog service discovery [101], allowing it to
probe all connected fog nodes for current resource availability
at the moment an IoT request arrives. Furthermore, if an
IoT application is assigned to a fog node that is no longer
available, FA2ST re-deploys the application to a new node.
This allows FA2ST to service a fog infrastructure with faulty,
mobile, or dynamically available fog nodes. Madan et al. [102]
envisions an IoV-fog infrastructure that provides UAVs to
support overloaded RSUs. From a base station where all UAVs
are kept and charged, an overloaded RSU triggers a UAV
deployment to travel and hover over the RSU; data is migrated



12

(a) Prior provisioning and prompt allocation.

(b) On-demand provisioning and prompt allocation.

(c) On-demand provisioning and small batch allocation.

Figure 5: Resource management methods using a) prior pro-
visioning and prompt allocation schemes, where fog resources
are reserved for predicted IoT use, b) on-demand provisioning
and prompt allocation schemes, where IoT task searches for
suitable node, and c) on-demand provisioning and small batch
allocation schemes, where optimal placement is found prior to
processing. In b) and c), secondary node f2 may be either a
fog node or Cloud.

(a) FOC method.

(b) API method.

Figure 6: A fog framework provides current resource avail-
ability information of all fog nodes to streamline the resource
allocation process. Two standard approaches are to use an FOC
(hardware overhead) or to use an API (software overhead) to
query fog and distribute IoT tasks.

to the UAV to accelerate the IoV computation and decrease
response latency.

A framework can have a single FOC with a ubiquitous
view of all fog resources [16, 98], or multiple FOCs, each
monitoring a cluster of fog nodes [9, 29, 35]. A single FOC
requires only one additional node; however it must have a
connection to every fog node which may not be scalable for
larger fog layers. Multiple FOCs provide improved scalability
at a cost of increased hardware overhead. Furthermore, a
module migration between FOCs may result in increased
latency.



13

B. Fixed topologies

For a fixed fog topology, frameworks optimize the commu-
nication between end devices, fog, and Cloud. This approach
to having an ubiquitous view of all fog information is through
the use of an FOC which is connected to every fog either
directly [9, 16, 43] or through APIs [17, 37, 39, 43, 56, 103,
104]. In addition to resource management for efficient IoT-
fog service provisioning, most fog frameworks claim to be
scalable to increased IoT traffic volume or fog infrastructure
size [29, 35, 39, 43, 98].

Cardellini et al. [93] provide a distributed extension to the
open source data stream processing application Storm to allow
the execution of a distributed QoS-aware IoT resource sched-
uler. This extension allows fog nodes within the infrastructure
to have knowledge of other fog node resource availability,
and for IoT service scheduling to respect latency and resource
requirements.

Donassolo et al. [98] propose Fog-IoT ORchestator (FI-
TOR), a fog framework that monitors the fog infrastructure to
survey and extract resource metrics from all fog nodes. This
allows FITOR to have a ubiquitous view of all fog resources at
any time, facilitating the service deployment of IoT data to fog
nodes. As a result, FITOR is used in conjunction with the O-
FSP resource provisioning scheme [98]. In order to allow fog
nodes to accept any IoT request, FITOR must receive service
descriptors from IoT applications along with the request. These
descriptors define the IoT application, its building components
and QoS requirements. Yigitoglu et al. [16] introduce the
Foggy framework which accepts similar information from IoT,
and deploys each task of an IoT request to a fog node with
available resources and satisfying latency, privacy and priority
requirements. The Foggy FOC monitors all fog resources via
the MQTT protocol [105], and stores historical IoT require-
ments and workloads for faster future deployment planning.
Although these frameworks aim to satisfy QoS of IoT requests
by querying the requests, expecting requirement information
from IoT may not be feasible.

Tuli et al. [35] propose FogBus, a scalable fog framework
that partitions fog nodes into separate roles to increase security
and reliability. FogBus is composed of fog gateway nodes,
fog broker nodes (FOC), general computing nodes, and fog
repository nodes. IoT applications upload data directly to fog
gateway nodes, which are then forwarded to interconnected
fog broker nodes, and distributed to fog general computing
nodes for IoT request processing. Each fog broker node is
also connected to a fog repository node which facilitates data
sharing, replication, recovery and secured storage. Replication
of stored data across multiple fog nodes provides storage ro-
bustness and reliability for possible fog node failures. Indeed,
data stored on faulty fog brokers can be recovered by fog
repository nodes, and replaced by existing fog broker nodes.
FogBus also supports blockchain integration to verify that IoT
data is coming from a pre-defined credible source.

Skarlat et al. [9] propose a fog architecture with groups
of fog nodes clustered into colonies with all fog resource
information available to an FOC. Upon receiving an IoT
request, the FOC allocates IoT tasks among the fog nodes

in the colony. If a fog colony does not have enough resources
to process the IoT request, the FOC can query other colonies
for available resources and transfer the request accordingly
via REST APIs. It is recognized that not all IoT requests
are suited for fog [9], e.g., non-delay sensitive requests or
resource intensive big data. As a result, [9] provides Cloud-fog
middleware to propagate these applications for Cloud resource
allocation.

Zhang et al. [29] consider data migration between RSUs and
fog nodes of their proposed IoV-fog application. Several fog
nodes are clustered to provide seamless data sharing between
nodes in a select region. Between clusters exists a coordinator
(FOC) that manages fog resources over the system. If a
fog cluster requires extra resources, or observes a vehicle
moving towards a new region, it may handover an IoT module
to a neighbouring fog cluster to continue uninterrupted IoT
processing.

C. SDN-based frameworks

An SDN decouples the control plane and data planes
of a traditional network, allowing an SDN controller to
forward data through the network based on an arbitrary
rule set [106]. Combining SDN with a standardized switch
like OpenFlow [64] provides a simpler interface for SDN
controllers to interact with the network. Furthermore, SDN
can track mobile IoT devices to predict future destinations
and support seamless data handover between fog nodes for
uninterrupted IoT support [39].

Tomovic et al. [39] propose to achieve resource manage-
ment, traffic control, and data migration of the fog plane
via an SDN with OpenFlow controllers [64] which supports
API functionality for IoT deployment. The Mist architectural
framework [17] similarly uses SDN to monitor fog infrastruc-
ture resources, and APIs to monitor both IoT and fog device
health, and facilitate IoT service allocation to fog.

Yousefpour et al. [43] propose FogPlan, a lightweight QoS-
aware framework that uses an SDN controller to monitor
incoming IoT traffic and fog node resources, and deploy IoT
processing accordingly via an API. Notably, FogPlan aims
to satisfy IoT QoS requirements with no or minimal IoT
requirement information, increasing the workload of FogPlan
while decreasing that of IoT devices. They use FogPlan to en-
able the min-cost and min-viol real-time resource provisioning
scheme [43].

D. Data Migration

The Foglet [37] and Mobile Fog [103] programming models
focus on module migration between IoT devices and fog nodes
in a hierarchical architecture. They both implement an API that
allows modules to either migrate one hierarchical level above
or below, or to move to a specific fog node.

The data migration implementation with foglets [37] sup-
ports IoT requests that can simultaneously use different parts
of the fog-Cloud infrastructure for different IoT tasks. Mobile
Fog [103] creates a dynamic scaling mechanism whereby new
on-demand fog nodes are created in response to overloaded
workloads, and data is appropriately distributed to new fog



14

nodes. Dynamic scaling with API data migration support
creates a programming model well suited for mobile IoT
devices such as smart cars, smart phones, and smart cameras.

Zhou et al. [47] propose a vehicular fog computing (VFC)
framework with associated base stations to provide intra-
fog resource management. Since a data user uploads their
data to the nearest fog node, it is possible for a node to
become overloaded during peak usage periods. In these cases,
VFC allows for task offloading to nearby underutilized smart
vehicles.

VII. FOG INFRASTRUCTURE DESIGN EVALUATION

The efficiency or desirability of a fog computing infrastruc-
ture can be evaluated using simulation and emulation. Further-
more, simulating/emulating an existing fog infrastructure can
be useful to fog application developers in deciding whether
application processing should be done locally, by fog, or by
Cloud [107]. There exists a variety of tools that deploy custom
resource management policies, each focusing on different eval-
uation metrics and use case support. In the implementation of
fog evaluation tools, the allocation and migration of modules
are considered in terms of VMs. For more complex dynamic
fog infrastructures, emulation frameworks can evaluate service
of IoT applications in a way that more closely mimics the real
fog infrastructure.

