
The Development of an Application in Java

Guy Lapalme
Département d’informatique et de recherche opérationnelle

Université de Montréal
Montréal, Québec
Canada H3C 3J7

e-mail:lapalme@iro.umontreal.ca

June 11, 2014

Abstract

This paper describes the development of a small application in Java. It illustrates the
concepts of message passing, inheritance, static variables and methods, graphic animation and
an approach to achieve a mouse and menu driven application.

1 Introduction

This paper1 shows the development of a small application in Java that has the advantage of being
easily understood and visualized, it is shown in figure 1. The best way to learn Java is by exper-
imenting with the system; it is very hard to learn “by the books”. Ideally this article should be
read after having loaded the corresponding classes, available from the author, within an Integrated
Development Environment (IDE) or within a text editor to inspect the code of the methods and
experimenting sending messages to objects. But we try anyway to give a feeling of the development
of an application for those who dot not have access to a Java environment. This application was
developed in Java 7 using Eclipse on a Macintosh with OS X 10.9 and, but it was also tested on
a PC and on Linux using the JDK 7 by Oracle. This shows that Java graphical applications are
quite portable across platforms.

Java is a very rich programming environment that defines a whole gamut of classes for doing
graphics and applications on the World-Wide Web. It is an object oriented language where most
parts of the system are viewed as objects responding to messages. But, unlike Smalltalk[4], some
entities are primitive (e.g. integers, floating point numbers and characters) and classes are not
themselves objects; although Java defines some classes for defining these primitives in term of
objects, in the usual applications, there are not considered as such.

We briefly review Java using the objects defined for our application. There are many books on
Java, one that is both introductory and comprehensive is Horstmann [5] but the definitive reference
is by Java Team [3]. For the principles behind interface building using Swing, standard since Java
1.2, one should consult the excellent book (in French) by Berthié and Briaud [1].

1this is a revision (June 2014) of the 2005 revision of a 1999 paper that was itself another instantiation of the
same application that was originally developed in Smalltalk described in [6]

1

Figure 1: Snapshot of our application

This application describes the movements of graphical bodies that are displayed within a setting.
Each body can move and display a sequence of pictures to simulate its movements. This graphical
application is controlled with mouse clicks and questions that asks some information (such as the
name to be given to an object) from the user. Following the Swing approach, actions of the user
are handled by event listeners that modify the state of the application. In our case, this is the list
of all animated bodies that have been created. After each change to the state of an animal, the
display is updated. We will come back to the organization of the application later, but we will first
give a very short introduction to object oriented programming in Java.

2 An introduction to object oriented concepts in Java

In an object oriented system, entities is described in terms of objects having an internal state and
responding to messages. Objects are created from a mold (called a class). In our case, we have
animated bodies moving within a setting. As most of the animated bodies will have share some
behaviors, we define an abstract class AnimatedBody which we extend with concrete subclasses
(Butterfly and Flower). From the concrete classes, we create objects, called instances that
evolve within an instance of another class Setting which, not surprisingly, does not behave like an

2

animated body.
We use the following convention for identifiers: class names start with a capital letter while

other identifiers are not capitalized. When an identifier is made up of more than one word,
the words are not separated and each one (except possibly the first) is capitalized, for example,
theButterflyOverAFlower.

We first create a park, an instance of Setting, in which instances of the classes Butterfly

and Flower move. The Setting will eventually be represented on the screen by a window that
delimits the visible area of activity of the animated bodies: if a body moves out of the park, it is
not displayed. An AnimatedBody is represented by a picture on the screen. Given that we have
already created a Flower named daisy and a Butterfly named peter, Table 2 shows messages
that can be sent to these objects.

Object message action

peter turn() change its direction
daisy open() show the flower as open
peter moveTo(pos) change its position to pos

Table 1: Messages to instances of classes

In Java, messages are sent by means of procedure calls defined within objects that are called
methods which can have parameters. The name of the called object is first given then a dot (.) and
then the name of called method followed by its parameters in parentheses. Even if a method has no
parameter, we put parentheses after the name of the called method. For example, peter.turn()
or daisy.setDirection(1).

Java provides standard control statements such as if, for, while statements whose syntax is
closely modeled after the syntax of the C language. We will not elaborate further on these usual
aspects of the language because we want to focus on the object oriented aspects of the language
and on our application.

3 The MyPoint class

As a simple example of defining a new class, we define MyPoint an alternative to the standard
Point class2 to keep track and specify positions of our bodies in our setting. The MyPoint class
that represents a location on a two-dimensional (x, y) coordinate space with two internal integer
variables, called instance variables, x and y. The (100, 200) position can thus be designated by
creating a new point such as

MyPoint pos = new MyPoint(100,200);

As x and y represent the internal state that should not be changed from outside the class, we
declare them as private. To get their values from the outside, we will define two public accessor
functions getX() and getY(). Contrary to the standard Point class, a MyPoint instance cannot
change so we will not define any mutator function such as setX(newX) or setY(newY). But we

2we could have chosen to create a subclass of java.awt.Point but as we want to hide the internal state, we have
decided to create an independent class with a different name even though no ambiguity would arise if we use the java
package mechanism

3

will define arithmetic operations for MyPoint instances such as adding or subtracting points and
finding the distance between two points.

