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Scalable Design and Dimensioning of
Fog-Computing Infrastructure to Support

Latency-Sensitive IoT Applications
Ismael Martinez , Abdallah Jarray , and Abdelhakim Senhaji Hafid

Abstract—The fog-computing paradigm has appeared as a
geo distributed response to a growing focus on latency-sensitive
Internet-of-Things (IoT) applications and the long delay that may
be provided by cloud data centers. Although many researchers
have investigated how IoT can interact with a fog, very few have
tackled the question of how to construct a fog infrastructure for
the expected IoT traffic. This article addresses the design and
dimensioning of a fog infrastructure via a mixed-integer linear
program (MILP) to construct a physical fog network design by
mapping IoT virtual networks to dimensioned fog nodes. Due to
the exponential nature of this MILP formulation, we also propose
a column generation model with near-optimal results at a sig-
nificantly reduced design and dimensioning cost. The numerical
results show the viability of the column generation method in its
proximity to the optimal solution and in its reasonable solution
time.

Index Terms—Column generation, design and dimensioning,
fog computing, Internet of Things (IoT), mixed-integer linear
programming (MILP).

I. INTRODUCTION

AS Internet-of-Things (IoT) devices become more promi-
nent in all facets of the industry, the number of IoT

applications requiring real-time processing is also increasing.
Heart monitors and vehicular traffic status sharing are exam-
ples of IoT applications that are increasing in number and
use, and require near-immediate data transmission, process-
ing, and response by the cloud. Processing through cloud data
centers results in unacceptably high latency for IoT application
responses due to the centralized and distant nature of these data
centers. A report by Cisco emphasizes that existing cloud data
centers are not designed to meet the current volume and vari-
ety of IoT data and requests. Meanwhile, the number of IoT
devices is only expected to grow up to 50 billion by the year
2020 [1]; this means that the processing of IoT applications
outside the Cloud is crucial.
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Fig. 1. Fog-DC infrastructure to process IoT requests.

To combat high round-trip latency and increasing data vol-
ume to cloud data centers, fog computing has been proposed as
highly virtualized micro data centers on the network edge [2],
allowing the fog network to analyze and process the most time-
sensitive data. Although typically having fewer resources than
the Cloud [3], fog nodes are decentralized and geographically
distributed enabling IoT connectivity with minimal round-trip
latency. Furthermore, the fog network can process many IoT
applications that would otherwise be processed in the Cloud,
reducing the volume of data reaching the Cloud. A wide-
reaching fog network could, therefore, satisfy any IoT process
regardless of location.

The increase in IoT devices is a direct result of an acknowl-
edgment of value, proposal, and deployment of IoT applica-
tions across many domains, including healthcare [4] and smart
cities [4]–[6]. The low latency, scalability, and geodistributed
nature of fog have made it integral to the success of these IoT
applications [7]. The future growth and adoption of 5G radio
access networks further facilitate the viability and implemen-
tation of fog networks, and widen the scope of devices that
can partake and aid in IoT-fog communication [8].

IoT applications proposed to take advantage of fog include
energy management in residential domains [9], fire detection
and fire fighting [10], video streaming [11], and video surveil-
lance [12]. There have been proposals for healthcare appli-
cations using fog with existing wearable technologies [13],
as well as medical-specific wearables to provide real-time-
assisted living services in hospitals [14] or to help diagnose
heart disease [15].

Most existing contributions [13], [16]–[22] are concerned
with fog resource allocation to support the requirements of
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IoT applications; however, all these contributions assume an
existing fog-computing infrastructure. Other state-of-the-art
research in fog computing focus on the conceptual fog infras-
tructure, and fog interaction with IoT and Cloud. There has
been only one study [23] that investigated the design of a
fog infrastructure; however, the proposed design was specific
to Internet-of-Vehicle (IoV) applications. Indeed, there are no
studies on the design and dimensioning of the fog network for
the support of the general IoT paradigm. We intend to pro-
vide a scalable and efficient approach to the fog design and
dimensioning that can be feasibly implemented and deployed.

We consider a geographical region where no fog infrastruc-
ture currently exists, and where there is an expected increase
in IoT traffic. We define the design of the fog infrastructure
as the selection of fog node locations from a set of candi-
date locations, and define the dimensioning of each fog node
as determining the amount of CPU, memory, and storage
resources to be installed. Designing and dimensioning will,
therefore, yield a full blueprint necessary for the construction
of a fog infrastructure.

To the best of our knowledge, this article is the first work to
propose a design and dimensioning scheme of the general fog
infrastructure for IoT applications. Our approach is based on
the existing or predicted IoT traffic, with the goal to design a
fog infrastructure to support the processing of upcoming IoT
requests. Furthermore, our approach is extensible, allowing for
new fog nodes to be optimally added to a current infrastructure
in the event of an increase of IoT traffic.

We consider an infrastructure of the combined fog and
Cloud paradigms known as fog-DC (Fig. 1), and optimize the
design, dimensioning, and IoT-resource allocation to the fog-
DC infrastructure. To optimize the cost of the fog-DC design
and dimensioning, two approaches are presented: 1) an exact
approach using a mixed-integer linear programming (MILP)
method called fog-DC-MILP and 2) a heuristic solution using
column generation called fog-DC-CG.

This article outlines the first study of the design and dimen-
sioning of fog computing for IoT applications. Our main
contributions are as follows.

1) We perform an analysis of model considerations such as
transmission delay from IoT applications and network
congestion toward fog-DC that impact the design and
dimensioning of the fog infrastructure.

2) We propose an exact optimization approach for the
fog-DC design and dimensioning via the one-shot MILP
model (fog-DC-MILP) that minimizes the resource and
network mapping cost between a fixed IoT set and the
constructed fog infrastructure.

3) We propose a scalable heuristic column generation
approach (fog-DC-CG) to overcome the computation
complexity of fog-DC-MILP. The numerical results
compare the efficiency of these two models with stan-
dard heuristics, such as a greedy algorithm and a
matching-based model.

Devising a scalable method to constructing an optimal fog
infrastructure paves the way for the implementation of IoT-
fog-Cloud communication. Given the numerous studies into
the interaction between IoT, fog, and Cloud reviewed in the

next section, physical fog networks will allow for extended
and practical research into the efficiency of fog computing.

The remainder of this article is organized as follows.
Section II presents related work. Section III defines fog-DC.
Section IV presents the impact of IoT traffic, network con-
gestion, and routing delays on the fog-DC model. Section V
defines the MILP model. Section VI presents the column gen-
eration model. Section VII defines two benchmark heuristic
models to compare against our proposed model. Section VIII
evaluates and compares the proposed solutions. Section IX
concludes this article and presents future work.

II. RELATED WORK

Conceptual research in the fog infrastructure has studied
how fog could be set up to interact with IoT devices, and
many proposals supporting IoT applications using an existing
fog infrastructure have been brought forth. Across different
studies, we use IoT requests and applications interchangeably,
and use tasks and modules interchangeably as components of
an IoT application.

Three IoV applications use clusters of slow moving or
parked cars as the fog itself; Sookhak et al. [24] proposed
incentives for participating, such as free parking, free Wi-Fi,
or free shopping vouchers, Hou et al. [25] showed how non-
smart cars may be upgraded with hardware and/or software
in order to take part, and Zhou et al. [26] allocated vehicular
fog resources to users in an information incomplete environ-
ment using preference matching algorithms. More generally,
Chang et al. introduced the concept of the Consumer as a
Provider (CaaP), a platform to allow user devices, such as
phones and modems to act as fog nodes available for public
use [27]. With a large enough user base, the CaaP fog network
can cover vast continuous areas. Given an existing fog infras-
tructure, Souza et al. [17] proposed to virtually cluster fog
nodes for seamless data sharing within clusters, and data trans-
fers between clusters. Zhang et al. [28] proposed CFC-IoV as
an IoV application whereby roadside fog nodes handover data
between each other for moving vehicles.

Taneja and Davy [29] noted that each IoT request is in
fact composed of multiple modules, each composed of a
single sensor or an actuator. Using heuristic search meth-
ods, Xia et al. [30] assigned IoT application modules to
fog devices. The module assignments reserve resources for
the IoT application for all future requests until relinquished.
Aazam and Huh [31] developed a pricing model for module
assignments based on the probability that an IoT application
will relinquish its hold of fog resources. By clustering IoT
devices together that run the same service, and mapping those
services to fog nodes, Yousefpour et al. [32] are able to extend
the scope of the IoT devices which can use each assigned
modules.