A. Simulation

In all simulation cases, a fog infrastructure is first defined
manually by the user. Based on simulated IoT traffic parame-
ters, the effects of network flow through fog can be evaluated.
In most cases, the routing and interactions with fog nodes
are defined by fog processing and forwarding policies. In the
case of FogExplorer [108, 109], each IoT request is mapped
to a selected machine for processing, and the effects of the
deployment mapping on cost and QoS are evaluated. Each IoT
request can be mapped to self, a specific fog node, or to Cloud.
While designing an IoT application, testing different mapping
options enables developers to identify the best location for IoT
application processing [107].

iFogSim [36], an extension of CloudSim [95], is a simula-
tion toolkit for IoT and fog that allows users to measure the
resource cost, network use, energy consumption and latency
of a specific network and resource management policy. Many
resource management schemes use iFogSim to measure the
impact of their proposed contributions [41, 34, 56, 110, 111].
EdgeNetworkCloudSim [112, 113] is also an extension of
CloudSim that allows the simulation and evaluation of user-
defined algorithms for placement, orchestration and consol-
idation of service chains. The system frequently monitors
fog resources and energy consumption, and logs IoT task
rejections due to insufficient fog resources. It does not however
take into consideration the latency of IoT allocations.

Multiple tools extend iFogSim to address scenarios that
cannot be simulated with iFogSim alone. iFogSimWithDat-
aPlacement [110, 114] allows the implementation of resource
management strategies that optimize data placement for a
selected metric; this is achieved through MILP, and divide &

conquer algorithm support. FogWorkflowSim [115] combines
elements from WorkflowSim [116] and iFogSim to model
and simulate workflows in fog. Identifying tasks that can be
processed in parallel within a workflow decreases the overall
latency and energy consumption [115]. Both MyiFogSim [117,
118] and MobFogSim [119] allow users to define the migration
of VMs allocated to a mobile IoT device. The migration policy
determines when a VM should be migrated by defining a
migration zone around a Fog node, and a migration point an
IoT device must cross to signal that it is moving away from the
Fog node. The migration strategy defines where and how to
migrate the VM. To where a VM should be migrated is dictated
by the speed and direction of mobility, while the migration
itself uses one of many strategies with different possible VM
down time and memory usage during transfer. This scenario
is shown in Fig. 7a.

FogNetSim++ [120, 121] extends fog support to the OM-
Net++ [122] discrete event simulator. The system uses a
fog broker node to monitor fog resources, and to allocate
IoT requests using a greedy approach by distance. Uniquely,
FogNetSim++ allows for mobile fog node modelling. If a fog
node moves away from an allocated IoT device, the resource
module is migrated to the nearest fog node within the IoT
device’s range. This scenario is shown in Fig. 7b.

YAFS [123] is a discrete-event simulator that provides
highly customizable placement, scheduling and routing strate-
gies for IoT requests in fog. YAFS considers fog server
failures, modeled using an exponential distribution. PureEd-
geSim [124, 125] defines a total energy attribute for each
fog server, along with energy consumption per processed IoT
task. A fog server fails when its total energy is depleted.
FogDirSim [126, 127] is a tool to simulate CISCO FogDi-
rector, an IoT/fog manager. The simulator probabilistically
predicts fog utilization, energy consumption, and robustness
to fog node failures of a user-defined resource management
policy. For these three simulators [123, 124, 126], a fog server
failure triggers the re-allocation of modules present in the
failed node are re-allocated. This scenario is shown in Fig. 7c.

PFogSim [91] defines a multi-tier fog architecture with
Cloud in the final layer. The custom resource management
policies define which layers can participate in IoT processing,
and how IoT processes are distributed among the valid layers
to optimize latency or operational cost. By restricting the scope
of IoT assignment, a user can test various infrastructures to
determine a minimal viable infrastructure. Therefore, PFogSim
may serve as an empirical method for fog design using a multi-
tier architecture.

Most evaluation tools use discrete-event simulation to sim-
ulate and evaluate the life-cycle of a fog infrastructure. In
contrast, FogTorchΠ [128] uses Monte Carlo simulations to
generate several possible IoT assignments that satisfy IoT
QoS, hardware and software requirements. This approach al-
lows a user to test resource allocation feasibility under several
circumstances and requirements. The latency and bandwidth
requirements from each simulation is analyzed to determine
the set of resource deployments that yield the best estimated
QoS.



15

B. Emulation

Simulation is a cost effective and computation efficient
method of evaluating IoT interactions with a fog infrastructure;
however, it usually assumes a number of simplifications that
may not mimic a dynamic fog infrastructure well. In complex
systems, emulation duplicates the fog topology and IoT work-
load, providing repeatable and controllable experiments of real
IoT applications [129].

Héctor [130], MockFog [131, 132], and EmuFog [129,
133] are three fog emulation toolkits that aim to provide
more realistic testing of fog infrastructures and IoT applica-
tions. In addition to emulating the fog infrastructure, Héctor
also represents each IoT device as a VM with configurable
properties, creating one emulated IoT environment. A testbed
is a set of configured IoT request patterns, IoT resource
requirements, and fog network conditions such as packet loss
and random additional delay. Automated execution of various
testbeds can therefore mimic the most realistic flow of IoT-
fog interactions. MockFog allows users to inject failures into
the fog system by toggling select fog nodes as unavailable.
This will reduce fog resource availability in order to further
test fog infrastructure resiliency and fault-tolerance. These
three emulators allow users to fully define and design a fog
infrastructure from scratch, though EmuFog also allows users
to place fog nodes along the topology using a default greedy
approach, or a custom placement policy. By changing the fog
design, placement policies, or network conditions, users can
evaluate the effects of the different fog infrastructures on IoT
service. In this manner, emulation toolkits may serve as an
empirical method for fog design.

VIII. OPEN ISSUES & RESEARCH OPPORTUNITIES

A. Fog Design & Dimensioning

Both [5] and [78] are based on data traffic from static
IoT devices; they assume a reliable fog infrastructure. In
practice, many IoT devices are dynamic in location and request
frequency, leading to possible spikes in incoming IoT traffic.
Likewise, fog node failures will lead to spikes in incoming IoT
traffic to active fog nodes. Updated simulations of fluctuating
network congestion on the edge and stochastic fog node
failures can serve useful to understanding the latency impact
from fog. A fog design & dimensioning solution can be
sensitive to network traffic, fog reliability, and fog modeling
parameters such as candidate resource location and quantity.
Therefore, a fog design & dimensioning solution should
provide satisfactory QoS conditions to IoT under volatile IoT
traffic and fog node failures, up to a degree of confidence.

In the event of a node failure, all IoT requests on the
failed fog node should be re-allocated. One approach to
ensure successful re-allocation is to implement the addition of
repository nodes in the design of a fog infrastructure to backup
fog node data. Adding mechanisms for IoT re-allocation will
increase the fault-tolerance of the designed fog infrastructure.

The extensibility of [78] assumes more fog nodes are
added for a static increase in IoT requests; however, if the
added fog nodes increase the geographic range of the fog
infrastructure, then previously out-of-range IoT devices may

now be in range. The resulting total IoT traffic to the extended
fog infrastructure may increase to more than estimated. IoT
traffic patterns may evolve over time, and IoT traffic may
reduce in certain areas and increase in others. An extension
of current fog infrastructure should identify fog resources that
can be repurposed to other fog nodes to optimize extension
costs. Simulation of increased IoT traffic from geographic
extensions to the fog infrastructure can be useful to understand
fog extensibility beyond what is currently proposed.

These open issues provide an opportunity for future re-
search, including the use of dynamically located and available
fog servers, and fault-tolerance.

B. Fog Resource Provisioning & IoT Resource Allocation

In many cases, it is assumed that fog resources are pre-
viously known to IoT devices [4, 29, 43, 79, 85, 97] and
often provided by an FOC with connections to every fog
node [9, 98]. Some schemes assume a fog server in range of
IoT satisfies latency [82, 98], or that current fog infrastructure
follows certain architectural characteristics [14, 29, 89].

The standard approach with prompt allocation schemes is
to upload IoT data to the nearest fog server, regardless of
available fog resources or fog resource pricing. Indeed, it
is assumed that this information is not known prior to IoT-
fog connection. This can result in sub-optimal processing
costs in a multi-price fog environment. If the nearest fog
server is heavily congested with requests, the response latency
can increase depending on whether the IoT request waits in
a queue for processing [56], is propagated to different fog
nodes [29], or is propagated to Cloud [30, 56]. This is shown in
Fig. 5b. Although prior provisioning approaches [14, 81] help
mitigate IoT requests being re-distributed elsewhere, resource
cost concerns persist. As shown in Fig. 5a, a set of resources
are reserved per fog node based on IoT traffic predictions.
The fog node immediately allocates an incoming IoT request
to the reserved resources, reducing latency; however, this
assumes that reserved resources are always sufficient for IoT
use. Another approach to mitigate re-distribution is to have
a system-wide knowledge of fog resources [29, 43], however
this generates additional hardware and/or software overhead.