We first declare a new class with two private x and y instance variables. To create an instance
of MyPoint, we define a constructor to initialize the instance variables.

class MyPoint {

private int x,y;

MyPoint(int x, int y){

this.x = x;

this.y = y;

}

public int getX(){return x;}

public int getY(){return y;}

}

this.x refers to the x private variable of the class and is necessary because x refers to the parameter
of the MyPoint constructor which hides the x instance variable within the constructor. To avoid
the name clash, we could have given a different name to the parameter, but this way of making
explicit the initialization of instance variables with parameters of the constructor is conventional
in Java code.

Now we define some new features3 to manipulate MyPoint instances. We want to add, subtract
and scale points but in order to combine them easily, the result should not change the internal
values of the point (as do the move or translate methods of the standard Java Point class) but
instead it creates a new instance of MyPoint with the result.

MyPoint add(MyPoint p){

return new MyPoint(x+p.x,y+p.y);

}

MyPoint sub(MyPoint p){

return new MyPoint(x-p.x,y-p.y);

}

MyPoint scale(double f){

return new MyPoint((int)Math.round(f*x),(int)Math.round(f*y));

}

add and sub add and subtract the x and y coordinates. scale multiplies each coordinate by a
floating point number but then rounds the result to an int value. So given two instances of MyPoint,
p1 and p2 we can combine them as p1.add(p2.scale(5)) which corresponds to p1 + (p2 ∗ 5). To
find the distance, returned as a floating point number, between two points we define

double dist(MyPoint p){

return Math.sqrt((x-p.x)*(x-p.x)+(y-p.y)*(y-p.y));

}

which can be called as p1.dist(p2).
For any object, Java defines a standard string representation that can be used for identifying

it in an output. By default, it just returns the name of the class followed by an internal hashcode

3These features follow closely the operations of the Point class of Smalltalk

4

(e.g. MyPoint@687e7c). This is not very useful, so one should define a more practical represen-
tation that returns the values of the instance variables. When Java needs to transform an object
to string, it calls the toString() method of that object, so by defining this method in a new
class, we get a printable version of our object such as "100@200" for an instance created by new

MyPoint(100,200).

public String toString(){

return x+"@"+y;

}

It is also useful to go the other way and be able to create a new MyPoint instance from a string
representation. By convention in Java this method is named parse. It separates the input string in
three parts on the @ character, using the split() function, and then parsing an integer on the first
and second part. Should any part be missing or an integer not have the right syntax, an exception
is raised that is handled within the method by returning a null value.

public static MyPoint parse(String s){

// return a MyPoint instance from a String as produced by toString()

String[] ss = s.split("@");

if(ss.length!=2)return null; // badly formed Point

try {

return new MyPoint(Integer.parseInt(ss[0]),Integer.parseInt(ss[1]));

} catch (NumberFormatException e){

return null;

}

} // method parse

The static keyword indicates that is a class method, i.e. it will called from the MyPoint class
e.g. MyPoint.parse(aString), instead than from one of its instances such as aPoint.getX(). As
parse(aString) creates a new MyPoint, it can be considered as a special type of constructor, often
called factory methods in the Java terminology.

Another kind of very useful static method is the public class method main(String[])4 which
is called when the class is directly called from the system prompt.

public static void main(String[] args){

MyPoint p0 = new MyPoint(50,50);

MyPoint p1 = new MyPoint(100,100);

MyPoint p2 = new MyPoint(200,75);

MyPoint p3 = new MyPoint(p0.getX(),p0.getY());

System.out.println("p0 = "+p0+" vs p3 = "+p3);

System.out.println(p1+" + "+p2+" = "+p1.add(p2));

System.out.println(p1+" - "+p2+" = "+p1.sub(p2));

System.out.println(p1+" * "+3+" = "+p1.scale(3));

4One should take the habit of defining a main(String[]) class method for each important class that we define to
make it easier to test the class separately. As can seen in the full code listing, we have done this for all non-abstract
classes but we do not describe it the main methods are not shown in this paper.

5

System.out.println("dist("+p1+","+p2+") = "+p1.dist(p2));

System.out.println(MyPoint.parse("45@58"));

System.out.println(MyPoint.parse("1@2@3"));

System.out.println(MyPoint.parse("23.4@45"));

}

The following is an excerpt of an interaction at a Unix prompt. We first compile the class
using javac and then we call the Java interpreter on MyPoint which calls the main class method
of MyPoint. What follows the prompt is the trace output which gives us some confidence that our
class is behaving as we want.

=> javac MyPoint.java

=> java MyPoint

p0 = 50@50 vs p3 = 50@50

100@100 + 200@75 = 300@175

100@100 - 200@75 = -100@25

100@100 * 3 = 300@300

dist(100@100,200@75) = 103.07764064044152

45@58

null

null

4 The AnimatedBody class

This class describes the general behavior of the bodies that move around a setting. It defines
instance variables representing the state of each body and it implements messages describing the
actions performed by all bodies.