Frameworks over a combination of IoT, fog, and Cloud lay-
ers can facilitate resource allocation deployment. FogBus [33]
is a framework where IoT requests first arrive to broker nodes
to be assessed and forwarded to fog or cloud data centers.
FogBus also separates fog nodes into computation and stor-
age devices; these extra layers may decrease provisioning
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efficiency and functionality. The Foggy [34] framework is built
using only a single fog layer. Both frameworks require extra
software installed in each fog node to achieve intercommuni-
cation of available resources and job lists.

Resource provisioning schemes aim to find an accept-
able mapping between IoT resources and fog nodes. The
objective of these schemes varies from minimizing round-trip
latency [16], [30], maximizing fog utility which inherently
minimizes Cloud utility [3], [19], or minimizing the resource
provisioning cost [13], [35]. Uniquely, Ni et al. [36] focused
on minimizing the fog credibility score, and Do et al. [11]
proposed a model that jointly maximizes fog utility and min-
imizes the generated carbon footprint. Three separate models
are proposed by Zhang et al. with independent objectives: 1) to
minimize energy and delay costs of edge network resource
allocation [37]; 2) to minimize IoT request rejection from
fog nodes [28]; and 3) to minimize the stochastic delay cost
associated with edge computing [38].

Naas et al. [16] proposed an integer programming for-
mulation and a resource provisioning heuristic based on
geographical zoning that was evaluated using the simulation
toolkit iFogSim [39]. Donasollo et al. [35] solved an integer
program using a divide and conquer approach while minimiz-
ing resource allocation cost. Intharawijitr et al. [21] proposed
the use of 5G mobile networks with fog to minimize the num-
ber of rejected IoT requests; an MILP was formulated and
solved via a greedy allocation policy. Souza et al. [17] also
formulated an MILP model over a fog-Cloud infrastructure
that was solved directly via Gurobi Optimizer for a limited
instance size. Salaht et al. [40] used a constraint programming
approach to satisfy all QoS requirements of IoT requests for
a quicker solution; however, this can result in a large variety
of provisioning costs to a user. Skarlat et al. [20] proposed
a mixed nonlinear programming model that is solved using a
genetic algorithm.

Most resource provisioning approaches use the fog along-
side the Cloud to process IoT applications the fog cannot [16],
[17], [20], while [21] establishes that IoT requests not pro-
cessed by the fog are not processed at all. The rejection of
IoT requests occurs when all fog nodes that could satisfy the
IoT latency threshold do not have enough available resources.
To avoid this rejection, either a larger fog infrastructure should
be implemented, or a network sink such as the Cloud should
be used to receive and process all IoT applications unable to
be processed by the fog infrastructure.

The core limitation of the reviewed research is the assump-
tion that a fog infrastructure exists. To the best of our knowl-
edge, there is only one work that designs a fog infrastructure
to support IoV applications [23].

Yu et al. [23] proposed a fog deployment and dimension-
ing scheme for IoV applications, whereby vehicles connect to
roadside units (RSUs), which connect to fog nodes in order to
receive and provide real-time traffic conditions on all covered
areas. Additionally, the optimal location of gateways to access
the Cloud is also found. The locations and dimensioning of
RSUs, fog and gateway devices are optimally found from a
set of candidate locations and dimensioning configurations in
an arrangement that minimizes infrastructure cost. Regarding

vehicular traffic, the model assumes a known static set of vehi-
cle resources accessing the network across different regions,
which may not be true in practice. Although having a set of
candidate locations for fog nodes is practical, the model also
assumes a finite candidate set of dimensioning configurations;
the solution to this model is thus dependent on the complete-
ness of such a set. Finding the optimal placement of RSUs
and gateways increase the complexity of the model, while the
inclusion of RSUs also restricts the application of this model
to IoV.

In this article, we propose a fog design and dimensioning
scheme to support a general heterogeneous IoT population for
a predicted set of IoT traffic. In place of using an exhaus-
tive finite set of resource dimensions from which we allocate
to each fog node, we define the dimensions of each fog
node as continuous below its maximum resource capacity.
Furthermore, by assuming any fog has network access, we
acknowledge that any fog node could access the Cloud, thus
removing the need to place gateways.

III. FOG-DC

A. IoT Traffic

We consider the total amount of expected IoT device tasks1

for a given area made up of sensors and actuators, where each
IoT request is composed of one or more of these devices. We
use these expected numbers of tasks as well as the frequency
of requests to formulate our predicted IoT traffic.

We define a set K of unique request classes,2 and use this set
to build our expected IoT request set N. Each request class k ∈
K defines a set of IoT applications with identical data trans-
mission and response format, and the number of request tasks
qk; furthermore, we assume that data uploads from requests
with class k follow a Poisson process with arrival rate λk [22].

Suppose we want our fog-DC design to be built to han-
dle the incoming traffic the majority of the time; we define
ρ ∈ [0.5, 1) to be the percentile of the IoT traffic we wish to
cover. For each IoT request class k ∈ K with arrival rate λk,
we define the ρ-percentile as

xρk = min
{
xk ∈ Z

+ : P(xk; λk) ≥ ρ
}
, k ∈ K (1)

where P(x; λ) is the cumulative distribution function of the
Poisson distribution with parameter λ. Let km represent the mth
request of class k within a larger set. We define the ρ-percentile
set of IoT requests as

Nρ =
⋃

k∈K

xρk⋃

m=1

km (2)

where
⋃

defines the union of sets. By the construction of Nρ
in (2), we observe a mapping between Nρ and K such that
for each request n ∈ Nρ , there exists a class k ∈ K associated
with n. We define this mapping as MK : Nρ �→ K. If MK(n) = k,

1These estimates may come from estimations of the planned manufacturing
and business expansion of the given area.

2Multiple requests executed from the same set of devices, with the same
transmitted data format and expected response format at different times are
considered to follow the same unique request class.
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Fig. 2. Mapping of an IoT request virtual network In = (Tn,En) to fog-DC
infrastructure G = (F, L).

then the number of tasks in request n is qk. Moving forwards,
for ρ-percentile of expected IoT traffic, we define N = Nρ
to be the set of IoT requests. Since P(x; λ) is monotonically
increasing for fixed λ, larger values of ρ yield a larger set N.

B. IoT Virtual Network

Each of the IoT requests is divisible into a set of
interdependent atomic tasks modeled as a weighted directed
virtual network graph, represented by a task dependency graph
(TDG) In = (Tn,En) (Fig. 2), for request n ∈ N; Tn denotes
the set of tasks in request n, and En denotes the set of directed
virtual networking links between tasks.

For a request n ∈ N, each task t ∈ Tn has a set of VM Cloud
computing requirements: 1) CPU capacity pCPUt ; 2) memory
processing requirement pMEMt ; 3) storage requirement pSTRt ; and
4) processing order ot with respect to any other t′ ∈ Tn. For
simplicitly, we define the set R = {CPU,MEM,STR} to be the
set of VM resource requirements. This processing order ot is
used for the construction of the IoT TDG In.

C. Fog-DC Physical Infrastructure

The fog-DC physical infrastructure is represented by a
directed graph G = (W,L) (Fig. 2), where W = F ∪ C is
the set of potential fog node locations F and available Cloud
Data Centre sites C in the vicinity of the designed infras-
tructure, and L is the set of wired/wireless bidirectional links
connecting fog-DC nodes.

Each fog-DC node w ∈ W has a maximum available
resource limit of Sr

w, r ∈ R. Between any two fog-DC nodes
w,w′ ∈ W, the link l(w,w′) ∈ L has a maximum bandwidth
capacity of B(w,w′) > 0.

The set of fog-DC nodes W = F ∪ C contains both fog
node candidates and fixed Cloud nodes. This leverages the low-
latency benefits of fog nodes on the network edge, and the large
memory and storage capabilities of the Cloud. The result is
a designed and dimensioned architecture that can satisfy low-
latency responses from IoT with fog, and pass long-term storage
and latency insensitive application processing to the Cloud.

Altogether, we have |N| virtual networks—one for each IoT
request and one physical network of fog nodes; all descriptions
of parameters associated with these networks are summarized
in Tables I and II. For each IoT virtual network In, n ∈ N, we
want to establish a network mapping to the fog-DC infrastruc-
ture G. A feasible mapping of all IoT tasks to fog-DC nodes
must adhere to the resource and bandwidth capacities of the
fog-DC infrastructure.

The mapping of each IoT request In (Fig. 2) can be divided
into hosting and network mapping. Each IoT hosting node t ∈ Tn

belonging to an IoT request n ∈ N is mapped to a distinguished
fog-DC node w ∈ W by mapping MW : Tn �→ W.

