Conservative groupoids recognize only regular languages

Martin Beaudry¹ Danny Dubé² Maxime Dubé²
Mario Latendresse Pascal Tesson²

¹University of Sherbrooke

²Laval University (Quebec City)

A guide for dishonest organizers of Rock-Paper-Scissors tournaments

Martin Beaudry¹ Danny Dubé² Maxime Dubé²
Mario Latendresse Pascal Tesson²

¹University of Sherbrooke

²Laval University (Quebec City)

Examples

In each of the following strings, is it possible to organize the tournament such that Paper is the winner?

- PRRPRRPPR
- RSRSSRPS
- SRRPRSPSRPPSPS

Examples

In each of the following strings, is it possible to organize the tournament such that Paper is the winner?

- PRRPRRPPR
- RSRSSRPS
- SRSRRPRSPSRPPSPS

Let $\Lambda(P) \subseteq \{R, P, S\}^*$ be the set of strings which can be evaluated to P given the right evaluation tree. How can one characterize $\Lambda(P)$?

Monoids and groupoids

Definition

A groupoid is a set with a binary operation.

Definition

A monoid is a set with a binary associative operation and an identity element for that operation.

Monoids and groupoids

Definition

A groupoid is a set with a binary operation.

Definition

A monoid is a set with a binary associative operation and an identity element for that operation.

Example

Let $H = \{R, P, S\}$. The Rock-Paper-Scissor game defines a groupoid on this set with multiplication given by

$$PP = RP = PR = P$$

 $RR = RS = SR = R$

$$SS = PS = SP = S$$

Finite monoid \approx finite automaton

Definition

 $L \subseteq \Sigma^*$ is recognized by a finite monoid M if there exists $\phi : \Sigma \to M$ (extends to a homomorphism from Σ^* to M^*) s.t.

 $x \in L \Leftrightarrow \text{product } \phi(x) \text{ lies in some accepting subset } F.$

Finite monoid \approx finite automaton

Definition

 $L \subseteq \Sigma^*$ is recognized by a finite monoid M if there exists $\phi : \Sigma \to M$ (extends to a homomorphism from Σ^* to M^*) s.t.

 $x \in L \Leftrightarrow \text{product } \phi(x) \text{ lies in some accepting subset } F.$

Theorem (Kleene, algebraic formulation)

L is recognizable by a finite monoid iff L is regular.

Recognition by groupoids

Definition

 $L \subseteq \Sigma^*$ is recognized by a finite groupoid H if there exists $\phi : \Sigma \to H$ s.t. $x \in L \Leftrightarrow \phi(x)$ can be evaluated to some element in F

accept if some evaluation is $h \in F$

Recognition by groupoids

Definition

 $L \subseteq \Sigma^*$ is recognized by a finite groupoid H if there exists $\phi : \Sigma \to H^*$ s.t. $x \in L \Leftrightarrow \phi(x)$ can be evaluated to some element in F

accept if some evaluation is $h \in F$

Recognition by groupoids

Definition

 $L \subseteq \Sigma^*$ is recognized by a finite groupoid H if there exists $\phi : \Sigma \to H$ s.t. $x \in L \Leftrightarrow \phi(x)$ can be evaluated to some element in F

Theorem

L is recognizable by a finite groupoid iff L is context-free.

Groupoids without context-free capabilities

Theorem (Caussinus, Lemieux (94) - Beaudry, Lemieux, Thérien (97))

- If H is a loop, i.e. a groupoid with an identity element and left/right inverses then H can only recognize regular languages.
- L is recognizable by a loop iff L is a regular open language.

Groupoids without context-free capabilities

Theorem (Caussinus, Lemieux (94) - Beaudry, Lemieux, Thérien (97))

- If H is a loop, i.e. a groupoid with an identity element and left/right inverses then H can only recognize regular languages.
- L is recognizable by a loop iff L is a regular open language.

Theorem (Beaudry, Lemieux, Thérien (05))

If the multiplication monoid of H satisfies the identity

$$(xy)^{\omega}(yx)^{\omega}(xy)^{\omega}=(xy)^{\omega}$$

for some ω then H can only recognize regular languages.

Main result

Definition

A groupoid H is *conservative* if $xy \in \{x, y\}$ for any $x, y \in H$.

Example

- $\{r, p, s\}$ is a conservative groupoid.
- Any variant of the game with more objects (e.g. Spock, Lizard) defines a conservative (and commutative) groupoid.

Main result

Definition

A groupoid H is *conservative* if $xy \in \{x, y\}$ for any $x, y \in H$.

Example

- $\{r, p, s\}$ is a conservative groupoid.
- Any variant of the game with more objects (e.g. Spock, Lizard) defines a conservative (and commutative) groupoid.

Theorem

Any language recognized by a conservative groupoid H is regular.

Basic definitions and notation

Definition

Let H be a groupoid. Let $a \in H$. Let $\sigma \subseteq H$. Let $x \in H^*$.