4.1 Instance variables

A body is defined by a name and a position in a setting. As we want to simulate movement, each
body is defined by an array of bitmaps picture (Images in the Java terminology) giving different
aspects. Movements of the bodies can be simulated by displaying different aspects cyclicly. A body
is represented by different pictures to indicate where it is heading; for example, it can be seen from
the front, back or side. Figure 2 shows in a window the four directions (numbered 0 to 3) along the
horizontal axis and the two aspects (numbered 0 and 1) for each on the vertical axis for a butterfly.
A flower has only two “directions” (numbered 0 and 1) and one aspect (numbered 0). As every
AnimatedBody has this behavior, it is defined in this class but the exact picture to display is left
to each kind of AnimatedBody. We will see in the next section how the pictures are kept but each
AnimatedBody has its own direction and aspect. Table 2 shows the four instance variables of an
AnimatedBody instance.

4.2 Instance Methods

Like we did in section 3, one should always try to hide the internal state of an object and avoid the
public declaration of variables as much as possible. We instead define some public methods that

6

Figure 2: Directions and aspects of AnimatedBody instances. There are four directions and two
aspects for a Butterfly. There are two directions and one aspect for a Flower.

give a controlled access to these variables. These methods are quite “trivial” and are often called
accessor methods.

By convention, to give access to the variable, we give it the name formed by get followed by
the name of the internal variable (but with an initial capital). To change the value of the internal
variable, we define a method whose name is set followed by its name and having as parameter
the new value to assign to the internal variable. For example, to access the variable direction,
getDirection() will give its current value and setDirection(v) will change its value to v5.

We might argue that it would be much simpler to simply declare the internal variable as public
instead of defining two new methods for each variable, but bear in mind that the methods do not
have to be so simple and could easily implement a control over the access to this variable. But,
more important, it defines an access to this variable that can be eventually redefined further down
in a hierarchy of objects. We give here some code excerpts that define these instance variables and
their accessor methods.

5This convention is also used for defining Java Beans

7

name identifies a body
position where it is in the setting
direction the current direction
aspect the current aspect

Table 2: Instance variables of an AnimatedBody instance

private String name;

private MyPoint position;

private int direction,aspect;

public String getName(){

return name;

}

public void setName(String name){

this.name=name;

}

public int getDirection(){

return direction;

}

public int getAspect(){

return aspect;

}

public MyPoint getPosition(){

return position;

}

public void setPosition(MyPoint position){

this.position = position;

}

But changing the aspect and direction is a bit more complicated because the value has to
lie within an acceptable number of possible values returned by the methods getNbAspects() and
getNbDirections() (to be defined in section 4.3) % is the modulo operator. As a body should
not care about the aspect and direction numbers, we build on these methods two other methods
nextAspect() and nextDirection() that simply change to the next one.

public void setDirection(int d){

direction = d % getNbDirections();

}

public void nextDirection(){

setDirection(direction+1);

}

8

public void setAspect(int a){

aspect = a % getNbAspects();

}

public void nextAspect(){

setAspect(aspect+1);

}

Moving a body is obtained by changing its position and aspect by calling some of these methods.
Note that an object can use some of its own methods. Although the object could change its
position directly by assigning a new value to the instance variable, it is more appropriate to call
the setPosition(MyPoint)6 method.

public void moveTo(MyPoint newPos){

nextAspect();

setPosition(newPos);

}

As we do not want that an object changes its name during its life, we do not define a method to
change the name. The initialization of the name is done within the constructor of the class which
also initializes the other instance variables using the previously defined methods.

AnimatedBody(String name){

this.name = name;

position(new MyPoint(0,0));

setDirection(0);

setAspect(0);

}

For a body to appear on the screen, we use a collection of images corresponding to each direction
and aspect. These images will be displayed on the screen. The access to the current image is a
bit more complicated (and interesting...). As we would like all instances of the same subclass of
an AnimatedBody to share the same array of images, they cannot be instance variables because in
this case, they would be repeated in each class. So we make them static variables of the class
instead. static is (an unfortunate) term used in Java to designate variables and methods that in
other object oriented languages are called class variables and class methods; in this document, we
will use this latter term to designate these shared variables between all instances of a class. Like
we did in the MyPoint class, a class method is designated by the name of the class itself and not
an instance.

But note that although these images are global to all instances of the class, they should not be
shared among all instances of AnimatedBody but only among instances of its subclasses, i.e. all
instances of Butterfly share the images of the Butterfly images and instances of Flower share
instances of Flower images. So these class variables will be defined within each subclass, but we
we need some access to the values of these variables... so how can we define, once in a superclass,
actions that will be shared among all its subclasses but that depend on the behavior of subclasses.

The way out of this dilemma is to declare, in the superclass, abstract methods to be defined in
the subclasses but that can be called from the superclass methods as if they were defined. Declaring

6from this point on, when we refer to a method, we give its name followed by the types of its parameters in
parentheses

9

an abstract method in a class makes it also abstract so now the definition of an AnimatedBody

is as follows:

abstract class AnimatedBody {

...

}

which makes it impossible to create instances of AnimatedBody but only of its subclasses. This
makes senses because abstract classes lack some functionalities.