We define the set of all possible paths between any two
nodes in W as �, and the set of all possible paths between
two specific nodes w,w′ ∈ W as �(w,w′). Each virtual IoT link
e = (t, t′), e ∈ En belonging to an IoT request n ∈ N is mapped
to a fog-DC path π ∈ �(w,w′) ⊆ � via ME : En �→ �(w,w′),
where MW(t) = w and MW(t′) = w′. Note that if w = w′, then
�(w,w′) = ∅ since no path is needed.

IV. MODEL CONSIDERATIONS

A. Reachable Servers

The large selling point of a fog infrastructure closer to an
IoT device is reduced latency which benefits applications need-
ing real time or near real-time responses. Consider the IoT
device from which a task t ∈ Tn, n ∈ N is executed; for sim-
plicity, we refer to this device as IoT device t. Suppose IoT
device t has a range3 γt, and a distance dt,w between an IoT
device t and a fog node f ∈ F. If dt,f ≤ γt, we consider this fog
node reachable from t, and if dt,f > γt, then f can be accessed
by t by one of many available access points a within the task’s
radius of communication. Similarly, either a fog node f or an
access point a can act as a gateway to reach any cloud data
centers. This communication is visually represented in Fig. 3.

B. Network Congestion

In order to correctly model the latency given to IoT-fog
mapping, we must consider the effect IoT traffic has on phys-
ical link congestion. For a request n ∈ N such that MK(n) = k,
let {Xn(τ ), τ ≥ 0} be the volume of transmitted IoT data
by time τ following a Poisson process with rate λk per unit
time, i.e., E[Xn] = λk ∀n ∈ N,MK(n) = k. The total rate of
data entering fog-DC is the sum of these individual request
amounts; therefore, the overall arrival rate is

∑

n∈N

λMK(n) = λρ. (3)

3A survey on IoT found the range of most devices were from 10 to 100 m,
depending on the communication standard and technology used [41].
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Fig. 3. Each task can directly communicate with any fog node within its
range of communication γ . Fogs can also be accessed via an Internet access
point at a greater latency cost. Every fog node and access point can act as a
gateway to Cloud devices.

Fig. 4. Fog-DC infrastructure divided into IoT, fog, and Cloud to illustrate
how congestion may occur. Shown is the lifecycle of a single request with
tasks t1 and t2; a response to t1 is required from fog f5, and a response to
t2 is required from t3. Once processed, data are also propagated to the Cloud
for long-term storage.

By the construction of N in (2), an increase in ρ to ρ′
will yield an increased arrival rate λ′MK(n)

∀n ∈ N, hence an
increased overall arrival rate λρ′ .

Within the fog, we define the outermost nodes to be the
nodes that fall within the radius of communication γt of at
least one IoT device t; these are also called the edge nodes.
We define the innermost nodes to be the fog nodes that link
directly to a Cloud Data centre. All nodes in between are
referred to as core fog nodes.

Regardless of where data from task t is processed, we
assume all data reach the Cloud at some point either for pro-
cessing or long-term storage. In Fig. 4, we have divided our
system into three layers—IoT, fog, and Cloud. The amount
of data that enters the fog follows a Poisson distribution with
rate λρ and expects a response for each data point; we assume
the amount of data that eventually enters the Cloud is equiv-
alent. In other words, for every data point transmitted by IoT
device t, the data’s lifecycle includes being processed by a
node either in the Cloud or the fog network with a response

being returned, and long-term storage being propagated to the
Cloud.

Since we assume all data must pass through the Cloud, we
recognize substantial link congestion entering the Cloud; how-
ever, having some data processing occur in the fog results in
reduced link congestion returning from the Cloud. Similarly,
there may be higher link congestion as we move toward the
innermost nodes, but the amount of link congestion from pro-
cessing responses is reduced as we process more tasks in the
outermost nodes.

Congestion on a single link can be modelled as an M/M/1
queue, where requests are processed and released at an expo-
nentially distributed rate μw by w ∈ W. We define pw to be the
probability that a fog-DC node w ∈ W receives the executed
IoT request such that

∑
w∈W pw = 1; this probability is based

on available resources of w and distance from the IoT devices.
We also define the expected number of IoT requests received
by w as pwλρ . Using the IoT data arrival and service rates, as
well as Little’s law [42], we determine the average wait time
to be processed by w ∈ W, denoted η̄w to be

η̄w;ρ = pwλρ

μw
(
μw − pwλρ

) . (4)

For a fixed uw and pw, η̄w is monotonically increasing with
λρ > 0. By (2) and (3), λρ is monotonically increasing with
the percentile ρ; therefore, an increased percentile ρ leads to
a larger average wait time.

Let Lw = {l ∈ L | l = (w0,w) ∈ L} ∪ {(t,w) | MW(t) = w}
be the set of links feeding into w, and let Hw;ρ denote the
random variable of waiting time before being processed by
node w ∈ W for a network accepting the ρ-percentile of IoT
traffic. We know E[Hw;ρ] = η̄w;ρ by definition. By [42], the
cumulative distribution Gw;ρ(x) of Hw;ρ is

Gw;ρ(x) = P
[
Hw;ρ ≤ x

] = 1− pwλρ

μw
e−(μw−pwλρ)t. (5)

We denote this wait time Hw;ρ to represent our congestion
factor for a link (w0,w), w ∈ Lw, and ρ-percentile IoT traf-
fic. For any response from w to t, we define the service rate
μt = 0; therefore, we define Ht;ρ = 0, t ∈ Tn, n ∈ N.

Let πW be the set of all nodes w ∈ W ∪ Tn, n ∈ N in
a path π \ {w0} π ∈ �(w0,w). To estimate congestion over
a path from w0 to w′, Algorithm 1 simulates the maximum
waiting time over all paths π ∈ �(w0,w) which gives a worst
case congestion per simulation, and calculate the mean and
variance. By central limit theorem, [43], we can approximate
the congestion factor over any path by a normal distribution
for a large number of m simulations.

Note that, a path�(w0,w) has at most two elements in Tn, n ∈
N at the beginning and/or end of the sequence. Let G(w0,w);ρ(x)
represent the cumulative distribution function of H(w0,w);ρ .

Once an IoT request is processed by a fog node and a
response is returned to the IoT device, the request data are
also sent to the Cloud for long-term storage; however, since
no further processing of the request is needed, the link con-
gestion associated with this data instance is negligible. From
this, we infer that congestion toward the Cloud is alleviated
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Algorithm 1: Simulate Congestion Over a Path w0 to w

Result: Estimated congestion distribution H(w0,w);ρ for
ρ-percentile IoT traffic.

Initialize ρ ∈ [0.5, 1);
for i = 1 to m do

for w ∈ W ∪ Tn, n ∈ N do
ηw ← Hw;ρ // Sample

end
η̃(w0,w),i ← max{ ∑

w∈πW

ηw;ρ : π ∈ �(w0,w)}
end
η̄(w0,w)← 1

n

∑n
i=1 η̃(w0,w),i

σ̂ 2
w0,w ← 1

n−1

∑n
i=1(η̃(w0,w),i − η̄(w0,w))

2

H(w0,w);ρ ∼ N (η̄(w0,w), σ̂
2
w0,w) .

as the probability that a request is processed within the fog
network instead of the Cloud increases.

We make the simplistic assumption that a fog-DC node w
can only process one IoT request at a time, which is not true
in practice. Furthermore, our current analysis of network con-
gestion is based on placing a fog node f in every candidate
location in F; in reality, only a handful of these locations will
be used, raising the congestion within the fog network. To
determine a more accurate estimate of how much congestion
is present surrounding different nodes in the network, a simula-
tion is necessary provided a network architecture and expected
IoT traffic; a simulation framework, such as iFogSim [39],
could be used, which we propose to do in future work.

C. Transmission Delay

Each task t has a transmission file size s+t and a bandwidth
requirement4 bt that remain consistent throughout transmis-
sion from t to t′ where ot = ot′ − 1, t, t′ ∈ Tn, n ∈ N.
Wang et al. [45] found a positive correlation between the
number of hops and the latency of Internet communication
between two nodes under 1000 km in distance; therefore, we
model transmission delay using hops.

For fog node f ∈ F, let G−1
f ;ρ(·) denote the inverse cumu-

lative distribution function of Hf ;ρ , and G−1
(t,w);ρ(·) denote the

inverse cumulative distribution function of H(t,w);ρ . For U ∼
Uniform(0, 1), we can represent a random sample of conges-
tion over a path as Hf ;ρ = G−1

f ;ρ(U) and H(t,w);ρ = G−1
(t,w);ρ(U).

This congestion can also be interpreted as queuing delay or
wait time of a package over the specified link. Let ω ∈ (0, 1)
represents the percentile of estimated congestion for a ran-
dom path; higher values of ω yield a worst case estimate of
transmission delay.