The machine learning approach with prompt allocation
schemes is to use RL to improve the efficiency of fog
resource management over time [87, 88, 94]. However, QoS
requirements of IoT requests are assumed to be met through
the use of fog, and not verified. Currently, all current RL
applications for fog resource management use a centralized
RL agent. For large systems, the use of distributed multi-
agent RL, each overseeing a fraction of total fog nodes,
may improve system resource management as a whole. To
reduce computation overhead, each RL agent should learn to
independently behave optimally without requiring cooperation
between them. Most resource management schemes assign a
single IoT request to multiple modules in separate fog nodes
without consideration of fog routing costs. Multiple multi-
agent RL applications have been successful in decreasing
network latency [134, 135], energy consumption [136] or
cost [137] of general network routing between a source and



16

target node. There has yet to be a distributed RL application
for fog. Therefore, research opportunities exist for fog resource
management using distributed RL for module assignment and
inter-module routing.

Schemes that make an effort to provide QoS satisfying
allocations generate small amounts of latency overhead [85]
which may prove too large for certain IoT applications, or
are currently only effective for IoV applications [84]. Future
research is required into prompt allocation that does not
jeopardize latency in the worst-case, and provides near-optimal
resource allocation costs with little overhead. The objectives
and modeling techniques of reviewed prompt resource alloca-
tion schemes are summarized in Table IV.

Small batch allocation schemes have longer resource provi-
sioning & allocation solution times for better cost or latency,
making them ideal for static IoT devices needing long-term
and frequent fog support; however, mobile single-request IoT
devices may also request resources from fog. Further research
is required to provide resource provisioning & allocation for
both static and dynamic IoT devices.

All small batch allocation schemes are determined to as-
sume: 1) a static set of IoT requests for the duration of
allocation optimization, 2) guaranteed bandwidth availability,
and 3) all current fog resources are known. Each model is for-
mulated to service IoT requests in batches, which may require
additional latency for a sufficiently large batch to accumulate.
The objectives and modeling techniques of reviewed small
batch allocation schemes are summarized in Table V.

C. Fog Computing Frameworks

An ideal fog framework can monitor resources from the
fog layer, and provide possible data migration between fog
servers with minimal additional latency and overhead. Ad-
ditional hardware must be able to communicate efficiently
with existing fog infrastructure, which may be problematic
if the framework and infrastructure are owned by different
entities. Similarly, additional software such as API support
must be installed on the individual fog nodes, implying the
framework owner has access to the fog node software. An ideal
FOC requires no additional information from IoT regarding
the latency, privacy or security QoS, and can support any
heterogeneous IoT request.

A single fog node provides privacy when data is stored
locally; however, using an FOC that distributes an IoT request
among a cluster of fog nodes can broaden the scope of
data exposure to multiple fog nodes. This creates a trade-off
between larger clusters of fog nodes under one FOC which
provides allocation efficiency, and increased data privacy when
using smaller clusters.

To the best of our knowledge, all mentioned fog frame-
works assume ownership of the fog infrastructure, simplifying
all interactions between the fog framework and the fog in-
frastructure. In a scenario with multiple public fog servers
with different owners, a framework for each owner could
create redundant overhead. Further research is needed to pro-
pose a fog framework that systematically addresses issues of
generated overhead, fog infrastructure/framework ownership,

(a) Mobile IoT device

(b) Mobile Fog server

(c) Failed Fog server

Figure 7: Module migration due to: a) mobile IoT device
moving between fog server ranges, b) mobile fog server
moving out of IoT device range, and c) fog server failure.
In all scenarios, the IoT task is initially connected to f1, and
is migrated to f2. In a) and b), the IoT task begins migration
once the IoT device crosses the migration point.



17

Table IV: Summary of resource provisioning schemes with prompt allocation.

Year Author Optimization objective Modeling techniques

2015 Aazam and
Huh [14, 81]

Fair resource pricing and prior provisioning based on
historical IoT relinquish behaviour.

Formula to determine quantity of resources to
allocate to IoT.

2016 Aazam et al. [82] Extends prior provisioning of [14, 81] to factor QoE. Formula to determine quantity of resource to
allocate to IoT.

2016 Agarwal et
al. [30]

Maximize fog utilization. Efficient resource allocation algorithm.

2017 Zhang et al. [29] Minimize energy-consumption of intra-fog resource
management, minimize IoT service rejection of inter-
fog resource management.

Convex optimization, and min-max optimiza-
tion.

2017 Bittencourt et
al. [56]

Minimize latency. Evaluation of three IoT processing policies –
concurrent, FIFO, delay-priority.

2018 Yousefpour et
al. [43]

Minimize cost or delay violations. Greedy algorithms with periodic execution.

2018 Xia et al. [85] Minimize latency. Anchor-based fog node ordering and dynamic
component ordering heuristics.

2018 Wei et al. [87] Minimize latency. Reinforcement learning.

2018 Sun et al. [94] Minimize power consumption of fog. Reinforcement learning.

2018 Wang et al. [88] Minimize latency. Reinforcement learning.

2019 Aazam et al. [83] Predicts and prior provisions resource consumption
based on QoS and QoE.

Formula to determine quantity of resource to
allocate to IoT.

2019 Zhou et al. [47] Maximize vehicular fog utility. Base station conducted pricing-based stable
matching algorithm.

2020 Peng et al. [84] Match vehicular fog nodes with IoT device based on
resource, latency, reputation and pricing requirements
of both parties.

One-to-one assignment algorithm to match
vehicular fog nodes with clients.

Table V: Summary of resource provisioning schemes with small batch allocation.

Year Author Optimization objective Modeling techniques

2015 Gu et al. [28] Minimize cost. MILP-based two-phase heuristic.

2015 Do et al. [4] Minimize carbon
footprint.

Distributed algorithm based on proximal
algorithm and alternating direction method
of multipliers.

2016 Zeng et al. [89] Minimze latency. MILP-based three-stage heuristics.

2016 Souza et al. [32] Minimize cost. MILP.

2016 Zhang et al. [90] Minimize cost. Stackelberg game between Fog nodes,
MDCOs and IoT.

2016 Intharawijitr et
al. [31]

Minimize blocking
probability.

Evaluation of three IoT assignment policies ––
random, lowest latency fog node, maximum
resource capacity Fog.

2016,
2017

Skarlat et al. [9,
138]

Maximize fog
utilization.

MILP and genetic algorithm.

2017 Arkian et al. [17] Minimize cost. Linearized MINLP.

2017 Taneja and
Davy [79]

Optimize latency, fog
utilization and energy
consumption.

ModuleMapping algorithm.

2017 Ni et al. [96] 1) Minimize latency, 2)
maximize fog utility.

Heuristic algorithm.

2018 Ali et al. [92] Minimize latency. Many-to-one matching algorithm.

2019 Donassolo et
al [98]

Minimize cost. MILP model for exact solution, heuristic
algorithm for real-time allocation.

2019 Salaht et al. [97] Satisfy QoS. Constraint Programming.

2019 Karamoozian et
al. [80]

Minimize latency. Gravitational Search Algorithm.



18

Table VI: Summary of contributions with fog frameworks and data migration.

Overhead

Year Author Main Contribution FOC API

2013 Hong et al. [103] Mobile fog programming model for data
migration between IoT and fog nodes.

No Yes

2015 Gu et al. [28] Fog infrastructure for medical cyber-
physical systems with possible data
migration among fog nodes.

Multiple No

2015 Cardellini et al. [93] Frequent resource availability sharing
between fog nodes.

Single No

2016 Saurez et al. [37] Foglet programming model for data
migration between IoT and fog nodes.

No Yes

2016 Skarlat et al. [9, 138] Groups fog nodes into colonies, each with
a data migration controller to transfer
IoT data between colonies if current fog
colony resources are insufficient.

Multiple No

2017 Yigitoglu et al. [16] Foggy fog framework allows ubiquitous
view of all fog resources, deploys IoT to
fog nodes satisfying latency, privacy and
priority requirements.

Single No

2017 Zhang et al. [29] Data migration between RSUs and fog
nodes.

Multiple No

2017 Tomovic et al. [39] Resource management, traffic control and
data migration via SDN.

No Yes

2018 Yousefpour et al. [43] FogPlan lightweight QoS-aware frame-
work using SDN to control and monitor
incoming IoT traffic and fog resources.

No Yes

2018 Chen et al. [38] FA2ST, infrastructure of cross-domain
supporting fog nodes.

Single No

2019 Zhou et al. [47] Vehicular fog framework with intra-fog
resource management. If a fog becomes
overloaded, allows task offloading to
nearby smart vehicles.