4.3 abstract methods

These methods have to be defined by the subclasses and will return an access to the array of all
images for a body, the number of its aspects and directions.

abstract Image[][] getFilm();

abstract int getNbAspects();

abstract int getNbDirections();

The display of an image on the screen is done using Graphic Interchange Format (GIF) Images
and we will explain later how they are used. These images are built using an external graphic
editor and saving the result in GIF format. Images are of rectangular shapes, but it is possible to
define some parts of the image as being transparent so that, when they are displayed, they appear
as being of an irregular shape.

The film class variable will be initialized with an array of dimension getNbAspects() each
element being an array of getNbDirections() images. As the reading algorithm is the same for
all subclasses of AnimatedBody, it is defined in the class as a class method. Reading is done using
Java methods that can get images anywhere on the World Wide Web but in this case, we take for
granted that the images are within a directory called images located in the same directory as the
application. The name of the image files are of the form

class name aspect number direction number .GIF

protected static Image [][] initFilm(String className,int nbA,int nbD){

Image [][] f = new Image[nbA][nbD];

String baseFileName = "images/"+className;

for (int a=0;a<nbA;a++){

for(int d=0;d<nbD;d++){

f[a][d] = new ImageIcon(baseFileName+a+d+".GIF").getImage();

}

}

return f;

}

10

4.4 Instance methods (continued)

When an AnimatedBody instance needs to access the current image corresponding to its current
aspect and direction, it indexes the array of images initialized in initFilm. We also define a
method for checking is a point x,y is within the current image of an animal and another to display
the current image in a graphical context

public Image image(){

return getFilm()[getAspect()][getDirection()];

}

public boolean contains(int x, int y){

Image im = image();

return new Rectangle(position.getX() - im.getWidth(setting)/2,

position.getY() - im.getHeight(setting)/2,

im.getWidth(setting),im.getHeight(setting)).contains(x,y);

}

public void display(Graphics g){

Image im = image();

g.drawImage(im,getPosition().getX() - im.getWidth(setting)/2,

getPosition().getY() - im.getHeight(setting)/2,setting);

}

Like we did for MyPoint, we redefine the toString() method to get a readable version of an
AnimatedBody i.e. the values of the instance variables with appropriate labels. To get the name of
the class, we call the getClass() method which returns the class of an object to which we ask its
name, to which we add the name of the instance, we then add the list of the variable names with
their values enclosed in square brackets.

public String toString(){

return getClass().getName()+" "+name+

"[pos="+position+",dir="+direction+",asp="+aspect+"]";

}

4.5 Graphical user interface

The animated bodies will move within a setting (an instance of Setting defined in section 5) and
leave a written trace of their action in a JTextArea, a Java class that implements a stream of
characters whose contents can be displayed in a scrollable window. As all animated bodies share
a single setting and trace window, we will keep a single reference to these as class variables and
define a class method to initialize them. Note that this cannot be used in a class method, so we
have to use another variable name as parameter of setSettingTrace.

private static JTextArea traceTA;

protected static Setting setting;

public static void setSettingTrace(Setting s,JTextArea t){

setting=s;

traceTA=t;

}

11

To add information to the trace, we define the following instance method which adds a line to
the JTextArea comprising the name of current object followed by the string given as parameter:

public void trace(String s){

traceTA.append(this+":"+s+"\n");

}

Animal movements are defined by a pop-up menu that will be displayed by the setting when it
detects that the user clicked over an animal (see figure 3). It will be the job of an animal to display
the menu and to perform the appropriate action on the current animal. The items of the pop-up
menu will be listened by a single listener that will call the perform(String) method of the current
animal.

// listener for all popmenu actions

public static ActionListener AniBodyMenuListener = new ActionListener(){

public void actionPerformed(ActionEvent e){

thisBody.perform(e.getActionCommand());

}

};

As all animals will share many of these behaviors, we define methods that will be called by
subclasses in order to build their own action menu.

public static JPopupMenu appendMenu(JPopupMenu menu,String[] labels){

for(int i=0;i<labels.length;i++){

JMenuItem item = new JMenuItem(labels[i]);

item.addActionListener(AniBodyMenuListener);

menu.add(item);

}

return menu;

}

12

Figure 3: Three steps in creating a new animal and asking it to turn: display the creation menu,
ask for the name of new animal and making it turn

13

Like we did for the film, all instances of a subclass of AnimatedBody will share the same menu.
Thus this menu will be defined in the subclass, so the method showMenu that uses it must also
be defined by all subclasses of AnimatedBody. This is why the declare showMenu(int,int) as
abstract.

abstract public void showMenu(int xMouse,int yMouse);

As movement is defined for all animated bodies, we declare the following

protected static String[] aniBodyMenuLabels = {"moveTo"};

for defining the content of the menu to be displayed to the user. Subclasses will add their own
action labels after this value.

perform(String) first asks the user for the new position of this animated body and then calls
moveTo(MyPoint) and traces this action:

public void perform(String action){

if(action.equals("moveTo")){

MyPoint pt = setting.askPosition("New position (x@y) for "+name);

moveTo(pt);

trace("moveTo:"+pt);

}

}

Now that we have defined all the necessary methods of a general AnimatedBody, we can look at
the specific behaviour of its subclasses.