For a fog-DC node w ∈ W, the transmission delay is depen-
dent on the transmission bandwidth, the data file size, an
upper bound on the number of hops from t to w denoted
ht,w, and any network congestion found along the way. Based

4The most common IoT transmission standard is IEEE 802.15.4 [41], which
for a common frequency of 2.4 GHz transmits at 250 kb/s, with this rate
decreasing with lower transmit frequencies [44], giving us an idea of the
range of transmission bandwidth bt .

on these factors, we devise an approximation to the com-
munication delay between a task t and a fog-DC node w
denotes νρ,ωt,w .

For a fog node f ∈ F such that MW(t) = f and
dt,f ≤ γt, and ρ-percentile IoT traffic, we get the transmission
latency as

ν
ρ,ω
t,f =

s+t
bt
+ G−1

f ;ρ(ω). (6)

If a fog-DC node w ∈ W is not within the communication
range γt of a task t, the expected transmission delay becomes

ν
ρ,ω
t,w = ht,w · s+t

bt
+ G−1

(t,w);ρ(ω) (7)

where we only consider one hop of congestion entering the
fog-DC infrastructure.

We assume the bandwidth of a task remains constant
throughout its transmission and response, a response file size
s−t after processing, and a ω-percentile of congestion on any
path. Then, for a task mapping MW(t) = w, we have

ν
ρ,ω
t,w = ht,w · s+t

bt
+ G−1

(t,w);ρ(ω)

ν
ρ,ω
w,t = hw,t · s−t

bt
+ G−1

(w,t);ρ(ω) (8)

for ht,w = hw,t.

D. Physical Network Delay

Data transmitted by t to w are a package of size s+t with
response package size s−t . For a pair of ordered and successive
tasks t, t′ and task mappings MW(t) = w and MW(t′) = w′,
the network delay is dependent on the task bandwidth bt, the
response file size s−t , the ρ-percentile of IoT traffic, and the
ω-percentile of resulting congestion. We define the network
delay from a task t as

φ
ρ,ω
t (w,w′) = hw,w′ ·

(
s−t
bt
+ G−1

(w,w′);ρ(ω)
)

(9)

where hw,w′ is an upper bound on the number of hops between
w and w′, and ω ∈ (0, 1) is the percentile of congestion
expected on a random path π ∈ �(w,w′).

For a single request {n ∈ N | MK(n) = k}, we order the
request tasks t1, . . . , tqk , each with differing file sizes and
bandwidth requirements to the next task. For MW(ti) = wi,
the total physical network delay for request n ∈ N is

φρ,ωn

(
w1,wqk

) =
qk−1∑

i=1

φ
ρ,ω
ti (wi,wi+1). (10)

When modeling a large network, these approximate cal-
culations of physical network delay between each task may
become too large. We invoke a worst case estimate of physical
network delay to our model to provide model scalability.

Consider a pair of fog-DC nodes w,w′ ∈ W, and let
π ∈ �(w,w′) be the set of all possible paths between these two
nodes. If we assume data can take any path between these
nodes, we define π∗ to be the critical path (longest path), and
hπ∗ to be the total number of hops taken to traverse this path.
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Fig. 5. End-to-end delay for a sequence of tasks is the sum of transmission
times, processing times, and routing time.

When we are considering the routing time from the first task
to the last task, we assume the worst case scenario regardless
of whether there exists shorter routing through the other tasks.
We also define

rn = max
i=1,...,qk

{
s−ti
bti

}

(11)

as the worst case transmission rate. We then define

φ̃ρ,ωn

(
w1,wqk

) = hπ∗
(

rn + G−1(
w1,wqk

);ρ(ω)
)

(12)

as the worst case transmission rate with congestion percentile
ω ∈ (0, 1).

E. Total Delay

For a task t and mapping MW(t) = w, we incur the
transmission delays νρ,ωt,w to transmit and ν

ρ,ω
w,t to receive a

response (8).
Once a task is transmitted to a fog node, it must be pro-

cessed before moving on. Each task t has a set computing time
ζt which is specific to the set of resources needed for that task
{pr

t | r ∈ R}; as a result, it does not depend on the fog node
on which it is executed.

For a mapping MK(n) = k, let the tasks of the request n be
ordered t1, t2, . . . , tqk such that t < t′ if ot < ot′ . For a task
mapping MW(ti) = wi for each ti ∈ Tn, the end-to-end delay
with ρ-percentile IoT traffic and ω-percentile congestion can
be defined as

ν
ρ,ω
t1,w1
+ φ̃ρ,ωn

(
w1,wqk

)+ νρ,ωwqk ,tqk
+

qk∑

i=1

ζti . (13)

Fig. 5 shows that each task is uploading data to their paired
fog-DC node, and may receive a response. In order for a
fog-DC node w to process its paired task t, it must both
receive the task data from t as well as the processed data
from the preceding fog node. We assume all tasks t ∈ Tn

for a request n ∈ N are transmitted synchronously, so there
exists no delay between the start of each task. To this end, we
make the assumption that for a task mapping pair MW(ti) = wi

and MW(tj) = wj, oti < otj with ρ-percentile IoT traffic and
ω-percentile congestion, we have

ν
ρ,ω
ti,wi
+ ζti + φ̃ρ,ωn

(
wi,wj

) ≥ νρ,ωtj,wj
. (14)

This ensures that wj receives the task information from tj prior
to any data required from wi, allowing wj to begin on any
processing required from the previous tasks immediately upon
arrival. All descriptions of variables associated with model
considerations are summarized in Table III.

Though here we assume a normal distribution of con-
gestion and a worst case routing delay, in practice, we
would use historical data on incoming IoT data to properly
model a probability distribution describing routing delay pat-
terns. In the event of no current IoT devices set up in the
fog designed area, we elect to use historical data of sim-
ilar IoT devices from surrounding districts. This is left for
future work.

V. MILP MODEL

DESIGN AND DIMENSIONING APPROACH

Design and dimensioning are one of the most impor-
tant aspects of fog-DC management, since they are directly
related to the cost and the QoS requirements of IoT com-
puting services. Efficient design and dimensioning will have
a positive impact on fog-DC service provider’s profitability.
Resource allocation to the incoming IoT requests could be
performed in a batchwise fashion. The size of the batch can
be modified depending on the considered topology and IoT
traffic so as to ensure real-time response to the requests. The
fog-DC design and dimensioning problem is in: 1) select-
ing the optimal location and dimensioning of fog-DC sites
and 2) minimizing the cost of resources (e.g., computing and
communication) while satisfying QoS requirements of IoT
requests. These requirements include: 1) Bandwidth: transmis-
sion capacity between tasks of the IoT request; 2) Latency: the
time it takes to process the request and receive the response;
3) Computing: computing capacity to process the tasks of the
IoT request; 4) storage and memory capacity requirements
of each IoT task; and 5) processing order of the tasks that
composes the IoT request.

To evaluate the merits of the proposed fog-DC design,
dimensioning and resource allocation approach, we propose
the following MILP-based mathematical formulation we call
fog-DC-MILP. A virtual link e ∈ En is defined by the pair
e = (t, t′) such that t, t′ ∈ Tn, n ∈ N, with ot = ot′ −1 meaning
t′ immediately follows t in the order of tasks. Each link e ∈ En

has a data transfer capacity requirement bt between a pair of
tasks t and t′. Furthermore, we invoke a partial latency require-
ment τt that the completion of all tasks up to and including t
must satisfy.

Recall, for a request In = (Tn,En), we define the task
mapping as MW : Tn �→ W and the network mapping as
ME : En �→ �. When an IoT request arrives, the fog-DC
provider has to determine whether it is to accept or reject.
This decision is largely based on the QoS requirements of
the IoT request, the availability of fog-DC resources, and the
economic cost of accepting the request. The total cost of a
request In is then represented as the combined cost of the task
mapping, and the virtual link mapping as follows:

COST[In] = COST[MW(Tn),ME(En)]. (15)
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TABLE I
FOG INFRASTRUCTURE NETWORK G = (F, L)

A. Decision Variables

1) Design and Dimensioning Variables: We recall that r is
the type of fog-computing resource that takes values in the set
R = {CPU,MEM, STR}. We define the float decision variable
zr

f to measure the amount of computing resources of type r
required to be set up in fog-DC node f ∈ F. An upper bound
Sr

f will be set up to limit the available fog-computing resources
of type r that can be set up in fog-DC node f .

We define a binary decision variable that denotes whether
fog node f ∈ F requires resources r ∈ R to be set up; this is
precisely whether zr

f is greater than zero

yr
f =

{
1, if zr

f > 0
0, otherwise.