- $W(x) = \{a \in H : a \text{ wins on } x \text{ given the right evaluation tree} \}.$
- $\Lambda(a) = \{x : a \in W(x)\}.$
- $\Lambda(\sigma) = \{x : W(x) \cap \sigma \neq \emptyset\} = \bigcup_{a \in \sigma} \Lambda(a)$

Definition

Let H be a (commutative) conservative groupoid. An element b is favorable to an element a if ba = ab = a. We define $f(a) = \{b : b \text{ is favorable to } a\}$

Lemma

For any $a \in H$ and any $x \in H^*$ we have $a \in W(x)$ iff x = yaz such that

- there exists $b \in W(y)$ with $b \in f(a)$ (or $y = \epsilon$)
- there exists $c \in W(z)$ with $c \in f(a)$ (or $z = \epsilon$)

Lemma

For any $a \in H$ and any $x \in H^*$ we have $a \in W(x)$ iff x = yaz such that

- there exists $b \in W(y)$ with $b \in f(a)$ (or $y = \epsilon$)
- there exists $c \in W(z)$ with $c \in f(a)$ (or $z = \epsilon$)

Lemma

For any $a \in H$ and any $x \in H^*$ we have $a \in W(x)$ iff x = yaz such that

- there exists $b \in W(y)$ with $b \in f(a)$ (or $y = \epsilon$)
- there exists $c \in W(z)$ with $c \in f(a)$ (or $z = \epsilon$)

Lemma

For any $a \in H$ and any $x \in H^*$ we have $a \in W(x)$ iff x = yaz such that

- there exists $b \in W(y)$ with $b \in f(a)$ (or $y = \epsilon$)
- there exists $c \in W(z)$ with $c \in f(a)$ (or $z = \epsilon$)

Lemma

For any $a \in H$ and any $x \in H^*$ we have $a \in W(x)$ iff x = yaz such that

- there exists $b \in W(y)$ with $b \in f(a)$ (or $y = \epsilon$)
- there exists $c \in W(z)$ with $c \in f(a)$ (or $z = \epsilon$)

Lemma

For any $a \in H$ and any $x \in H^*$ we have $a \in W(x)$ iff x = yaz such that

- there exists $b \in W(y)$ with $b \in f(a)$ (or $y = \epsilon$)
- there exists $c \in W(z)$ with $c \in f(a)$ (or $z = \epsilon$)

Lemma

For any $a \in H$ and any $x \in H^*$ we have $a \in W(x)$ iff x = yaz such that

- there exists $b \in W(y)$ with $b \in f(a)$ (or $y = \epsilon$)
- there exists $c \in W(z)$ with $c \in f(a)$ (or $z = \epsilon$)

Equivalently
$$\Lambda(a) = \Lambda^{\epsilon}(f(a)) \cdot \{a\} \cdot \Lambda^{\epsilon}(f(a))$$

Example

For Rock-Paper-Scissors $\Lambda(p) = \Lambda^{\epsilon}(\{r, p\}) \cdot \{p\} \cdot \Lambda^{\epsilon}(\{r, p\})$.

Characterizing words on which one of σ can win

Lemma

For any $\sigma \subseteq H$

$$\Lambda(\sigma) = \bigcup_{a \in \sigma} \Lambda^{\epsilon}(f(a) \cup \sigma) \cdot \{a\} \cdot \Lambda^{\epsilon}(f(a) \cup \sigma).$$

Characterizing words on which one of σ can win

Lemma

For any $\sigma \subseteq H$

$$\Lambda(\sigma) = \bigcup_{a \in \sigma} \Lambda^{\epsilon}(f(a) \cup \sigma) \cdot \{a\} \cdot \Lambda^{\epsilon}(f(a) \cup \sigma).$$

 $b \in f(a)$ $c \in \sigma$

Characterizing words on which one of σ can win

Lemma

For any $\sigma \subseteq H$

$$\Lambda(\sigma) = \bigcup_{a \in \sigma} \Lambda^{\epsilon}(f(a) \cup \sigma) \cdot \{a\} \cdot \Lambda^{\epsilon}(f(a) \cup \sigma).$$

Example

For Rock-Paper-Scissors

$$\Lambda(\{p,r\}) = \Lambda^{\epsilon}(\{r,p\}) \cdot \{p\} \cdot \Lambda^{\epsilon}(\{r,p\}) \cup \Lambda^{\epsilon}(\{r,p,s\}) \cdot \{r\} \cdot \Lambda^{\epsilon}(\{r,p,s\})$$

A context-free grammar for $\Lambda(a)$

Consider the following context free grammar. Non terminals are B_{σ} for each $\emptyset \neq \sigma \subseteq H$.

$$egin{aligned} B_{\sigma} &
ightarrow \epsilon & & ext{for all } \sigma \ B_{\sigma} &
ightarrow B_{\sigma'} a B_{\sigma'} & & ext{for all } a \in \sigma ext{ and } \sigma' = \sigma \cup f(a) \end{aligned}$$

Lemma

$$L(B_{\sigma}) = \Lambda^{\epsilon}(\sigma)$$
 for all σ .