4.6 Subclasses of AnimatedBody

4.6.1 The Butterfly class

We define a Butterfly as a special AnimatedBody that can do everything an AnimatedBody can
do and more. A Butterfly can appear to be fast or slow depending on the value of an instance
variable step that defines the distance a Butterfly travels before being displayed with a new
aspect. step is accessed and updated by the following accessor and mutator methods:

int step;

public int getStep(){

return step;

}

public void setStep(int s){

step = s;

}

We define a new movement method turn() which is merely another name for nextDirection()
but one that is more appropriate for an animal.

public void turn(){

nextDirection();

}

14

The string version of a Butterfly is obtained by redefining the toString() method which starts
by calling the one defined in AnimatedBody and adding the value of the step instance variable.

public String toString(){

return super.toString()+"[step="+step+"]";

}

The creation of a Butterfly is defined with the following constructor which makes a Butterfly fly
to a position when it is created.

private static final int INITSTEP = 10;

Butterfly(String name, MyPoint pos){

super(name);

step = INITSTEP;

setPosition(pos);

}

This first calls the constructor of the superclass (i.e. AnimatedBody(String) defined in section 4.2)
and then initializes the step to a default value and then moves to the position given in the con-
structor call. So to declare a new Butterfly called Peter at position (100,100), we can use:

Butterfly peter = new Butterfly("Peter",new MyPoint(100,100));

We also define the default constructor, i.e. one with no parameters which merely initializes the
step, it will be used by the setting for creating new Butterfly dynamically.

Butterfly(){

super("");

step = INITSTEP;

}

We redefine moveTo(MyPoint) so that a Butterfly turns in the right direction before starting
to go at a new position. This behavior is build upon the moveTo(MyPoint) of an AnimatedBody.
But a Butterfly does not jump directly to the new position changing its aspect once, it goes there
gradually. If the distance ∆ between the current position p and the destination d is greater than
the step, a new position p′ is computed by the following formula:

p′ = p + (d− p) × step

∆

using the arithmetic functions we defined in the MyPoint class

public void moveTo(MyPoint destination){

if (getPosition().x < destination.x)

setDirection(0);

else setDirection(2);

MyPoint pos = getPosition();

double distance = destination.dist(pos);

while(step<distance){

super.moveTo(pos.add(destination.sub(pos).scale((float)step/distance)));

15

pos=getPosition();

if(setting!=null)setting.paintImmediately();

distance = destination.dist(pos);

}

super.moveTo(destination);

}

This method uses moveTo(MyPoint) defined in AnimatedBody using super as receiver of the mes-
sage. super designates the current object but the search for methods starts at the superclass of
the class where the super appears. If the setting is defined, we force its redisplay.

A Butterfly can also perform other specific actions:

• flutter in place for a certain number of times, changing aspect each time

• visit a flower by going to the flower, if the flower is open then the Butterfly flutters over
the flower otherwise it goes slightly below.

public void inPlace(int nb){

if(nb>0){

for(int i=0;i<nb;i++){

nextAspect();

setting.paintImmediately();

}

}

}

public void visit(Flower f){

moveTo(f.getPosition());

if(f.isOpen()){

turn();

inPlace(5);

} else

moveTo(f.getPosition().add(new MyPoint(0,100)));

}

As we described earlier, each subclass of AnimatedBody needs five class variables described in
table 3. For the Butterfly class, the static (class) variables are declared as:

film collection of images
nbAspects number of aspects
nbDirections number of directions
bodyMenu pop-up menu of its actions
bodyMenuLabels labels displayed in the menu

Table 3: Class variables of an AnimatedBody subclass

16

private static int nbAspects = 2;

private static int nbDirections = 4;

private static Image[][] film;

private static JPopupMenu butterflyMenu;

private static String[] butterflyMenuLabels = {"turn","flutter","visit","new step"};

For initializing the class, we define the following class method which

• registers the Butterfly class for the setting, as we will see in section 5, this is for enabling
the setting to call the Butterfly constructor

• initializes the film class variable using the initFilm class method defined in AnimatedBody

now that the number of aspects and directions are known

• creates the pop-up menu of the Butterfly actions using appendMenu class method also defined
in AnimatedBody

public static void initialize(Applet applet){

setting.registerAnimatedBody(Butterfly.class);

film = initFilm("Butterfly",nbAspects,nbDirections);

butterflyMenu = appendMenu(appendMenu(new JPopupMenu(),aniBodyMenuLabels),

butterflyMenuLabels);

}

Butterfly is a subclass of the AnimatedBody abstract class so to make it concrete and be able
to create instances of this class, we define its abstract methods which merely return the value of
a class variable. Note that although these methods access class variables, we make them instance
methods which are usually more convenient to use. We also define the showMenu function, which
keeps track of the current AnimatedBody which is needed by the pop-up menu listener so that it
calls the appropriate perform function.

public int getNbAspects(){

return nbAspects;

}

public int getNbDirections(){

return nbDirections;

}

public Image[][] getFilm(){

return film;

}

public void showMenu(int xMouse,int yMouse){

thisBody=this;

butterflyMenu.show(setting,xMouse,yMouse);

}

perform checks that the action is one defined by the Butterfly otherwise it calls the perform

of the superclass. For each action, if necessary it asks some information from the user, it then
calls the appropriate instance method and adds a textual trace of the action performed. Finally it
updates the display of the setting.