(16)

The variables zr
c and yr

c, c ∈ C, respectively, represent the
amount of resource r available in c, and whether this amount
is strictly positive; these values are fixed as we cannot alter
the resources provided in the Cloud.

2) IoT Request Mapping Variables: To decide on the accep-
tance of an IoT request In, we need to define the following

TABLE II
IOT VIRTUAL NETWORK In = (Tn,En)

decision variables:

an =
⎧
⎨

⎩

1, if an IoT request n ∈ N is accepted to
be processed by fog-DC

0, otherwise
(17)

xt
w =

⎧
⎨

⎩

1, if virtual node t ∈ Tn, n ∈ N is assigned
to fog-DC node w; MW(t) = w

0, otherwise
(18)

xe
π =

⎧
⎨

⎩

1, if virtual link e ∈ En, n ∈ N is assigned
to physical path π ∈ �; ME(e) = π

0, otherwise.
(19)

The description and domain of fog-DC-MILP decision
variables are summarized in Table IV.

B. Objective Function

The objective of fog-DC-MILP is to minimize the total cost
of fog design and dimensioning as defined by the IoT task and
link mappings [15] as follows:

ZMILP = min
∑

f∈F

∑

r∈R

(
Dr

f · yr
f + ur

f · zr
f

)

+
∑

n∈N

∑

t∈Tn

∑

w∈W

∑

r∈R

cr
w pr

t xt
w

+
∑

n∈N

∑

e∈En

∑

(w,w′)∈W2

∑

π∈�(w,w′)

∑

l∈π
xe
π cl bt (20)
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TABLE III
MODEL CONSIDERATIONS

where Dr
f and ur

f are the capital cost (Capex) and the unit
cost, respectively, to set up computing resource of type r ∈ R
in fog-DC node f ∈ F, and W2 is the set of pairs W ×W.

We have divided the objective function (20) into three terms
to express the optimization of different factors in fog-DC-MILP:
1) the fixed and unit cost of resources placed in each fog node
f ∈ F which represents the design and dimensioning cost; 2) the
cost of allocating resource r ∈ R for task t ∈ Tn to fog-DC

nodes w ∈ W; and 3) the networking cost of assigning path
π ∈ �(w,w′) to a virtual link e = (t, t′) ∈ En, n ∈ N.

1) IoT Resource Allocation Constraints: For the following
constraints, we define Qt as the set of possible fog-DC sites
w ∈ W that can serve a task of an IoT request t ∈ Tn, and
Qe as the set of possible paths π ∈ � that can be assigned to
e ∈ En. For a link l ∈ L, we define �l to be the set of paths
that contain the link l, and �l

(w,w′) to be the set of paths from
w to w′ that contain link l

∑

n∈N

an ≥ |N| · A (21)

∑

w∈W

xt
w = an, t ∈ Tn; n ∈ N (22)

xt
w = 0; ∀w ∈ W \ Qt ∀ t ∈ Tn, n ∈ N (23)

xe
π = 0; ∀π ∈ � \ Qe ∀ e ∈ En, n ∈ N (24)

xt
w · xt′

w′ =
∑

π∈�(w,w′)
xe
π ; (w,w′) ∈ W2

e = (t, t′) ∈ En, n ∈ N (25)

�
ti,ρ,ω
(w1,wi)

≤ τti; i ∈ {1, . . . , |Tn|}, ti ∈ Tn

n ∈ N, ω ∈ (0, 1) (26)∑

n∈N

∑

e∈En
e=(t,t′)

∑

(w,w′)∈W2

∑

π∈�l
(w,w′)

bt · xe
π ≤ Bl, l ∈ L (27)

∑

n∈N

∑

t∈Tn

xt
w · pr

t ≤ zr
w, r ∈ R; w ∈ W. (28)

Equation (21) expresses the acceptance ratio of the proposed
fog-DC design where parameter A ∈ [0, 1]. Equations (22)
and (23) express the selection of fog-DC nodes to process
IoT request tasks. Equations (24) and (25) ensure that only
one valid embedding path is assigned for each virtual link.
In (26), we define the partial delay � between the first task
t1 and the ith task ti with transmission delay and congestion
percentile ω ∈ (0, 1) to be

�
ti,ρ,ω
(w1,wi)

= νρ,ωt1,w1
· xt1

w1
+ φ̃ρ,ω(w1,wi)

· xt1
w1
· xti

wi
+ νρ,ωwi,ti · xti

wi

+
i∑

m=1

ζtm , t ∈ Tn; n ∈ N; ω ∈ (0, 1) (29)

which expresses the QoS requirements for the mapping of
virtual links to meet the latency threshold of tasks. Recall, ρ
is the percentile of IoT traffic that defines the set N and the
congestion distribution, therefore it is set prior to modelization.
We note that the term φ

ρ,ω

(w1,wi)
·xt1

w1 ·xti
wi in (29) is quadratic, and

we use the same linearization technique as in Section VI-C4.
Equations (27) and (28) express, respectively, the bandwidth
and resource (CPU, memory, and storage) capacity of links
and nodes.

2) Fog-DC Design and Dimensioning Constraints:

zr
f ≤ Sr

f · yr
f , f ∈ F; r ∈ R (30)

∑

f∈F

yr
f ≤ Yr

MAX, r ∈ R. (31)

Equation (30) expresses that no resources r can be set up in
a given fog node f if it is not selected as an optimal location to
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TABLE IV
FOG-DC-MILP DECISION VARIABLES

set up a fog node, and must not exceed the maximum resource
amount for that fog location denoted by Sr

f . Equation (31)
expresses the maximum number of fog-DC locations Yr

MAX

that can receive a resource r.

C. Extensibility of fog-DC Formulation

Suppose a fog infrastructure already exists and we wish to
extend it to support higher IoT traffic. We define the current set
of dimensioned fog nodes as F′. Into the current formulation,
we integrate yr

f = 1 fixed and zr
f ∈ [z̄r

f , Sr
f ] for f ∈ F′, where z̄r

f
is the current dimensioning and Sr

f is the maximum resource
capacity of zr

f . Proceeding normally beyond integration will
yield the appropriate extended formulation.

D. Drawbacks of fog-DC-MILP Formulation

This formulation allows for both node and link mappings to
be performed in one shot; however, since the fog-DC-MILP
formulation is based on an integer linear programming model,
it suffers from scalability issues. With a large number of IoT
requests, the mathematical model takes on a large number
of variables and constraints. This is potentially a significant
drawback to solve the MILP model optimally in a reasonable
computation time.

1) For a given IoT request In = (Tn,En), a virtual link
e ∈ En can be assigned to up to

|W| × |W| × |�| (32)

possible embedding path solutions.
2) Thus, for |E| = maxn∈N |En| being the maximal size of

virtual links, |E| virtual links over N IoT requests can
be assigned to up to

(|E| × |W| × |W| × |�|)|N| (33)

possible mapping solutions, which can be approximated
by the exponential number O(g|N|).

Node and link embedding is known to be an NP-hard
problem, equivalent to a multiway separator problem [46]. To
address this complexity, we propose a decomposition approach
based on the column generation technique [47]. This implies
a pricing of nonbasic variables to generate new columns or to
prove LP optimality at a node of the branch-and-bound tree.

VI. COLUMN GENERATION FORMULATION FOR AN IOT
SERVICE RESOURCE ALLOCATION (FOG-DC-CG)

To avoid the scalability issue identified in the MILP formu-
lation, we propose to use the column generation formulation
(Fog-DC-CG) to allocate fog-DC resources to service IoT
requests. We reformulate the resource allocation problem in
terms of independent fog-DC configurations (IFCs). Each IFC
solves the resource allocation problem of a single IoT request.
We denote by � the set of all possible IFCs. Accordingly,
the resource allocation problem can then be formulated with
respect to the decision variables λθ such that

λθ =
⎧
⎨

⎩

1, if IFC θ ∈ � is used in the
Fog mapping solution

0, otherwise.
(34)

In this new formulation, the mapping problem is to choose a
maximum of |N| IFCs, as each IFC is serving one IoT request.
The resulting configuration corresponds to what is known as
the master problem in a column generation approach, while
each configuration IFC corresponds to what is known as the
pricing problem. Here, we are making the assumption that
parameter A = 1, i.e., the fog-DC design should accept all
IoT requests n ∈ N.

An IFC configuration θ ∈ � is defined by the vector (aθn)n∈N

such that

aθn =
{

1, if IFC θ services the IoT request In

0, otherwise
(35)

∑

n∈N

an
θ = 1, θ ∈ �. (36)

We denote by COSTθ the cost of configuration θ , which cor-
responds to the sum of costs of the resources used (hosting
and networking) for the IoT request granted by IFC θ .