A context-free grammar for $\Lambda(a)$

Consider the following context free grammar. Non terminals are B_{σ} for each $\emptyset \neq \sigma \subseteq H$.

$$egin{aligned} B_{\sigma} &
ightarrow \epsilon \ &B_{\sigma}
ightarrow B_{\sigma'} a B_{\sigma'} \end{aligned} \qquad & ext{for all } \sigma \ & ext{for all } a \in \sigma ext{ and } \sigma' = \sigma \cup f(a) \end{aligned}$$

Lemma

$$L(B_{\sigma}) = \Lambda^{\epsilon}(\sigma)$$
 for all σ .

Example

$$B_{p} \rightarrow B_{\{p,r\}} p B_{\{p,r\}}$$

 $B_{\{p,r\}} \rightarrow B_{\{p,r\}} p B_{\{p,r\}}$
 $B_{\{p,r\}} \rightarrow B_{\{r,p,s\}} r B_{\{r,p,s\}}$

From the grammar to regular expressions

- Construct regular expressions for each $L(B_{\sigma})$ starting with $\sigma = H$ then each σ of size |H| 1 then |H| 2 and so on.
- Each production rule from B_{σ} is either self-recursive or appeals to a $B_{\sigma'}$ with $|\sigma'| > |\sigma|$.
- Suppose we have constructed regular expressions r_{μ} for each $|\mu| > |\sigma|$. Assume $\sigma = \{a_1, a_2, b_1, b_2\}$ and the productions from B_{σ} are

$$B_{\sigma} \rightarrow B_{\sigma} a_1 B_{\sigma} \mid B_{\sigma} a_2 B_{\sigma} \mid B_{\gamma} b_1 B_{\gamma} \mid B_{\eta} b_2 B_{\eta}.$$

Then $r_{\sigma} = (a_1 | a_2 | r_{\gamma} b_1 r_{\gamma} | r_{\eta} b_2 r_{\eta})^*$.

How to cheat in favor of paper

$$B_{p} \rightarrow B_{\{p,r\}} p B_{\{p,r\}}$$

 $B_{\{p,r\}} \rightarrow B_{\{p,r\}} p B_{\{p,r\}}$
 $B_{\{p,r\}} \rightarrow B_{\{r,p,s\}} r B_{\{r,p,s\}}$

- $r_{\{r,p,s\}} = (r|p|s)^*$
- $r_{\{r,p\}} = ((r|p|s)^* r(r|p|s)^* | p)^*$
- $r_p = ((r|p|s)^*r(r|p|s)^* | p)^*p((r|p|s)^*r(r|p|s)^* | p)^*$

Main result

Theorem

For any conservative groupoid H and any $h \in H$ the language $\Lambda(h)$ is regular.

Main result

Theorem

For any conservative groupoid H and any $h \in H$ the language $\Lambda(h)$ is regular.

Theorem

Any language $L \subseteq A^*$ recognized by a conservative groupoid lies in $\Sigma_2[<]$, i.e. it is a finite union of languages of the form

$$A_0^* a_1 A_1^* \dots A_{k-1}^* a_k A_k^*$$

with $A_i \subseteq A$ and $a_i \in A$.

Languages recognizable

Theorem

Suppose $L \subseteq A^*$ is recognizable by a conservative groupoid. Then

- $L \in \Sigma_2[<]$
- $L = L^+$
- For all $s, x, t \in A^*$ it holds that $sxt \in L \Rightarrow sx^2t \in L$.

Theorem

If $L\subseteq A^*$ lies in $\Sigma_1[<]$ i.e. if it is a union of languages of the form

$$A^*a_1A^*\ldots A^*a_kA^*$$

with $a_i \in A$ then L is recognizable by a conservative groupoid.

Open puzzles

Puzzle

Say that a conservative groupoid H can count up to t if there exists a word $u \in H^*$ s.t. $W(u^{t-1}) \neq W(u^t)$. For instance $\{r, p, s\}$ counts up to 2 since $W(rps) = \{r, s\}$ but $W(rpsrps) = \{r, p, s\}$.

We know that there is an H that counts up to t with 2t elements. This is not optimal since we also know a conservative groupoid that counts up to 6 with only 5 elements.

Open puzzles

Puzzle

Say that a conservative groupoid H can count up to t if there exists a word $u \in H^*$ s.t. $W(u^{t-1}) \neq W(u^t)$. For instance $\{r, p, s\}$ counts up to 2 since $W(rps) = \{r, s\}$ but $W(rpsrps) = \{r, p, s\}$.

We know that there is an H that counts up to t with 2t elements. This is not optimal since we also know a conservative groupoid that counts up to 6 with only 5 elements.

Puzzle

Find L and K such that L and K are recognizable by a conservative groupoid but $L \cap K$ is not.