17

public void perform(String action){

if(action.equals("turn")){

turn();

trace("turn");

} else if (action.equals("flutter")){

inPlace(5);

trace("inPlace");

} else if (action.equals("visit")){

AnimatedBody b = setting.askBody("Name a flower to visit");

if(b instanceof Flower){

visit((Flower)b);

trace("visit:"+b.getName());

}

} else if(action.equals("new step")){

int newStep = setting.askInt("new positive integer value for step "+

"(current="+step+")");

if(newStep>0 && newStep<100){

setStep(newStep);

trace("setStep:"+step);

}

} else

super.perform(action);

setting.repaint();

}

4.6.2 The Flower class

The structure of the Flower class is basically the same as the Butterfly one except that it is
much simpler because a Flower can only open() or close() itself. The fact that it is open or
closed depends on its current direction (defined in AnimatedBody). It also has only one aspect

so it needs only two bitmaps. Like Butterfly, it inherits the moveTo(MyPoint), getAspect(), etc.
from AnimatedBody. It defines:

public boolean isOpen(){

return getDirection() == 0;

}

public void open(){

setDirection(0);

}

public void close(){

setDirection(1);

}

The creation of an instance of the Flower class is done as for the Butterfly class and the same
five class variables are also defined.

Flower(String name, MyPoint pos){

18

super(name);

position(pos);

}

Flower(){

super("");

}

private static int nbAspects = 1;

private static int nbDirections = 2;

private static Image[][] film;

private static JPopupMenu flowerMenu;

private static String[] flowerMenuLabels = {"open","close"};

The initialization is also on the same lines as for a Butterfly:

public static void initialize(Applet applet){

setting.registerAnimatedBody(Flower.class);

film = initFilm("Flower",nbAspects,nbDirections);

flowerMenu = appendMenu(appendMenu(new JPopupMenu(),aniBodyMenuLabels),

flowerMenuLabels);

}

The abstract methods are defined analogously:

public int getNbAspects(){

return nbAspects;

}

public int getNbDirections(){

return nbDirections;

}

public Image[][] getFilm(){

return film;

}

The user interface methods are also defined similarly as for a Butterfly:

public void showMenu(int xMouse,int yMouse){

thisBody=this;

flowerMenu.show(setting,xMouse,yMouse);

}

public void perform(String action){

if(action.equals("open")){

open();

trace("open");

} else if (action.equals("close")){

close();

trace("close");

} else super.perform(action);

19

setting.repaint();

}

5 The Setting class

The setting is our basic entry point and the dispatcher of messages for all bodies that evolve within
it. It is also responsible for displaying all bodies at their current position, direction and aspect.

To react to mouse events, we could define a class that implements the MouseListener interface
and by defining the following methods: mouseClicked(MouseEvent), mouseEntered(MouseEvent),
mouseExited(MouseEvent), mousePressed(MouseEvent) and also mouseReleased(MouseEvent).
But in our case, we only want to deal with mouse clicks so it is more practical to use a subclass of
the MouseAdapter class which defines dummy methods for all mouse events so that we only need
to define the one that is of interest to us.

The setting is conceptually only an object (more precisely a JPanel instance) that knows about
AnimatedBodies that evolve within its borders. It also deals with mouse clicks within its border:
this means determining if the last mouse click was over a displayed animated body or not. If it
was, then it calls the showMenu menu of this body, otherwise it presents a menu for creating a
new animated body at the position of the click (see figure 3). This behavior is initialized in the
constructor.

A Setting has four instance variables:

• bodies is a Map<String,AnimatedBody> (i.e. a hash table) of AnimatedBody that evolve
within the setting; the name of the AnimatedBody serves a the key.

• creationMenu a pop-up comprising the name of each AnimatedBody subclass, the items of this
menu are added when the AnimatedBody subclasses call the registerAnimatedBody(Class)

class method.

• xMouse and yMouse keep track of the position of the last click, they are used as a means of
communication between the MouseListener and the item menu listener defined in
registerAnimatedBody(Class)

public class Setting extends JPanel{

private Map<String,AnimatedBody> bodies;

private JPopupMenu creationMenu;

private int xMouse,yMouse;

Setting (){

setBackground(Color.green);

bodies = new HashMap<String,AnimatedBody>();

creationMenu = new JPopupMenu();

creationMenu.add(new JMenuItem("<html><i>Create</i></html>"));

creationMenu.addSeparator();

addMouseListener(new MouseAdapter(){

public void mousePressed(MouseEvent e){

xMouse = e.getX();

20

yMouse = e.getY();

AnimatedBody b = findBody(xMouse,yMouse);

if(b==null)

creationMenu.show(Setting.this,xMouse,yMouse);

else

b.showMenu(xMouse,yMouse);

}

});

}

The setting often has to find a given AnimatedBody by its name or to determine which AnimatedBody

is displayed at a certain position, so we define two methods for searching the Map.

public AnimatedBody findBody(int x, int y){

for(AnimatedBody b: bodies.values())

if(b.contains(xMouse,yMouse))return b;

return null;

}

public AnimatedBody findBody(String name){

return bodies.get(name);

}

In principle, the setting should not have to know the name of the subclasses of AnimatedBody
that evolve within it except for the fact that it has to create them by calling their constructor. So
normally, it would be necessary to change the menu and the call to the corresponding constructor
each time a new subclass of AnimatedBody is written.