The use of column generation formulation divides the origi-
nal problem into a master problem and a pricing problem with
two separate objectives.

1) Master Problem: The problem of finding the best sub-
set among the already generated IFCs that minimize the
dimensioning costs.

2) Pricing Problem: The problem of generating an addi-
tional column (IFC) to the constraint matrix of the
master problem.

A. Master Problem

The master problem, denoted by fog-CG-M, is defined as
follows.
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1) Objective Function:

min
∑

θ∈�
COSTθ λθ +

∑

f∈F

∑

r∈R

Dr
f · yr

f + ur
f · zr

f (37)

where

COSTθ =
∑

l∈L

BB
θ (l) · cl +

∑

w∈W

Pr
θ (w) · cr

w. (38)

Here, cr
w and cl are the same unit resource costs as in

Section V-B. BB
θ (l) is the bandwidth used on a networking

link l by IFC θ and Bl is the maximum available bandwidth
on networking link l. We also denote Pr

θ (w) to be the amount
of resource r in fog-DC location w used by IFC θ .

2) IoT Resource Allocation Constraints:
∑

θ∈�
λθ · Pr

θ (w) ≤ zr
w, w ∈ W; r ∈ R

(
αr

w

)
(39)

∑

θ∈�
λθ · BB

θ (l) ≤ Bl, l ∈ L (βl) (40)

∑

θ∈�
λθ�

L,ρ,ω
θ (t) ≤ τt, t ∈ Tn; n ∈ N (γt) (41)

∑

θ∈�
λθ ≤ |N|, (μ0) (42)

∑

θ∈�
λθ · an

θ ≥ 1, n ∈ N (ψn) (43)

Equation (39) expresses the available capacity of resource
r in fog-DC node w. Equation (40) expresses the band-
width capacity of networking link l. Equation (41) expresses
the latency threshold that must be satisfied for each task t
for some transmission delay, ρ-percentile of IoT traffic, and
ω-percentile of congestion. Equation (42) guarantees the con-
vexity of the ILP model. Equation (43) grants the satisfaction
of the maximum number of IoT requests.

3) Fog-DC Design and Dimensioning Constraints:

zr
f ≤ Sr

f · yr
f , f ∈ F; r ∈ R (44)

∑

f∈F

yr
f ≤ Yr

MAX, r ∈ R. (45)

Equations (44) and (45) are the same constraints as in the
Fog-DC-MILP formulation.

4) Linear Relaxation of fog-CG-M: In order to obtain the
dual variables associated with (39)–(43), we formulate a lin-
ear relaxation of fog-CG-M. This linear program formulation,
denoted Fog-CG-M-LP only differs from Fog-CG-M in the
removal of variables z and y. For c ∈ C, let Sr

c be the total
amount of resource r in c

min Fog-CG-M-LP =
∑

θ∈�
COSTθλθ

Subject to
∑

θ∈�
λθ · Pr

θ (w) ≤ Sr
w; w ∈ W; r ∈ R

(40)−(43)

λθ ∈ [0, 1]. (46)

B. Pricing Problem

As mentioned previously, the pricing problem corresponds
to the generation of an additional configuration (IFC), i.e.,

an additional column for the constraint matrix of the cur-
rent master problem. Let αr

w, βl, γt, μ0, and ψn be the dual
variables associated with constraints (39)–(43), respectively,
and obtained from solving the Fog-CG-M-Dual. Then, the
reduced cost of variable λθ for an IFC θ can be written

COSTθ = COSTθ −
∑

n∈N

ψn · an
θ +

∑

r∈R

∑

w∈W

αr
w · Pr

θ (w)

+
∑

l∈L

βl · BB
θ (l)+

∑

t∈Tn

∑

n∈N

γt ·�L,ρ,ω
θ (t)+ μ0

(47)

where COSTθ is defined by (38).
We now express (47) in terms of the decision variables of

the pricing problem; in order to alleviate notation, we omit θ
from the index of the decision variables as follows. Those
variables are implicitly defined within the context of θ as
follows:

an =
{

1, if an IoT request In n ∈ N is serviced
0, otherwise

(48)

xt
w =

⎧
⎨

⎩

1, if virtual node t ∈ Tn, n ∈ N is assigned
to fog-DC node w; MW(t) = w

0, otherwise
(49)

xe
π =

⎧
⎨

⎩

1, if virtual link e ∈ En, n ∈ N is assigned
to physical path π ; ME(e) = π

0, otherwise.
(50)

Next, we derive the relations between the pricing variables
and the coefficients of the master problem for each configura-
tion θ ∈ �. For each n ∈ N, an

θ = an. For each fog-DC node
w ∈ W and resource r ∈ R, we have

Pr
θ (w) =

∑

n∈N

∑

t∈Tn

pr
t · xt

w. (51)

For each link l ∈ L, we have

BB
θ (l) =

∑

e=(t,t′)∈En

∑

n∈N

∑

(w,w′)∈W2

∑

π∈�l
(w,w′)

bt · xπe . (52)

For each task t ∈ Tn, n ∈ N, we have

�
L,ρ,ω
θ (t) =

∑

t∈Tn

∑

n∈N

∑

(w0,w)∈W2

(
ν
ρ,ω
t1,w1
· xt1

w1
+ νρ,ωt,w · xt

w

)

+
∑

t∈Tn

∑

n∈N

∑

(w0,w)∈W2

xt
wxt′

w′ · φ̃ρ,ω(w1,w)

+
∑

t∈Tn

∑

n∈N

t∑

i=t1

ζi (53)

where νρ,ω, φ̃ρ,ω, and ζ are, respectively, the transmission,
routing, and processing costs from (13), and t1 represents the
first task of a request.

The substitution of the pricing decision variables into the
reduced cost in (47) gives us the pricing problem denoted as
Fog-CG-P

min
∑

e=(t,t′)∈En

∑

n∈N

∑

(w,w′)∈W2

∑

π∈�l
(w,w′)

bt · xπe · (cl + βl)

+
∑

n∈N

∑

t∈Tn

pr
t · xt

w ·
(
cr

w + αr
w

)
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+
∑

t∈Tn

∑

n∈N

∑

(w1,w)∈W2

(
ν
ρ,ω
t1,w1
· xt1

w1
+ νρ,ωt,w · xt

w

)

+
∑

t∈Tn

∑

n∈N

∑

(w0,w)∈W2

xt
wxt′

w′ · φρ,ω(w0,w)

+
∑

t∈Tn

∑

n∈N

t∑

i=t0

ζi + μ0 −
∑

n∈N

ψn · an. (54)

The optimal solution of Fog-CG-P defines the additional
configuration to be added via (48)–(50).

C. Pricing Constraints

1) Mapping of IoT Service Tasks:
1) Mapping is done for all tasks of an accepted IoT

request In

an ≤
∑

(w,w′)∈W2

xt
w xt′

w′ , e = (t, t′) ∈ En; n ∈ N. (55)

2) A task t of an accepted request In is assigned to only
one fog-DC location node w

∑

w∈W

xt
w ≤ an, t ∈ Tn; n ∈ N. (56)

2) Mapping of the IoT Request Link:
∑

(w,w′)∈W2

∑

π∈�e
(w,w′)

xe
π ≤ an, e ∈ En; n ∈ N. (57)

xt
wxt′

w′ ≤
∑

π∈�(w,w′)
xe
π , (w,w′) ∈ W2

e = (t, t′) ∈ En, n ∈ N. (58)

Equation (57) expresses that if request In is accepted then at
least one networking path π is assigned to grant data transfer
over virtual link e, and likewise (58) for a path assignment to
fog-DC site locations w and w′.

3) Latency Relaxation: To push the column generation for-
mulation toward generating viable columns, we add a relaxed
latency constraint. We define a variable �̃L,ρ,ω

w (t) such that

�̃L,ρ,ω
w (t) = νρ,ωt,w xt

w +
t∑

i=t1

ζi. (59)

From (53), we infer that �̃L,ρ,ω
w (t) ≤ �L,ρ,ω

w (t); therefore, we
add the constraint

∑

w∈W

�̃L,ρ,ω
w (t) ≤ τt, t ∈ Tn; n ∈ N. (60)

4) Linearization of Quadratic Terms: We note that objec-
tive term (53) and constraints (29), (55), and (58) include the
quadratic terms xt

wxt′
w′ . Since this quadratic term is the product

of two binary variables, it can be linearized easily by replac-
ing the quadratic term by a new binary variable yt,t′

w,w′ , where

yt,t′
w,w′ = xt

wxt′
w′ and by adding the constraints

yt,t′
w,w′ ≥ xt

w

yt,t′
w,w′ ≥ xt′

w′ (61)

which ensure that yt,t′
w,w′ will be zero if either xt

w or xt′
w′ are

zero. Adding the inequality

yt,t′
w,w′ ≥ xt′

w′ + xt
w − 1 (62)

makes sure that yt,t′
w,w′ will take value 1 if both binary variables

xt
w or xt′

w′ are set to 1. We note that such a linearization tech-
nique is done implicitly in our simulation by the used linear
solver CPLEX.