Multiple No

2019 Tuli et al. [35] FogBus fog framework partitions fog
nodes into separate roles and IoT
exposure to increase fog security and
reliability.

Multiple No

2019 Donassolo et al. [98] FITOR, IoT-fog orchestration framework
that allows ubiquitous view of all fog
resources.

Single No

2020 Madan et al. [102] Allows overloaded RSUs to call and
offload data to UAVs.

Multiple No

2020 Peng et al. [84] Multi-attribute double auction vehicular
framework to match and pair vehicular
fog nodes with IoT devices based on
resources, latency, reputation and pricing
requirements of both parties.

Multiple No



19

Table VII: Summary of discrete-event simulation and emulation toolkits for Fog computing infrastructure — Functionality

Migration of IoT process due to

Year Name Method Mobile IoT Fog node
failure

Mobile
Fog node

Topology
input

2017 EmuFog [129, 133] Emulation No No No BRITE [139]

2017 iFogSim [36, 140] Simulation No No No GUI, JSON

2017 MyiFogSim [117, 118] Simulation Yes No No GUI, JSON

2017 EdgeNetworkCloudSim [112, 113] Simulation No No No BRITE [139]

2018 FogExplorer [108, 109] Simulation No No No GUI

2018 iFogSimWithDataPlacement [110, 114] Simulation No No No GUI, JSON

2018 FogNetSim++ [120, 121] Simulation No No Yes .INI file

2019 PFogSim [91] Simulation No No No XML

2019 YAFS [123] Simulation No Yes No JSON

2019 PureEdgeSim [124] Simulation No Yes No Java

2019 FogWorkflowSim [115] Simulation No No No Java

2019 Héctor [130] Emulation No No No API

2019 MockFog [131, 132] Emulation No No No API, GUI

2020 FogDirSim [126, 127] Simulation No Yes No Database

2020 MobFogSim [119] Simulation Yes No No GUI, JSON

Table VIII: Summary of discrete-event simulation and emulation toolkits for Fog computing infrastructure – Evaluation Criteria

Evaluated Metrics

Year Name Method Latency Operational
Costs

Energy
consumption

Fog
utilization/
congestion

Task
Rejection

2017 EmuFog [129, 133] Emulation Yes No Yes Yes No

2017 iFogSim [36, 140] Simulation Yes Yes Yes Yes No

2017 MyiFogSim [117, 118] Simulation Yes Yes Yes Yes No

2017 EdgeNetworkCloudSim [112, 113] Simulation No No Yes Yes Yes

2018 FogExplorer [108, 109] Simulation Yes Yes No No No

2018 iFogSimWithDataPlacement [110, 114] Simulation Yes Yes Yes Yes No

2018 FogNetSim++ [120, 121] Simulation Yes No Yes No Yes

2019 PFogSim [91] Simulation Yes Yes No No Yes

2019 YAFS [123] Simulation Yes No No Yes Yes

2019 PureEdgeSim [124] Simulation Yes No Yes Yes No

2019 FogWorkflowSim [115] Simulation Yes Yes Yes No No

2019 Héctor [130] Emulation Yes No No Yes No

2019 MockFog [131, 132] Emulation Yes No No Yes Yes

2020 FogDirSim [126, 127] Simulation No No Yes No Yes

2020 MobFogSim [119] Simulation Yes Yes Yes Yes No

privacy, and communication with IoT applications. There is
also a research opportunity to develop a proof-of-concept
of a framework that can interact with existing public fog
infrastructure regardless of owner. The main contributions and
hardware/software overhead generated for each fog framework
is summarized in Table VI.

D. Fog Infrastructure Design Evaluation

After an IoT request is assigned to a fog node, there are
several scenarios in which the provisioned module needs to be
migrated to a new fog node. Specifically, we consider module
migration due to a mobile IoT device moving between fog
nodes, a mobile fog node moving away from an IoT device,
and a fog node failure. When a mobile IoT moves between
fog nodes, module migration is efficient for slow moving
devices; however, significant decreases in successful module

migrations is seen with fast vehicles [119]. The proposed
fog implementations with mobile fog nodes use slow moving
UAVs [141] and buses [46], ensuring migration efficiency.
Though module handover is supported in FogNetSim++ [120],
specifics regarding migration policies and strategies are not
fully explored beyond what is available in OMNet++ [122].
When fog node failures are present, it is necessary for replicas
of the module data to be stored elsewhere in order to restore
and migrate data to live fog nodes [35].

For all current simulators, at most one of these scenarios
are explicitly addressed. Though fog computing has many
use cases that require module migration, there is yet to be
a tool that simulates all possible scenarios. For each described
evaluation tool, the approach to simulation/emulation is only
appropriate if the designed fog infrastructure and framework
can perform similar actions.



20

From an implementation standpoint, file input support is
ideal in situations where the entities designing the fog in-
frastructure and evaluating its efficiency are different. Using
formats like JSON, XML or BRITE [139] can facilitate the
fog development process across multiple entities in an orga-
nization. A GUI or topology input directly into the evaluation
tool can be useful when trial-and-error is required to find an
optimal design. We wish to mitigate this using a fog design
& dimensioning process [5, 78]. The supported migration
scenarios and topological input format of each simulator is
summarized in Table VII.

Each tool records logs during evaluation, outlining metrics
of each task allocation such as latency, energy consumption,
cost of allocation, resulting network congestion, and task
rejection due to unsatisfied QoS requirements. Though most
tools allow custom output metrics, only what is recorded in
logs can be evaluated; indeed, no evaluation tool records all
evaluation metrics shown in Table VIII.

There remain opportunities to build an evaluation tool with
the flexibility to model any scenario in a fog infrastructure.
This becomes particularly important in a dynamic fog system
with fog node failures, dynamically available fog nodes,
mobile fog nodes, and mobile IoT. Since the evaluated output
can only aggregate what is logged, there is also an opportunity
to expand the available metrics that are recorded from the IoT
request, the provisioned fog node, and the network path.

IX. CONCLUSION

Fog computing provides an alternative to Cloud processing
with increased privacy and low latency to IoT applications.
As the number of IoT applications increases, fog infrastruc-
ture implementations become crucial. We have identified four
phases to implement a fog infrastructure, and discussed their
limitations and open issues. We compared current design &
dimensioning models which produce a blueprint of a fog
infrastructure for the support of IoT applications. We clas-
sified resource provisioning & allocation schemes by their
effectiveness to support dynamic and static IoT applications,
and identified optimal objectives and modelling techniques
used by each scheme. We analyzed the main contributions and
generated overhead of fog frameworks. Finally, we reviewed
and identify limitations of simulation/emulation tools for the
evaluation of the designed fog infrastructure.

With this survey of current fog solutions, we intend to give
a detailed understanding of the necessary considerations of
building a practical fog infrastructure for local IoT support,
up to large-scale Smart City systems. Based on our results,
we believe we have provided a detailed overview of steps
necessary for a practical and functional fog implementation.

REFERENCES

[1] IDC. The Growth in Connected IoT Devices Is Ex-
pected to Generate 79.4ZB of Data in 2025, According
to a New IDC Forecast. Tech. rep. Accessed: 2020-
04. 2019. URL: https : / / www. idc . com / getdoc . jsp ?
containerId=prUS45213219.

[2] CISCO. Fog Computing and the Internet of Things:
Extend the Cloud to Where the Things Are. Tech. rep.
Accessed: 2019-04. 2015. URL: https : / /www.cisco .
com / c / dam / en us / solutions / trends / iot / docs /
computing-overview.pdf.

[3] G. L. Santos, P. T. Endo, M. F. F. da Silva Lisboa,
L. G. F. da Silva, D. Sadok, J. Kelner, T. Lynn, et
al. “Analyzing the availability and performance of an
e-health system integrated with edge, fog and cloud
infrastructures”. In: Journal of Cloud Computing 7.1
(2018), p. 16.

[4] C. T. Do, N. H. Tran, C. Pham, M. G. R. Alam,
J. H. Son, and C. S. Hong. “A proximal algorithm
for joint resource allocation and minimizing carbon
footprint in geo-distributed fog computing”. In: 2015
International Conference on Information Networking
(ICOIN). IEEE. 2015, pp. 324–329.

[5] C. Yu, B. Lin, P. Guo, W. Zhang, S. Li, and R. He.
“Deployment and Dimensioning of Fog Computing-
Based Internet of Vehicle Infrastructure for Au-
tonomous Driving”. In: IEEE Internet of Things Jour-
nal 6.1 (2019), pp. 149–160.