It is possible to circumvent this problem by using a simple form of reflection by getting access
to the class itself and calling the default constructor via the newInstance method of the class.
The new object is then initialized with mutator functions for setting its name and position. An
indication of the creation is also added to the trace and the setting is redisplayed.

But this implies that each new class makes itself known to the setting in some way: this is why
we have defined the following method which keeps track of each class and uses its name to create
a new menu item label and the corresponding listener which is then added to the creationMenu.

public void registerAnimatedBody(final Class<?> c){

JMenuItem item = new JMenuItem(c.getName());

item.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e){

String bodyName = = askNewBodyName("Enter name of new "+c.getName());

MyPoint pos = new MyPoint(xMouse,yMouse);

try {

AnimatedBody b = (AnimatedBody) c.newInstance();// creation of a new body

b.setName(bodyName);// initialisation of fields

b.setPosition(pos);

bodies.put(bodyName,b);// add to the known bodies

b.trace("created");

21

repaint();

} catch (Exception ie){

System.out.println(ie+"** could not create "+c.getName()+

"("+bodyName+","+pos+")");

}

}

});

creationMenu.add(item);

}

The setting will often need to ask some information from the user using a modal dialog box,
so we define some auxiliary procedures that do some primitive validation on the form of the input
given typed by the user.

public String askString(String prompt){

return JOptionPane.showInputDialog(this,prompt,"",JOptionPane.QUESTION_MESSAGE);

}

public int askInt(String prompt){

while (true)

try{

String s = askString(prompt);

return Integer.parseInt(s);

} catch (NumberFormatException e){}

}

public MyPoint askPosition(String prompt){

MyPoint pt = null;

while (pt==null){

String s = askString(prompt);

pt=MyPoint.parse(s);

}

return pt;

}

public AnimatedBody askBody(String prompt){

return findBody(askString(prompt));

}

public String askNewBodyName(String prompt){

String bodyName = null;

while(bodyName==null || bodyName.length()==0 || bodies.get(bodyName)!=null)

bodyName = JOptionPane.showInputDialog(Setting.this,prompt,"",

JOptionPane.QUESTION_MESSAGE);

return bodyName;

}

22

The display of a JPanel is done by redefining the paintComponent method which first paints
the background in green with a black border around, it then asks to each body to display it-
self. paintImmediately is a simplified call to the JPanel paintImmediately(int,int,int,int)

method giving the dimension of the whole JPanel; it is used for simulating animation in movement.

public void paintComponent(Graphics g) {

super.paintComponent(g);

int width = getWidth();

int height = getHeight();

// draw border

g.setColor(Color.black);

g.fillRect(0,0, width, height);

g.setColor(getBackground());

g.fillRect(5,5,width - 10, height - 10);

for(AnimatedBody b:bodies.values())

b.display(g);

// cheap trick to slow the animations...

try{Thread.sleep(100);}catch (InterruptedException e){};

} // paint method

public void paintImmediately(){

paintImmediately(0,0,getWidth(),getHeight());

}

6 BodiesInASetting class

Now that we have our setting in which the animated bodies can evolve, we can now build a graphical
application containing both the Setting instance and the textual trace. As we want our program
to be used as a stand-alone application, we will define our main class as a subclass of JPanel.
When this class is called from the command line, it will call the main method which will first create
a JFrame in which the JPanel will be put. It first creates the objects and then does their layout.

createObjects() first creates the JTextArea for the trace and then the Setting instance which
are added to the content pane of the applet. The class variables of AnimatedBody are then set and
the Butterfly and Flower classes are also initialized for reading their images and registering to
the setting. If we want to add new subclasses of AnimatedBody, we would have to initialize them
here also.

In layoutObjects(), the JTextArea is embedded in a JScrollPane in order to get the scroll
bars and the instance of the Setting is added in the center of the JPanel.

public class BodiesInASetting extends JPanel{

// elements of the display

private JTextArea traceTA;

private Setting park;

private void createObjects(){

23

// create the interface elements

traceTA = new JTextArea(5,60);

park = new Setting();

// initialize the classes

AnimatedBody.setSettingTrace(park,traceTA);

Butterfly.initialize();

Flower.initialize();

}

public void layoutObjects(){

this.setLayout(new BorderLayout());

this.add(new JScrollPane(traceTA),BorderLayout.NORTH);

this.add(park,BorderLayout.CENTER);

this.validate();

}

public static void main(String[] args){

JFrame f = new JFrame("Bodies in a Setting");

f.setSize(700,600);

BodiesInASetting a = new BodiesInASetting();

a.createObjects();

a.layoutObjects();

f.getContentPane().add(a);

f.setLocation(200,100);

f.setVisible(true);

f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}

}

7 Ideas for extending the system

Now we have all the elements for a functional system but it would be fun to add new kinds of
bodies, for example: cows that eat flowers, crabs that only move in right angles, rabbits that jump,
turtles that leave a path when they move, etc. We leave these as an exercise to the reader who
would need to draw images and redefine the appropriate movement methods, menus and messages.