D. Solving the Fog-DC-CG Model

The steps involved in solving the Fog-DC-CG model for-
mulated in Section V are as follows.

1) Initialize Fog-CG-M-LP by a subset of dummy con-
figuration that is, a set of artificial IFCs with a large
cost.

2) Solve the dual of Fog-CG-M-LP formulation to opti-
mality using the CPLEX solver to obtain dual variables
αr

w, βl, γt, ψn, and μ0, the variables associated with the
Fog-CG-M-LP constraints.

3) Solve the pricing problem Fog-CG-P to optimality using
the CPLEX solver. This may generate several possible
columns (IFCs).

4) For each column generated, calculate the reduced cost.
If a column with a negative reduced cost has been found,
add this column to the current master problem and repeat
steps 2 and 3. Otherwise, Fog-CG-M-LP is optimally
solved.

The optimal solution of fog-CG-M-LP only provides a lower
bound on the optimal integer solution of fog-CG-M. We solve
the fog-CG-M integer programming formulation to optimality
using the branch-and-bound CPLEX solver.

VII. BENCHMARKS

To make an appropriate comparison between our two
proposed models, we define two benchmarks inspired by lit-
erature: 1) a matching-based model [26] and 2) a greedy
model [48] known as fog-DC-Match and fog-DC-Greedy,
respectively.

A. Fog-DC-Match

For a request t ∈ Tn, n ∈ N, let rt
W : Z+ �→ W be a function

such that rt
W(i) returns the fog-DC node with the ith lowest

latency to t. We formulate a relaxed MILP to find the fog-DC
nodes that minimize the ranking as the first phase of our heuristic

Z̃P1 = min
∑

n∈N

∑

t∈Tn

|W|∑

i=1

i · xt
wi
, wi = rt

W(i) (63)

Subject to
∑

n∈N

∑

t∈Tn

xt
wi
· pr

t ≤ Sr
wi

r ∈ R, wi = rt
W(i) ∈ W (64)

xt
f · pr

t ≤ Sr
f · yr

f

f = rt
W(i) ∈ F, i ∈ {1, . . . , |W|}; r ∈ R

(21)−(23). (65)
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For a virtual link e ∈ En, n ∈ N, let re
E : Z+ �→ � be a

function re
E(i) returns the fog-DC path with the ith lowest

cost, given the set optimal fog-DC node mappings from the
first phase denoted MW,P1 : Tn �→ W, we rank the paths to
formulate our second phase of our heuristic

Z̃P2 = min
∑

n∈N

∑

e∈En

|�|∑

i=1

i · xe
π , π = re

E(i) (66)

Subject to (24), (27)

xt
w · xt′

w′ =
∑

π∈�(w,w′)
xe
π

e = (t, t′) ∈ En, n ∈ N

MW,P1(t) = w, MW,P1(t
′) = w′. (67)

For design and dimensioning solutions from Z̃P1 and Z̃P2,
we know zr

f =
∑

t∈Tn

∑
n∈N xt

f · pr
t , f ∈ F so we can obtain

the objective function ZMILP (20) for comparison with other
models.

B. Fog-DC-Greedy

For a set of ordered tasks {t1, . . . , tqk} from a request n ∈ N,
we wish to allocate task resources to fog-DC nodes by greedily
choosing the node wj with available resources and with min-
imal latency to tj . Once a servicing fog-DC node is chosen,
we find a path with the minimal routing cost between wj−1
and wj that satisfies the bandwidth constraints per link; this
procedure is formulated as Algorithm 2. Aside from reducing
design and dimensioning cost, our main objective is to satisfy
the latency requirements of tasks for a high fog acceptance
rate. For this reason, our greedy metric is first and foremost
on latency.

VIII. RESULTS

A. Simulation Setup

In this section, we conduct a time and cost comparison
between the Fog-DC-MILP model and the heuristic Fog-DC-
CG model. Both models are solved using the IBM CPLEX
Solver on a machine with an i7 Dual-Core 2.5-GHz CPU and
12 GB of RAM. In addition, we compare the results with the
two heuristics Fog-DC-Match and fog-DC-Greedy using the
same configurations.

Given the intractability of Fog-DC-MILP, we selected the
following configuration settings to produce results in a reason-
able amount of time. We chose to use five IoT requests with
the varying number of tasks from 1 to 4, totaling ten tasks in
all. For simplicity, we set the acceptance ratio (21) threshold
to be 1. For scalability, we added an arrival rate λ ∈ [1, 50] to
inflate the number of requests, and consequently the number
of tasks. As noted in (3), an increase in the IoT traffic volume
percentile ρ leads to an increase in the arrival rate λ by similar
factors; therefore, we simplify the simulation by only includ-
ing a varying arrival rate λ. The service rate μw for a fog-DC
node w ∈ W was selected in the range μw ∈ [10, 50] ms. We
set the congestion percentile ω to 0.5.

Over the set of tasks, resource requirements were mostly
selected from a uniform distribution in [ar

T , br
T ] with low

Algorithm 2: Fog-DC-Greedy; Greedy Algorithm by fog-
DC Node Latency

Result: Greedy fog-DC Design and Dimensioning.
Enumerate requests such that N = {1, 2, ..., |N|}.
For request n, enumerate tasks t1, ..., tqk where oti < otj ,
1 ≤ i < j ≤ qk, MK(n) = k.
Initialize ω ∈ (0, 1), Sr

w,USED = 0,Bl,USED = 0.
for n = 1 to |N| do

k← MK(n)
for j = 1 to qk do

W ′ ← W;
// For task tj, select a node wj with minimal
latency.
while True do

if j = 1 then
�t1 ← min{νρ,ωt1,w | w ∈ W ′};
w1 ← arg min{νρ,ωt1,w | w ∈ W ′};

end
else

�tj ← min{�tj,ρ,ω
(w1,w)

| w ∈ W ′};
wj ← arg min{�tj,ρ,ω

(w1,w)
| w ∈ W ′};

end
if pr

tj ≤ Sr
wj
− Sr

wj,USED ∀r ∈ R then
Sr

wj,USED ← pr
t + Sr

wj,USED;

// Greedily route backwards to wj−1.
while j > 1 do

cπ ← minπ∈�(wj−1,wj)

∑
l∈π clbl;

π ← arg minπ∈�(wj−1,wj)

∑
l∈π clbl;

if bl ≤ (Bl − Bl,USED)) ∀l ∈ π then
Bl,USED ← bl + Bl,USED ∀l ∈ π ;
break;

end
else

�(wj−1,wj)← �(wj−1,wj) \ π ;
end

end
end
else

W ′ ← W ′ \ wj;
end

end
end

end

and high values of aCPU
T = 0 GHz and bCPU

T = 2.5 GHz
for CPU, aMEM

T = 0 GB and bMEM
T = 2.5 GB for MEM,

and aSTR
T = 0 GB and bSTR

T = 15 GB for STR; for
each resource, a high resource requirement was assigned to
a task above 10 GHz, 10 GB, and 100 GB for CPU, MEM,
and STR, respectively. We set the latency requirement for
each task at 500–1100 ms to simulate IoT time sensitivity.
We set s+t ∈ (0, 10] and s−t ∈ (0, 10] in megabytes, band-
width requirement bt ∈ (0, 10] mB, and the processing time
ξt ∈ [10, 100] ms.
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Fig. 6. Network architecture of candidate fog nodes used for comparison.

We chose to design a fog infrastructure with 29 candidate
fog locations. Similar to the IoT settings, the resource capac-
ities for fog nodes were chosen from a uniform distribution
range [ar

F, br
F] with low and high values of aCPU

F = 0 and
bCPU

F = 25 for CPU, aMEM
F = 0 and bMEM

F = 125 for MEM,
and aSTR

F = 0 and bSTR
F = 1000 for STR. For each resource,

at least one fog location has a resource capacity of zero; we
acknowledge that a fog node may not have the capability
for every resource. The network architecture of candidate fog
nodes is shown in Fig. 6.

