Rewrite Systemsfor Symbolic Evaluation of C-like Preprocessing

Mario L atendresse

Northrop Grumman IT
Technology Advancement Group/FNMOC/U.S. Navy
7 Grace Hopper, Monterey, CA, USA 93943
E-mail: mari o. | at endr esse. ca@met net . navy. m |

Abstract

Automatic analysis of programs with preprocessing di-
rectives and conditional compilation is challenging. The
difficulties range from parsing to program understanding.
Symbolic evaluation offers a fundamental and general ap-
proach to solve these difficulties. It finds, for every line of
code, the Boolean expression under which it is compiled or
reached. It can also find all the possible values of prepro-
cessing variables (macros) for each line of code. Condi-
tional values have been shown an effective representation
to do fast practical symbolic evaluation of preprocessing;
but their interaction with macro expansion and evaluation
has not been formally investigated. We present convergent
rewrite systems over conditional values that can interact
with macro expansion and evaluation and transform them
into Boolean expressions. Once transformed, well known
simplification techniques for Boolean expressions can be
applied. This entails a more complete solution to the effi-
cient symbolic evaluation of C-preprocessing using condi-
tional values.

1 Introduction

Textual preprocessors similar to cpp might be consid-
ered obsolete and ill-designed tools, but they are still widely
used in practice from small to large software projects. C-
like preprocessing, as described by ANSI C, and imple-
mented by cpp, is a de facto approach for preprocessing
not only for C but also for programming languages as di-
verse as Fortran and Haskell. Moreover the design of some
textual preprocessors are similar to cpp [7, 11].

Many researchers [20, 8, 19, 16, 5, 6, 9] have described
some of the difficulties of code analysis, maintenance and
refactoring in the presence of such preprocessing. Indeed,
conditional compilation, free preprocessing variables and
macro expansion bring difficulties at many levels, from
parsing to program understanding.

Several refactoring and visualization tools [20, 1, 15,
17, 12, 16] are based on ad hoc control-flow analyses
of preprocessing—they would benefit from a precise and
complete (non-abstract) control-flow analysis of conditional
compilation in the presence of macro expansion.

As far as we know, all solutions to handle program analy-
sis in the presence of preprocessing are based on heuristics;
and they are often based on partial parsing. These solutions
may be good enough for certain specific problems, but they
still leave open a general approach capable of handling pre-
cisely the semantics of C-like preprocessing.

A precise, non-abstract, symbolic evaluation of C-like
preprocessing is a promising approach since such concrete
preprocessing is not Turing complete?.

In [14] a symbolic evaluation technique was presented to
provide a fundamental solution to automatic analysis of pre-
processed code. It does not require the code to be parseable
by a context-free grammar. Its direct goal is to find, for ev-
ery line of code, the condition under which it is compiled
or reached. It also provides, for every line of code, the pos-
sible values—under guarded Boolean expressions—of pre-
processing variables?.

Given such information, further analysis or transforma-
tions can be done. For example, all the statically dead code
could be removed?, all possible macro values at every line
of code can be found, refactoring operations such as renam-
ing of variables can be made precise, etc.

This symbolic evaluation uses conditional values (c-
values)*. They were shown, in [14], to be effective to avoid

1This can easily be proven, since ANSI C preprocessing only possible
form of iteration isthe #i ncl ude mechanism, which has an nested depth
constraint.

2In practice, such information is not kept for every line of code but for
every segment of code which is a sequence of lines without preprocessing
conditionals.

3This should not always be done, since some parts of the code might
intentionally be cut out temporarily.

4We might call them conditional expressions as they may be based on
preprocessing variables and operators but since they are only bound to pre-
processing variables we prefer the term ‘value' .

path analysis and its exponential time complexity of con-
ventional symbolic evaluation.

Informally, a c-value ¢? e; ¢ e; may be bound to a pre-
processing variable: if the condition c is true, its value is e,
otherwise it is es.

The main objective of this paper is to formalize the ma-
nipulation of c-values in the pressence of macro-expansion,
parsing and evaluation of if-directives; in particular, to
present convergent rewrite systems for these three phases of
preprocessing. In essence, these rewrite systems transform
the c-values to Boolean expressions annotating the lines of
code and the values of preprocessing variables.