[6] S. W. Loke. “The internet of flying-things: Oppor-
tunities and challenges with airborne fog computing
and mobile cloud in the clouds”. In: arXiv preprint
arXiv:1507.04492 (2015).

[7] L. M. Vaquero and L. Rodero-Merino. “Finding your
way in the fog: Towards a comprehensive definition
of fog computing”. In: ACM SIGCOMM Computer
Communication Review 44.5 (2014), pp. 27–32.

[8] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. “Fog
computing and its role in the internet of things”. In:
Proceedings of the first edition of the MCC workshop
on Mobile cloud computing. ACM. 2012, pp. 13–16.

[9] O. Skarlat, S. Schulte, M. Borkowski, and P. Leitner.
“Resource provisioning for IoT services in the fog”.
In: 2016 IEEE 9th international conference on service-
oriented computing and applications (SOCA). IEEE.
2016, pp. 32–39.

[10] A. Giordano, G. Spezzano, and A. Vinci. “Smart
agents and fog computing for smart city applications”.
In: International Conference on Smart Cities. Springer.
2016, pp. 137–146.

[11] R. Mahmud, R. Kotagiri, and R. Buyya. “Fog com-
puting: A taxonomy, survey and future directions”. In:
Internet of everything. Springer, 2018, pp. 103–130.

[12] A. Ahmed, H. Arkian, D. Battulga, A. J. Fahs, M.
Farhadi, D. Giouroukis, A. Gougeon, F. O. Gutierrez,
G. Pierre, P. R. Souza Jr, et al. “Fog Computing
Applications: Taxonomy and Requirements”. In: arXiv
preprint arXiv:1907.11621 (2019).

[13] K. Bachmann. “Design and implementation of a fog
computing framework”. Diploma Thesis. Vienna Uni-
versity of Technology (TU Wien), Vienna, Austria,
2017.

[14] M. Aazam and E.-N. Huh. “Fog computing micro dat-
acenter based dynamic resource estimation and pricing
model for IoT”. In: 2015 IEEE 29th International



21

Conference on Advanced Information Networking and
Applications. IEEE. 2015, pp. 687–694.

[15] A. V. Dastjerdi, H. Gupta, R. N. Calheiros, S. K.
Ghosh, and R. Buyya. “Fog computing: Principles,
architectures, and applications”. In: Internet of things.
Elsevier, 2016, pp. 61–75.

[16] E. Yigitoglu, M. Mohamed, L. Liu, and H. Ludwig.
“Foggy: a framework for continuous automated IoT
application deployment in fog computing”. In: 2017
IEEE International Conference on AI & Mobile Ser-
vices (AIMS). IEEE. 2017, pp. 38–45.

[17] H. R. Arkian, A. Diyanat, and A. Pourkhalili. “MIST:
Fog-based data analytics scheme with cost-efficient
resource provisioning for IoT crowdsensing applica-
tions”. In: Journal of Network and Computer Applica-
tions 82 (2017), pp. 152–165.

[18] S. H. Mortazavi, M. Salehe, C. S. Gomes, C. Phillips,
and E. de Lara. “Cloudpath: A multi-tier cloud com-
puting framework”. In: Proceedings of the Second
ACM/IEEE Symposium on Edge Computing. 2017,
pp. 1–13.

[19] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. “Edge
computing: Vision and challenges”. In: IEEE internet
of things journal 3.5 (2016), pp. 637–646.

[20] M. Satyanarayanan. “The emergence of edge comput-
ing”. In: Computer 50.1 (2017), pp. 30–39.

[21] K. Dolui and S. K. Datta. “Comparison of edge
computing implementations: Fog computing, cloudlet
and mobile edge computing”. In: 2017 Global Internet
of Things Summit (GIoTS). IEEE. 2017, pp. 1–6.

[22] M. Satyanarayanan, P. Bahl, R. Caceres, and N.
Davies. “The case for vm-based cloudlets in mo-
bile computing”. In: IEEE pervasive Computing 8.4
(2009), pp. 14–23.

[23] E. Zygmuntowicz, V. Spivak, K. Skaar, D. Collison, O.
Shaldybin, M. Lucovsky, and K. Murphy. Microcloud
platform delivery system. US Patent 8,813,065. Aug.
2014.

[24] H. T. Dinh, C. Lee, D. Niyato, and P. Wang. “A survey
of mobile cloud computing: architecture, applications,
and approaches”. In: Wireless communications and
mobile computing 13.18 (2013), pp. 1587–1611.

[25] M. T. Beck, M. Werner, S. Feld, and S. Schimper.
“Mobile edge computing: A taxonomy”. In: Proc. of
the Sixth International Conference on Advances in
Future Internet. Citeseer. 2014, pp. 48–55.

[26] A. Enayet, M. A. Razzaque, M. M. Hassan, A. Alamri,
and G. Fortino. “A mobility-aware optimal resource
allocation architecture for big data task execution on
mobile cloud in smart cities”. In: IEEE Communica-
tions Magazine 56.2 (2018), pp. 110–117.

[27] M. Satyanarayanan, R. Schuster, M. Ebling, G. Fet-
tweis, H. Flinck, K. Joshi, and K. Sabnani. “An open
ecosystem for mobile-cloud convergence”. In: IEEE
Communications Magazine 53.3 (2015), pp. 63–70.

[28] L. Gu, D. Zeng, S. Guo, A. Barnawi, and Y. Xiang.
“Cost efficient resource management in fog computing
supported medical cyber-physical system”. In: IEEE

Transactions on Emerging Topics in Computing 5.1
(2015), pp. 108–119.

[29] W. Zhang, Z. Zhang, and H.-C. Chao. “Cooperative
fog computing for dealing with big data in the internet
of vehicles: Architecture and hierarchical resource
management”. In: IEEE Communications Magazine
55.12 (2017), pp. 60–67.

[30] S. Agarwal, S. Yadav, and A. K. Yadav. “An efficient
architecture and algorithm for resource provisioning in
fog computing”. In: International Journal of Informa-
tion Engineering and Electronic Business 8.1 (2016),
p. 48.

[31] K. Intharawijitr, K. Iida, and H. Koga. “Analysis of fog
model considering computing and communication la-
tency in 5G cellular networks”. In: 2016 IEEE Interna-
tional Conference on Pervasive Computing and Com-
munication Workshops (PerCom Workshops). IEEE.
2016, pp. 1–4.

[32] V. B. C. Souza, W. Ramırez, X. Masip-Bruin, E.
Marın-Tordera, G. Ren, and G. Tashakor. “Handling
service allocation in combined fog-cloud scenarios”.
In: 2016 IEEE international conference on communi-
cations (ICC). IEEE. 2016, pp. 1–5.

[33] B. Tang, Z. Chen, G. Hefferman, T. Wei, H. He, and
Q. Yang. “A hierarchical distributed fog computing
architecture for big data analysis in smart cities”. In:
Proceedings of the ASE BigData & SocialInformatics
2015. ACM. 2015, p. 28.

[34] M. I. Naas, P. R. Parvedy, J. Boukhobza, and L.
Lemarchand. “iFogStor: an IoT data placement strat-
egy for fog infrastructure”. In: 2017 IEEE 1st In-
ternational Conference on Fog and Edge Computing
(ICFEC). IEEE. 2017, pp. 97–104.

[35] S. Tuli, R. Mahmud, S. Tuli, and R. Buyya. “FogBus:
A Blockchain-based Lightweight Framework for Edge
and Fog Computing”. In: Journal of Systems and
Software (2019).

[36] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R.
Buyya. “iFogSim: A toolkit for modeling and simula-
tion of resource management techniques in the Internet
of Things, Edge and Fog computing environments”.
In: Software: Practice and Experience 47.9 (2017),
pp. 1275–1296.

[37] E. Saurez, K. Hong, D. Lillethun, U. Ramachandran,
and B. Ottenwälder. “Incremental deployment and
migration of geo-distributed situation awareness appli-
cations in the fog”. In: Proceedings of the 10th ACM
International Conference on Distributed and Event-
based Systems. ACM. 2016, pp. 258–269.

[38] N. Chen, Y. Yang, T. Zhang, M.-T. Zhou, X. Luo, and
J. K. Zao. “Fog as a service technology”. In: IEEE
Communications Magazine 56.11 (2018), pp. 95–101.

[39] S. Tomovic, K. Yoshigoe, I. Maljevic, and I. Radusi-
novic. “Software-defined fog network architecture for
IoT”. In: Wireless Personal Communications 92.1
(2017), pp. 181–196.



22

[40] X. Sun and N. Ansari. “EdgeIoT: Mobile edge com-
puting for the Internet of Things”. In: IEEE Commu-
nications Magazine 54.12 (2016), pp. 22–29.