Another interesting extension would be to define groups of bodies that move in parallel using
the quasi-parallelism available through the Thread class. This might involve a bit more work to
get it working smoothly with a good user interface.

Another kind of extension that is really the “essence” of object oriented programming: subclass-
ing would be to define a StickyButterfly so that when it visits a Flower, it follows it if the flower
moves. Should the StickyButterfly decide to move elsewhere without visit()ing then the Flower
can move without dragging the butterfly any more. The idea being that a StickyButterfly is now
becomes linked to a flower when it visits one and so when the Flower moves, the StickyButterfly
moves with it. “Stickiness” could also be defined for flowers.

24

8 Conclusion

We have shown how to develop an interactive application in Java. We first defined mouse-driven
AnimatedBodies to move around in a window. This gave us the opportunity to see examples
of instance and class variables and methods, subclasses and the Java event driven approach to
graphical user interfaces. We finally gave many suggestions for extending the system.

References

[1] Valérie Berthié, Jean-Baptiste Briaud, Swing, la synthèse, Dunod, 2001.

[2] Xavier Briffault, Stéphane Ducasse Squeak: programmation, Eyrolles, 2002.http://www.
squeak.org

[3] James Gosling, Bill Joy, Guy Steele, Gilad Bracha The Java Language Specification,2nd ed,
Addison-Wesley, 2000.

[4] Trevor Hopkins, Bernard Horan, Smalltalk: an introduction to application development using
VisualWorks, Prentice-Hall, 1995.

[5] Cay Horstmann, Big Java, 25th ed, Wiley, 2014.

[6] Lapalme, G. The development of an application in Smalltalk, internal report available
at http://www.iro.umontreal.ca/ lapalme/BodiesInASetting/DevelopmentInST80.pdf,
1997.

9 Acknowledgements

We thank Anne Bergeron who wrote the first version of this program after having been given only
a few hours of introduction to Smalltalk. Her work was “spectacular” and used as a demo at the
Université de Montréal. It prompted us to revise and extend the system. The bitmaps of the
flowers and the butterflies were designed by her. As her work was initially done in the eighties, it
explains why the images are still in black and white.

We thank Pierre Cointe whose idea it was to use video animals moving on the screen to illustrate
object-oriented programming. We also had many fruitful discussions with him, Isabelle Borne,
Jean-François Perrot and Jean Bézivin that gave us a better understanding of Smalltalk. We thank
Jean Vignolle, Patrick Sallé and Henri Farreny of IRIT in Toulouse for providing a stimulating
working environment where a Smalltalk-80 version of this program was first developped. The
VisualWorks version was redesigned during a stay at the Ecole des Mines de Nantes in March 1998
where discussions with Frédéric Rivard were most fruitful. Frédéric was very patient with me for
explaining the “new” way of using the Smalltalk environment which was then used as a base for
this Java version.

Finally we acknowledge the contribution of Jean Vaucher who introduced Simula-67 to us in
the early seventies. Since then, we have always considered that object oriented programming is the
“right” way to go...

25

Page numbers of method names

add(MyPoint), 4
AniBodyMenuListener, 12
AnimatedBody, 10
AnimatedBody(String), 9
appendMenu(JPopupMenu,String[]), 12
askBody(String), 22
askInt(String), 22
askNewBodyName(String), 22
askPosition(String), 22
askString(String), 22
aspect, 6

BodiesInASetting, 23
Butterfly(), 15
Butterfly(String,MyPoint), 15
butterflyMenu, 16, 18
butterflyMenuLabels, 16, 18

close(), 18
contains(int,int), 11

direction, 6
display(Graphics), 11
dist(MyPoint), 4

film, 16, 18
findBody(int,int), 21
findBody(String), 21
Flower(String,MyPoint), 18

getAspect(), 7
getDirection(), 7
getFilm(), 10, 17, 19
getName(), 7
getNbAspects(), 10, 17, 19
getNbDirections(), 10, 17, 19
getPosition(), 7
getStep(), 14

image(), 11
initFilm(Applet,String,int,int), 10
initialize(Applet), 17, 19
inPlace(int), 16
isOpen(), 18

moveTo(MyPoint), 9, 15
MyPoint, 4
MyPoint(int,int), 4

name, 6
nbAspects, 16, 18
nbDirections, 16, 18
nextAspect(), 8
nextDirection(), 8

open(), 18

paintComponent(Graphics), 23
paintImmediately(), 23
parse(String), 5
perform(String), 14, 17, 19
position, 6

registerAnimatedBody(Class), 21

scale(double), 4
setAspect(int), 8
setDirection(int), 8
setName(String), 7
setPosition(MyPoint), 7
setSettingTrace(Setting,JTextArea), 11
setStep(int), 14
Setting, 20
showMenu(int,int), 14, 17, 19
step, 14
sub(MyPoint), 4

toString(), 5, 11, 15
trace(String), 12
turn(), 14

visit(Flower), 16

26