We emphasize that, as far as we know, all works on sym-
bolic preprocessing do not take in consideration these three
phases such that a precise solution is obtained. In partic-
ular, the correct interleaving of macro-expansion, parsing
and evaluation during preprocessing is essential: therefore,
three rewrite systems are necessary.

In this paper we use the vocabulary and notations of [4]
for rewrite systems.

Section 2 presents the formal syntax of terms, including
c-values, and the symbolic evaluation algorithm. Section 3
discusses the identification of free preprocessing variables
used in Boolean terms. Section 4 presents the concrete and
symbolic expansion, parsing and evaluation of conditionals
in the presence of c-values and the main syntax of our terms.
The rewrite systems are presented in Section 5. Section 6
presents some rewrite examples. Comparisons to related
works is presented in Section 7.

2 Symbolic algorithm and c-values

We reproduced in Figure 1 the symbolic evaluation algo-
rithm presented in [14]; in particular the Mer ge procedure
which generates the c-values.

It is based on the control flow graph (CFG) built from
the source code and based on the #i f directives. We as-
sume that all include directives use only constant argument.
In this manner the CFG can be built prior to preprocess-
ing. Such an assumption is essential, otherwise some in-
cluded files would be unknown from the source code. Con-
sequently, the CFG does not contain any include directive.
Note that, due to recursive file inclusion, the CFG may con-
tain loops.

The objective of this algorithm is to find for every line of
code the condition under which it is compiled or reached.
It also finds all the possible values of every preprocessing
variable. Complete examples can be found in [14].

In this paper, concrete preprocessing refers to the pre-
processing done by the preprocessor (i.e., cpp); symbolic
preprocessing refers to the preprocessing done by our sym-
bolic evaluation algorithm.

Essentially, the symbolic algorithm traverses the CFG,
keeps track of the definitions done by #def i ne (line 12)
on stack S of tables, evaluates the if-directive condition-
als (line 13), merges new definitions into c-values and an-
notates blocks of code (i.e., code segments) with Boolean
terms (line 8).

On line 13, the if-directive conditional is expanded
which may then contain c-values; but it is “simplified”
(rewritten) to remove them. This elimination is proven by
the rewrite systems to be defined. All c-values are generated
by the Mer ge procedure on line 30. Since v, and vy may
be c-values themselves, c-values may be nested forming a
tree.

Informally, the c-value ¢ 7 e; ¢ e bound to a preprocess-
ing variable = means: if the condition c is true, the value of
z is e; otherwise it is e.

We use two sets of terms for c-values. The first one, 7¢,
handles the unparsed sequences of tokens and can interact
with parsing and evaluation. The second one, 7¢+, applies
to parsed and evaluated sequences of tokens and is used for
the last phase of c-value rewriting.

The first c-value terms syntax is given in Figure 2. Such
a c-value is either a preprocessing (concrete) value, the ini-
tial value of a free variable, or a guarded set of c-values
structured as a tree. The formal syntax of concrete value is
represented as terms and given in Figure 3. We defer discus-
sion of free preprocessing variables, and their initial value,
in Section 3. A c-value that is neither concrete nor the initial
value of a free variable is represented as ¢ 7 e; ¢ es, Where ¢
is a Boolean expression (a 7z term) and eq, e5 are c-values.
The syntax of terms 7 are given in Figure 4.

Concrete values correspond to values that are generated
during a concrete preprocessing. It is either a sequence of
valid tokens, T (defined) or L (undefined), generated re-
spectively by the directive #def i ne without a list of to-
kens and the directive #undef .

Note that, an unparsed c-value 7 can be interpreted as
a tree whose leaves are either L, T, a free preprocessing
variable, or a sequence of valid tokens. These sequences
of tokens are unparsed since parsing occurs during condi-
tional evaluation after macro expansion. Such a representa-
tion allows the combination of c-values, whose leaves may
be syntactically invalid, to form syntactically valid C-like
conditional expressions.

For unparsed c-values, we will enclose sequences of to-
kens between single quotes as in def(x;)?‘2 + 4’ ¢ ‘0"

After the symbolic evaluation, every line of code, includ-
ing directives, is annotated by a Boolean expression, here-
after called a final Boolean term as defined by the 75 terms.
Note that their definition is not based on c-values—they do
not contain any c-value.