[41] S. S. Gill, R. C. Arya, G. S. Wander, and R. Buyya.
“Fog-Based Smart Healthcare as a Big Data and Cloud
Service for Heart Patients Using IoT”. In: Interna-
tional Conference on Intelligent Data Communication
Technologies and Internet of Things. Springer. 2018,
pp. 1376–1383.

[42] I. Stojmenovic. “Fog computing: A cloud to the ground
support for smart things and machine-to-machine net-
works”. In: 2014 Australasian Telecommunication Net-
works and Applications Conference (ATNAC). IEEE.
2014, pp. 117–122.

[43] A. Yousefpour, A. Patil, G. Ishigaki, I. Kim, X. Wang,
H. C. Cankaya, Q. Zhang, W. Xie, and J. P. Jue. “Qos-
aware dynamic fog service provisioning”. In: arXiv
preprint arXiv:1802.00800 (2018).

[44] X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen.
“Vehicular fog computing: A viewpoint of vehicles as
the infrastructures”. In: IEEE Transactions on Vehicu-
lar Technology 65.6 (2016), pp. 3860–3873.

[45] M. Sookhak, F. R. Yu, Y. He, H. Talebian, N. S.
Safa, N. Zhao, M. K. Khan, and N. Kumar. “Fog
vehicular computing: Augmentation of fog computing
using vehicular cloud computing”. In: IEEE Vehicular
Technology Magazine 12.3 (2017), pp. 55–64.

[46] G. Sun, S. Sun, H. Yu, and M. Guizani. “Towards
Incentivizing Fog-Based Privacy-Preserving Mobile
Crowdsensing in the Internet of Vehicles”. In: IEEE
Internet of Things Journal (2019).

[47] Z. Zhou, P. Liu, J. Feng, Y. Zhang, S. Mumtaz, and J.
Rodriguez. “Computation resource allocation and task
assignment optimization in vehicular fog computing:
A contract-matching approach”. In: IEEE Transactions
on Vehicular Technology 68.4 (2019), pp. 3113–3125.

[48] M. Ahmad, M. B. Amin, S. Hussain, B. H. Kang, T.
Cheong, and S. Lee. “Health Fog: a novel framework
for health and wellness applications”. In: The Journal
of Supercomputing 72.10 (2016), pp. 3677–3695.

[49] A. M. Rahmani, T. N. Gia, B. Negash, A. Anzanpour,
I. Azimi, M. Jiang, and P. Liljeberg. “Exploiting smart
e-Health gateways at the edge of healthcare Internet-
of-Things: A fog computing approach”. In: Future
Generation Computer Systems 78 (2018), pp. 641–658.

[50] R. Sofia and P. Mendes. “User-provided networks:
consumer as provider”. In: IEEE Communications
Magazine 46.12 (2008), pp. 86–91.

[51] C. Chang, S. N. Srirama, and R. Buyya. “Indie fog: An
efficient fog-computing infrastructure for the internet
of things”. In: Computer 50.9 (2017), pp. 92–98.

[52] E. Baccarelli, P. G. V. Naranjo, M. Scarpiniti, M. Sho-
jafar, and J. H. Abawajy. “Fog of everything: Energy-
efficient networked computing architectures, research
challenges, and a case study”. In: IEEE Access 5
(2017), pp. 9882–9910.

[53] F. Y. Okay and S. Ozdemir. “A fog computing based
smart grid model”. In: 2016 international symposium

on networks, computers and communications (ISNCC).
IEEE. 2016, pp. 1–6.

[54] C. Perera, D. S. Talagala, C. H. Liu, and J. C.
Estrella. “Energy-efficient location and activity-aware
on-demand mobile distributed sensing platform for
sensing as a service in IoT clouds”. In: IEEE Trans-
actions on Computational Social Systems 2.4 (2015),
pp. 171–181.

[55] N. Mohamed, J. Al-Jaroodi, I. Jawhar, S. Lazarova-
Molnar, and S. Mahmoud. “SmartCityWare: A service-
oriented middleware for cloud and fog enabled smart
city services”. In: Ieee Access 5 (2017), pp. 17576–
17588.

[56] L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F.
Rana, and M. Parashar. “Mobility-aware application
scheduling in fog computing”. In: IEEE Cloud Com-
puting 4.2 (2017), pp. 26–35.

[57] S. Jeong, O. Simeone, and J. Kang. “Mobile edge
computing via a UAV-mounted cloudlet: Optimiza-
tion of bit allocation and path planning”. In: IEEE
Transactions on Vehicular Technology 67.3 (2017),
pp. 2049–2063.

[58] F. Zhou, Y. Wu, H. Sun, and Z. Chu. “UAV-enabled
mobile edge computing: Offloading optimization and
trajectory design”. In: 2018 IEEE International Con-
ference on Communications (ICC). IEEE. 2018, pp. 1–
6.

[59] N. Mohamed, J. Al-Jaroodi, I. Jawhar, H. Noura,
and S. Mahmoud. “UAVFog: A UAV-based fog
computing for Internet of Things”. In: 2017 IEEE
SmartWorld, Ubiquitous Intelligence & Computing,
Advanced & Trusted Computed, Scalable Computing
& Communications, Cloud & Big Data Computing,
Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI).
IEEE. 2017, pp. 1–8.

[60] C. Perera, Y. Qin, J. C. Estrella, S. Reiff-Marganiec,
and A. V. Vasilakos. “Fog computing for sustainable
smart cities: A survey”. In: ACM Computing Surveys
(CSUR) 50.3 (2017), p. 32.

[61] C. Dsouza, G.-J. Ahn, and M. Taguinod. “Policy-
driven security management for fog computing: Pre-
liminary framework and a case study”. In: Proceedings
of the 2014 IEEE 15th International Conference on
Information Reuse and Integration (IEEE IRI 2014).
IEEE. 2014, pp. 16–23.

[62] J. Liu, J. Li, L. Zhang, F. Dai, Y. Zhang, X. Meng, and
J. Shen. “Secure intelligent traffic light control using
fog computing”. In: Future Generation Computer Sys-
tems 78 (2018), pp. 817–824.

[63] S. Shin and G. Gu. “CloudWatcher: Network security
monitoring using OpenFlow in dynamic cloud net-
works (or: How to provide security monitoring as a
service in clouds?)” In: 2012 20th IEEE international
conference on network protocols (ICNP). IEEE. 2012,
pp. 1–6.

[64] N. McKeown, T. Anderson, H. Balakrishnan, G.
Parulkar, L. Peterson, J. Rexford, S. Shenker, and



23

J. Turner. “OpenFlow: enabling innovation in campus
networks”. In: ACM SIGCOMM Computer Communi-
cation Review 38.2 (2008), pp. 69–74.

[65] S. Yi, Z. Qin, and Q. Li. “Security and privacy
issues of fog computing: A survey”. In: International
conference on wireless algorithms, systems, and appli-
cations. Springer. 2015, pp. 685–695.

[66] P. Hu, S. Dhelim, H. Ning, and T. Qiu. “Survey on
fog computing: architecture, key technologies, appli-
cations and open issues”. In: Journal of Network and
Computer Applications 98 (2017), pp. 27–42.

[67] M. Mukherjee, L. Shu, and D. Wang. “Survey of
fog computing: Fundamental, network applications,
and research challenges”. In: IEEE Communications
Surveys & Tutorials 20.3 (2018), pp. 1826–1857.

[68] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho,
M. J. Morrow, and P. A. Polakos. “A comprehensive
survey on fog computing: State-of-the-art and research
challenges”. In: IEEE Communications Surveys &
Tutorials 20.1 (2017), pp. 416–464.

[69] M. Ghobaei-Arani, A. Souri, and A. A. Rahmanian.
“Resource management approaches in fog computing:
a comprehensive review”. In: Journal of Grid Com-
puting (2019), pp. 1–42.

[70] A. Brogi, S. Forti, C. Guerrero, and I. Lera. “How to
place your apps in the fog: State of the art and open
challenges”. In: Software: Practice and Experience
50.5 (2020), pp. 719–740.

[71] R. K. Naha, S. Garg, D. Georgakopoulos, P. P. Jayara-
man, L. Gao, Y. Xiang, and R. Ranjan. “Fog Com-
puting: Survey of trends, architectures, requirements,
and research directions”. In: IEEE Access 6 (2018),
pp. 47980–48009.

[72] S. Yi, C. Li, and Q. Li. “A survey of fog computing:
concepts, applications and issues”. In: Proceedings of
the 2015 workshop on mobile big data. ACM. 2015,
pp. 37–42.

[73] A. Markus and A. Kertesz. “A survey and taxonomy
of simulation environments modelling fog computing”.
In: Simulation Modelling Practice and Theory 101
(2020), p. 102042.