We designed the infrastructure to include two fixed cloud
data centers, with capacity in [ar

C, br
C] with br

F � br
C to allow

Cloud nodes to accept any task not accepted by fog nodes.
The low and high values selected were aCPU

C = 100 000 and
bCPU

C = 200 000 for CPU, aMEM
C = 51 200 and bMEM

C =
102 800 for MEM, and aSTR

C = 500 000 and bSTR
C = 1 000 000

for STR.
As noted in Fig. 3, a fog-DC node may be accessed directly

by a task t if the distance is no more than γt, or via an access
point that routes through other Internet channels. Equation (7)
uses an upper bound ht,w on the number of hops between task
t and fog-DC node w, however, these may be through access
points and not the fog-DC infrastructure.

For two IP addresses, the number of hops between them
for a single ping can be determined using the traceroute
command. We tested several IPs at different distances from
ourselves to estimate ht,w based on distance dt,w. We found for
dt,w ∈ (0, 10], ht,w ≤ 5 and for dt,w ∈ [100, 1000], ht,w ≤ 14;
our findings are supported by [45]. Since all the fog node
candidates are within 10 km of the tasks, we set ht,f = 5 for
f ∈ F. For Cloud nodes c ∈ C, we let ht,c = max{5, dt,c/10}.
The maximum number of hops between two fog-DC nodes
hw,w′ is defined as the maximum number of links for a path
π ∈ �(w,w′) in the fog-DC architecture of Fig. 6.

B. Dimensioning/Partitioning Scheme Comparison

Fig. 7 shows the optimal design and dimensioning solu-
tions obtained for Fog-DC-MILP versus Fog-DC-CG. For each
model in Fig. 7, the dimensioned nodes are identified, the
resource utility is detailed, and the used paths are shown.
Given that the portrayed network architecture in Fig. 7 is
based on assumed latitude and longitude of fog nodes, we can
infer that fog nodes in similar areas are dimensioned, allowing

Fig. 7. Mapping solution for the MILP and CG formulation over five requests
and ten tasks. (a) Fog-DC-MILP. (b) Fog-DC-CG.

TABLE V
DIMENSIONING SOLUTIONS OF FOG-DC-MILP VERSUS FOG-DC-CG

(FIG. 7) FOR FOG NODES IN SIMILAR AREAS

services to be provided to IoT devices in the same regions with
real-time responses.

Considering the fog nodes with differing dimensioning solu-
tions in Table V, we observe the similarities in both solutions
with the smallest difference being in MEM allocation and the
largest difference in STR allocation. Based on our map scale
in Figs. 6 and 7, f5 and f9 are approximately 25 m apart,
whereas f1 is approximately 500 m from both; this larger dis-
tance is still close enough to allow for the benefits of minimal
latency between an IoT device that sits 500 m from any fog
node, making the fog-DC-CG solution of allocating more STR
resources in f9 instead of f1 a reasonable change that does not
change the latency viability of our current configuration and
IoT traffic predictions; however, this change may affect the IoT
traffic that is higher than the ρ-percentile of data for which
we have accounted, or new IoT devices on the edge of our
designed area.
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TABLE VI
COST COMPARISON IN PERCENTAGE BETWEEN

FOG-DC-MILP AND FOG-DC-CG

Fig. 8. Objective cost comparison of Fog-DC-MILP, Fog-DC-CG, Fog-DC-
Match, and Fog-DC-Greedy.

C. Dimensioning Cost

By increasing the arrival rate of each IoT request class,
we can increase the total number of tasks arriving to the
fog-DC system to compare the four models given greater IoT
traffic. We are most interested in whether Fog-DC-CG can
approximate the optimal MILP model in cost with a sub-
stantial decrease in time. Table VI shows that Fog-DC-CG
attains a near-optimal design and dimensioning cost of the
fog Infrastructure, with the cost difference below 3% for up
to 80 tasks. The absolute difference varies between 5.889 and
10.480, but does not increase monotonically with increasing
IoT traffic, leading us to hypothesize that the percentage differ-
ence gradually decreases with the increasing number of tasks.
A more expansive study into the cost differences of MILP and
CG approaches is left for future work. Fig. 8 shows the sig-
nificantly reduced cost of Fog-DC-CG compared to the other
two heuristics Fog-DC-Match and Fog-DC-Greedy.

D. Computation Time

Our performance comparison of Fog-DC-MILP and
Fog-DC-CG in Fig. 9 shows that Fog-DC-CG calcu-
lates a dimensioning solution in significantly reduced
time. While Fog-DC-Match performs moderately better than
Fog-DC-MILP, the computation time is not scalable for the

Fig. 9. Solution time comparison of Fog-DC-MILP and Fog-DC-CG. (a) Full
scale. (b) Small scale.

higher number of tasks. In Fig. 9, we executed Fog-DC-MILP
for at most 80 tasks as a higher number of tasks proved
computationally infeasible, whereas Fog-DC-Match becames
computationally infeasible after around 300 tasks. We were
able to execute Fog-DC-CG for up to 500 tasks within a practi-
cal and scalable amount of time with a near-linear time growth.
Though Fog-DC-Greedy is extremely fast, Fig. 8 shows that
it is also the worst performing by cost.

Fig. 9(b) is identical to Fig. 9(a) with the x-axis restricted to
[0, 100]. This allows us to see the similar time performances
between Fog-DC-CG, Fog-DC-Match, and Fog-DC-Greedy
for the low number of tasks. We also see the point at which the
three models begin to deviate from each other in performance.
In both cases, Fog-DC-MILP is growing at an alarming rate
from the beginning.

To better observe the performance of Fog-DC-CG, we sim-
ulated 600 independent fog-DC system configurations. Each
configuration had 10–100 fog candidates in different topo-
logical organizations, 10–50 IoT requests, and 1–5 tasks per
request. The latitude and longitude of the fog and IoT devices
were selected uniformly in a selected region of radius of 5 km,
affecting the reachability of fog nodes from IoT for each
simulated instance.
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Fig. 10. Solution time of Fog-DC-CG by the number of IoT requests and fog
candidates. (a) Requests with fog colormap. (b) Fogs with request colormap.
(c) Fogs and requests.

The solution time per fog-DC configuration setup is shown
in Fig. 10(a) and (b) with either number of IoT requests or fog
candidates on the x-axis, and the other metric as a colormap.
Fig. 10(a) shows that for at most 50 IoT requests, the number
of requests does not have a strong influence on the solution
time; no evident correlation is observed, with only the fog col-
ormap having a clear pattern of increasing with solution time.

TABLE VII
SPEARMAN’S CORRELATION OF SIMULATED SOLUTIONS BY THE

NUMBER OF REQUESTS AND FOG CANDIDATES USED

On the other hand, Fig. 10(b) shows that it is the number of
fog candidates that largely dictates the solution time. These
observations are further solidified by the correlations calcu-
lated in Table VII that shows the number of requests and of
fog candidates, respectively, have a correlation of 0.478 and
0.829 with solution time. Based on the results of Fig. 10(c)
with both the number of fog candidates and IoT requests, we
observe some scalability with increasing fog and IoT devices,
though further simulation is needed. Referring to Fig. 10, no
clear linearity is observed in any of the metrics; we leave
further simulation and statistical analysis for future work.

IX. CONCLUSION

In this article, we have proposed an optimal design and
dimensioning formulation of the fog infrastructure using MILP
to minimize infrastructure costs. To overcome scalability
issues while keeping cost effectiveness, we proposed a near-
optimal column generation formulation. The simulation results
show that design and dimensioning solution are with under 3%
difference from the optimal solution with significantly reduced
computation time. Results also show column generation cost
is much lower than matching-based and greedy heuristics.
Simulation and analysis of fog-DC configurations conclude
computation time is highly correlated with the number of fog
candidates, and moderately correlated with IoT requirements.

In future work, we proposed to determine more accurate
estimation of network congestion resulting from fluctuating IoT
traffic by means of a simulation toolkit such as iFogSim [39],
which also leads to a more accurate estimation of transmission
timeforall tasks ina request.Due to the intractabilityofMILP,we
could not perform large simulations; we plan to use geographic
zoning techniques to further reduce the time complexity of our
MILP and CG models. We can then perform a larger scale
simulation and comparison of MILP and CG models over a
wider variety of current IoT and fog technologies. Our current
proposition allows for the extensibility of a fog design and
dimensioning scheme assuming all else remains constant; we
propose to look further at the extensibility of existing/modified
fog infrastructures to add greater coverage and/or resource
availability for an increase in IoT traffic. Given our simulation
results of computation time per fog-DC configurations [see
Fig. 10(b)], our relationships are not linear; we intend to do
further statistical studies with the goal of predicting the expected
solution time given a set of fog-DC configurations. This would
solidify our approach as a means for real and practical design,
dimensioning, and future deployment.
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