[74] M. Jia, J. Cao, and W. Liang. “Optimal cloudlet
placement and user to cloudlet allocation in wireless
metropolitan area networks”. In: IEEE Transactions on
Cloud Computing 5.4 (2015), pp. 725–737.

[75] Z. Xu, W. Liang, W. Xu, M. Jia, and S. Guo. “Efficient
algorithms for capacitated cloudlet placements”. In:
IEEE Transactions on Parallel and Distributed Sys-
tems 27.10 (2015), pp. 2866–2880.

[76] A. Ceselli, M. Premoli, and S. Secci. “Cloudlet net-
work design optimization”. In: 2015 IFIP Networking
Conference (IFIP Networking). IEEE. 2015, pp. 1–9.

[77] Q. Fan and N. Ansari. “Cost aware cloudlet placement
for big data processing at the edge”. In: 2017 IEEE
International Conference on Communications (ICC).
IEEE. 2017, pp. 1–6.

[78] I. Martinez, A. Jarray, and A. S. Hafid. “Scalable
Design and Dimensioning of Fog-Computing Infras-

tructure to Support Latency Sensitive IoT Applica-
tions”. In: IEEE Internet of Things Journal 7.6 (2020),
pp. 5504–5520.

[79] M. Taneja and A. Davy. “Resource aware placement
of IoT application modules in Fog-Cloud Computing
Paradigm”. In: 2017 IFIP/IEEE Symposium on Inte-
grated Network and Service Management (IM). IEEE.
2017, pp. 1222–1228.

[80] A. Karamoozian, A. Hafid, and E. M. Aboulhamid.
“On the Fog-Cloud Cooperation: How Fog Computing
can address latency concerns of IoT applications”.
In: 2019 Fourth International Conference on Fog
and Mobile Edge Computing (FMEC). IEEE. 2019,
pp. 166–172.

[81] M. Aazam and E.-N. Huh. “Dynamic resource pro-
visioning through Fog micro datacenter”. In: 2015
IEEE international conference on pervasive computing
and communication workshops (PerCom workshops).
IEEE. 2015, pp. 105–110.

[82] M. Aazam, M. St-Hilaire, C.-H. Lung, and I. Lam-
badaris. “MeFoRE: QoE based resource estimation
at Fog to enhance QoS in IoT”. In: 2016 23rd In-
ternational Conference on Telecommunications (ICT).
IEEE. 2016, pp. 1–5.

[83] M. Aazam, K. A. Harras, and S. Zeadally. “Fog
computing for 5G tactile industrial Internet of Things:
QoE-aware resource allocation model”. In: IEEE
Transactions on Industrial Informatics 15.5 (2019),
pp. 3085–3092.

[84] X. Peng, K. Ota, and M. Dong. “Multi-attribute based
Double Auction Towards Resource Allocation in Ve-
hicular Fog Computing”. In: IEEE Internet of Things
Journal (2020).

[85] Y. Xia, X. Etchevers, L. Letondeur, T. Coupaye, and
F. Desprez. “Combining hardware nodes and software
components ordering-based heuristics for optimizing
the placement of distributed iot applications in the
fog”. In: Proceedings of the 33rd Annual ACM Sym-
posium on Applied Computing. ACM. 2018, pp. 751–
760.

[86] L. P. Kaelbling, M. L. Littman, and A. W. Moore.
“Reinforcement learning: A survey”. In: Journal of
artificial intelligence research 4 (1996), pp. 237–285.

[87] Y. Wei, F. R. Yu, M. Song, and Z. Han. “Joint opti-
mization of caching, computing, and radio resources
for fog-enabled IoT using natural actor–critic deep
reinforcement learning”. In: IEEE Internet of Things
Journal 6.2 (2018), pp. 2061–2073.

[88] Y. Wang, K. Wang, H. Huang, T. Miyazaki, and
S. Guo. “Traffic and computation co-offloading with
reinforcement learning in fog computing for industrial
applications”. In: IEEE Transactions on Industrial
Informatics 15.2 (2018), pp. 976–986.

[89] D. Zeng, L. Gu, S. Guo, Z. Cheng, and S. Yu. “Joint
optimization of task scheduling and image placement
in fog computing supported software-defined embed-
ded system”. In: IEEE Transactions on Computers
65.12 (2016), pp. 3702–3712.



24

[90] H. Zhang, Y. Xiao, S. Bu, D. Niyato, R. Yu, and
Z. Han. “Fog computing in multi-tier data center net-
works: A hierarchical game approach”. In: 2016 IEEE
international conference on communications (ICC).
IEEE. 2016, pp. 1–6.

[91] Q. Wang. “PFogSim: A Simulator for Evaluating Dy-
namic and Layered Fog Computing Environments”. In:
(2019).

[92] M. Ali, N. Riaz, M. I. Ashraf, S. Qaisar, and M.
Naeem. “Joint cloudlet selection and latency mini-
mization in fog networks”. In: IEEE Transactions on
Industrial Informatics 14.9 (2018), pp. 4055–4063.

[93] V. Cardellini, V. Grassi, F. L. Presti, and M. Nardelli.
“On QoS-aware scheduling of data stream applica-
tions over fog computing infrastructures”. In: 2015
IEEE Symposium on Computers and Communication
(ISCC). IEEE. 2015, pp. 271–276.

[94] Y. Sun, M. Peng, and S. Mao. “Deep reinforcement
learning-based mode selection and resource manage-
ment for green fog radio access networks”. In: IEEE
Internet of Things Journal 6.2 (2018), pp. 1960–1971.

[95] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A.
De Rose, and R. Buyya. “CloudSim: a toolkit for mod-
eling and simulation of cloud computing environments
and evaluation of resource provisioning algorithms”.
In: Software: Practice and experience 41.1 (2011),
pp. 23–50.

[96] L. Ni, J. Zhang, C. Jiang, C. Yan, and K. Yu. “Re-
source allocation strategy in fog computing based on
priced timed petri nets”. In: ieee internet of things
journal 4.5 (2017), pp. 1216–1228.

[97] F. A. Salaht, F. Desprez, A. Lebre, C. Prud’Homme,
and M. Abderrahim. “Service Placement in Fog Com-
puting Using Constraint Programming”. In: IEEE
INTERNATIONAL CONFERENCE ON SERVICES
COMPUTING. 2019.

[98] B. Donassolo, I. Fajjari, A. Legrand, and P. Mer-
tikopoulos. “Fog Based Framework for IoT Service
Provisioning”. In: 2019 16th IEEE Annual Consumer
Communications & Networking Conference (CCNC).
IEEE. 2019, pp. 1–6.

[99] Y. Jiang, Z. Huang, and D. H. Tsang. “Challenges and
solutions in fog computing orchestration”. In: IEEE
Network 32.3 (2018), pp. 122–129.

[100] M. S. de Brito, S. Hoque, T. Magedanz, R. Steinke,
A. Willner, D. Nehls, O. Keils, and F. Schreiner.
“A service orchestration architecture for fog-enabled
infrastructures”. In: 2017 Second International Con-
ference on Fog and Mobile Edge Computing (FMEC).
IEEE. 2017, pp. 127–132.

[101] N. Chen and S. Clarke. “A dynamic service composi-
tion model for adaptive systems in mobile comput-
ing environments”. In: International Conference on
Service-Oriented Computing. Springer. 2014, pp. 93–
107.

[102] N. Madan, A. W. Malik, A. U. Rahman, and S. D. Ra-
vana. “On-demand resource provisioning for vehicular

networks using flying fog”. In: Vehicular Communica-
tions (2020), p. 100252.

[103] K. Hong, D. Lillethun, U. Ramachandran, B. Ot-
tenwälder, and B. Koldehofe. “Mobile fog: A pro-
gramming model for large-scale applications on the
internet of things”. In: Proceedings of the second ACM
SIGCOMM workshop on Mobile cloud computing.
2013, pp. 15–20.

[104] S. Yangui, P. Ravindran, O. Bibani, R. H. Glitho,
N. B. Hadj-Alouane, M. J. Morrow, and P. A. Polakos.
“A platform as-a-service for hybrid cloud/fog environ-
ments”. In: 2016 IEEE International Symposium on
Local and Metropolitan Area Networks (LANMAN).
IEEE. 2016, pp. 1–7.

[105] D. Soni and A. Makwana. “A survey on mqtt: a
protocol of internet of things (iot)”. In: International
Conference On Telecommunication, Power Analysis
And Computing Techniques (ICTPACT-2017). 2017.

[106] A. Lara, A. Kolasani, and B. Ramamurthy. “Simplify-
ing network management using software defined net-
working and OpenFlow”. In: 2012 IEEE International
Conference on Advanced Networks and Telecommun-
ciations Systems (ANTS). IEEE. 2012, pp. 24–29.

[107] J. Hasenburg, S. Werner, and D. Bermbach. “Support-
ing the evaluation of fog-based IoT applications during
the design phase”. In: Proceedings of the 5th Workshop
on Middleware and Applications for the Internet of
Things. 2018, pp. 1–6.

[108] J. Hasenburg, S. Werner, and D. Bermbach. “Fog-
Explorer”. In: Proceedings of the 19th International
Middleware Conference (Posters). 2018, pp. 1–2.

[109] J. Hasenburg. FogExplorer Inrastructure as Code.
https : / / github . com / OpenFogStack / FogExplorer.
Accessed: 2020-07-25.

[110] M. I. Naas, J. Boukhobza, P. R. Parvedy, and L.
Lemarchand. “An extension to ifogsim to enable the
design of data placement strategies”. In: 2018 IEEE
2nd International Conference on Fog and Edge Com-
puting (ICFEC). IEEE. 2018, pp. 1–8.

[111] A. Khanna and R. Tomar. “IoT based interactive
shopping ecosystem”. In: 2016 2nd International Con-
ference on Next Generation Computing Technologies
(NGCT). IEEE. 2016, pp. 40–45.

[112] M. Seufert, B. K. Kwam, F. Wamser, and P. Tran-Gia.
“Edgenetworkcloudsim: Placement of service chains
in edge clouds using NetworkCloudSim”. In: 2017
IEEE Conference on Network Softwarization (NetSoft).
IEEE. 2017, pp. 1–6.

[113] B. K. Kwam. An extension of NetworkCloudSim to
simulate the Edge Cloud. https://github.com/lsinfo3/
EdgeNetworkCloudSim. Accessed: 2020-05-02.

[114] M. I. Naas. iFogSimWithDataPlacement on
GitHub. https : / / github . com / medislam /
iFogSimWithDataPlacement. Accessed: 2020-05-
02.

[115] X. Liu, L. Fan, J. Xu, X. Li, L. Gong, J. Grundy,
and Y. Yang. “FogWorkflowSim: An Automated Sim-
ulation Toolkit for Workflow Performance Evaluation



25

in Fog Computing”. In: 2019 34th IEEE/ACM Interna-
tional Conference on Automated Software Engineering
(ASE). IEEE. 2019, pp. 1114–1117.

[116] W. Chen and E. Deelman. “Workflowsim: A toolkit for
simulating scientific workflows in distributed environ-
ments”. In: 2012 IEEE 8th International Conference
on E-Science. IEEE. 2012, pp. 1–8.

[117] M. M. Lopes, W. A. Higashino, M. A. Capretz, and
L. F. Bittencourt. “Myifogsim: A simulator for virtual
machine migration in fog computing”. In: Companion
Proceedings of the10th International Conference on
Utility and Cloud Computing. 2017, pp. 47–52.

[118] M. M. Lopes. MyiFogSim on GitHub. https://github.
com/marciocomp/myifogsim. Accessed: 2020-04-30.

[119] C. Puliafito, D. M. Gonçalves, M. M. Lopes, L. L.
Martins, E. Madeira, E. Mingozzi, O. Rana, and L. F.
Bittencourt. “MobFogSim: Simulation of mobility and
migration for fog computing”. In: Simulation Mod-
elling Practice and Theory 101 (2020), p. 102062.

[120] T. Qayyum, A. W. Malik, M. A. K. Khattak, O. Khalid,
and S. U. Khan. “FogNetSim++: A toolkit for mod-
eling and simulation of distributed fog environment”.
In: IEEE Access 6 (2018), pp. 63570–63583.

[121] T. Qayyum. A Toolkit to simulate distributed fog
computing environment. https://github.com/rtqayyum/
fognetsimpp. Accessed: 2020-04-30.

[122] A. Varga. “OMNeT++”. In: Modeling and tools for
network simulation. Springer, 2010, pp. 35–59.

[123] I. Lera, C. Guerrero, and C. Juiz. “YAFS: A simulator
for IoT scenarios in fog computing”. In: IEEE Access
7 (2019), pp. 91745–91758.

[124] C. Mechalikh, H. Taktak, and F. Moussa. “PureEd-
geSim: A Simulation Toolkit for Performance Eval-
uation of Cloud, Fog, and Pure Edge Computing
Environments”. In: The 2019 International Conference
on High Performance Computing Simulation. IEEE,
2019, pp. 700–707.

[125] C. Mechalikh. PureEdgeSim: A Simulation Toolkit
for Performance Evaluation of Cloud, Fog, and Pure
Edge Computing Environments. https : / / github .
com/CharafeddineMechalikh/PureEdgeSim. Accessed:
2020-04-30.

[126] S. Forti, A. Pagiaro, and A. Brogi. “Simulating FogDi-
rector Application Management”. In: Simulation Mod-
elling Practice and Theory 101 (2020), p. 102021.

[127] S. Forti. A Simulator of CISCO FogDirector Applica-
tion Management. https://github.com/di- unipi- socc/
FogDirSim. Accessed: 2020-05-02.

[128] A. Brogi, S. Forti, and A. Ibrahim. “How to best
deploy your Fog applications, probably”. In: 2017
IEEE 1st International Conference on Fog and Edge
Computing (ICFEC). IEEE. 2017, pp. 105–114.

[129] R. Mayer, L. Graser, H. Gupta, E. Saurez, and U.
Ramachandran. “Emufog: Extensible and scalable em-
ulation of large-scale fog computing infrastructures”.
In: 2017 IEEE Fog World Congress (FWC). IEEE.
2017, pp. 1–6.

[130] I. Behnke, L. Thamsen, and O. Kao. “Héctor: A
Framework for Testing IoT Applications Across Het-
erogeneous Edge and Cloud Testbeds”. In: Proceed-
ings of the 12th IEEE/ACM International Conference
on Utility and Cloud Computing Companion. 2019,
pp. 15–20.

[131] J. Hasenburg, M. Grambow, E. Grünewald, S. Huk,
and D. Bermbach. “MockFog: Emulating fog com-
puting infrastructure in the cloud”. In: 2019 IEEE
International Conference on Fog Computing (ICFC).
IEEE. 2019, pp. 144–152.

[132] J. Hasenburg. MockFog Inrastructure as Code. https:
//github.com/OpenFogStack/MockFog-IaC. Accessed:
2020-07-24.

[133] L. Graser. EmuFog on GitHub. https : / / github.com/
emufog/emufog. Accessed: 2020-07-24.

[134] A. Forster and A. L. Murphy. “FROMS: Feedback
routing for optimizing multiple sinks in WSN with
reinforcement learning”. In: 2007 3rd International
Conference on Intelligent Sensors, Sensor Networks
and Information. IEEE. 2007, pp. 371–376.

[135] R. Arroyo-Valles, R. Alaiz-Rodriguez, A. Guerrero-
Curieses, and J. Cid-Sueiro. “Q-probabilistic routing in
wireless sensor networks”. In: 2007 3rd International
Conference on Intelligent Sensors, Sensor Networks
and Information. IEEE. 2007, pp. 1–6.

[136] T. Hu and Y. Fei. “QELAR: A machine-learning-
based adaptive routing protocol for energy-efficient
and lifetime-extended underwater sensor networks”.
In: IEEE Transactions on Mobile Computing 9.6
(2010), pp. 796–809.

[137] A. A. Bhorkar, M. Naghshvar, T. Javidi, and B. D. Rao.
“Adaptive opportunistic routing for wireless ad hoc
networks”. In: IEEE/ACM Transactions On Network-
ing 20.1 (2011), pp. 243–256.

[138] O. Skarlat, M. Nardelli, S. Schulte, M. Borkowski, and
P. Leitner. “Optimized IoT service placement in the
fog”. In: Service Oriented Computing and Applications
11.4 (2017), pp. 427–443.

[139] A. Medina, A. Lakhina, I. Matta, and J. Byers.
“BRITE: An approach to universal topology genera-
tion”. In: MASCOTS 2001, Proceedings Ninth Inter-
national Symposium on Modeling, Analysis and Sim-
ulation of Computer and Telecommunication Systems.
IEEE. 2001, pp. 346–353.

[140] H. Gupta. iFogSim on GitHub. https : / / github. com /
Cloudslab/iFogSim. Accessed: 2020-05-02.

[141] A. A. A. Ateya, A. Muthanna, R. Kirichek, M. Ham-
moudeh, and A. Koucheryavy. “Energy-and latency-
aware hybrid offloading algorithm for UAVs”. In:
IEEE Access 7 (2019), pp. 37587–37600.