The terms 7z include errors, represented by the domain
Err, since different errors may occur during parsing and

7

8.

IR e

. Main

Push empty table [] onto S

Call V(A, true)

The CFG A contains all conditions

The table in S has the final variable bindings
. End

. Procedure V(n, c.) {
add c,. to condition list of node n;
test node n for possible infinite iteration;

10. Case node n

11. block of code: nothing to do;

12. define: add definition to top table of S;

13. if: Let ¢ be its expanded/simplified condition
14. if c. A cis satisfiable then {

15. Push empty table [] onto S;

16. Call V(n.then, c. A ¢);

17. Pop top table from S and assign it to T';
18. } else T is empty;

19. if c. A —c is satisfiable and n.else exists then {
20. Push empty table [] onto S;

21. Call V(n.else, c. A\ —c);

22. Pop top table from S and assign it to F;
23. } else E is empty;

24. Merge(T', E, S, ¢);

25. End Case
26. if n.next exists then Call V (n.next, c.);

27. }

28. Procedure Merge(T', E, S, ¢) {
20. For-each variable z inT or E

30. Bind x with ¢ 7 v; ¢ vy into the top table of S
31. where vy isv(x, T : S),

32. veisv(z, E : 5)

33. }

Figure 1. Our symbolic evaluation algorithm

Tc = e eeTp

| xy € FPVar

| c¢?e10es c€Tp,er,e0 €T
FPVar := Free Preprocessing Variables

Figure 2. The c-value terms 7¢

Tp = T

| L

| ti...t, n > 0,t; € VTok
VTok := Valid Tokens

Figure 3. The preprocessing (concrete) terms 7p

TB = b b € BVval
| def(xr) xy € FPVar
| —e e€Tp
| e1o0es e1,ea € Tg,0 € {A,V}
| Z(e) e€Tg
| r e Err
def . CVal — Bval
7 : ECst — BVal U Err
CVAL = {T,L,t1...tn}
BVal = {true,false}
ECst = Constants
FPVar := Free Preprocessing Variables
Err = Errors
Figure 4. The final Boolean terms 7z
TE = c c € ECst
| s ry; € FPVar
| oe e € Tg,0 € EUOp
| e1o0es e1,e2 € Tp,0 € EBOp
EBOp = {+,<,##, ...}
EUOp = {#,...}
ECst = Constants
FPVar := Free Preprocessing Variables
Figure 5. The arithmetic terms 7z
TCT = e e€lp
| Z(e) ec TCT
| c?e1 ey CETB,el,GQETCT

Figure 6. The c-value terms 7¢¢

evaluation. The complete interpretation of such errors is
outside the scope of this paper. It actually depends on the
tool using symbolic evaluation. But one simple application
is to detect erroneous conditionals and report them to the
user. It can also be used to detect erroneous combinations
of preprocessing variables on conditionals. Such an exam-
ple is given in Section 6.

The function Z converts a constant value to true or
false: it gives true if the value is a number and not 0.
For a non numeric value it gives an error.

The arithmetic terms, described in Figure 5, may appear
in Boolean terms. Their occurrence is mainly due to free
preprocessing variables. The formal description 75 is ac-
tually too general, since such a term will always contain at
least one free preprocessing variable—all operators are ap-
plied between constants.

The parsed and evaluated c-value terms 7¢¢ are pre-
sented in Figure 6. These are never bound to preprocess-
ing variables, but are the result of expansion, parsing and
evaluation. This occurs at line 13 in algorithm of Figure 1.

. int main(char **argv[], int argc){
2. #i f defi ned(El

3. #define S "HELLO'
4. #endi f

5.

6. #if de i ned(S)

7. printf(S);

8. #endi f

9. }

10.

11. gcc -

DE f.
12. gcc -DS—’ "ALLO" f.c
13. gcc - D’prlntf(X) =printf("!")" f.c

Figure 7. File f . c: Any identifier may be a free
preprocessing variable (fpvar)

The 74 terms may be interpreted as trees whose leaves
are Boolean terms 7. Indeed, as presented in Section 5,
the rewrite system R applied over 7¢ flatten out the trees
to obtain final Boolean terms.

In the following, c-value may refer to the parsed or un-
parsed case, the context should make it clear.

3 FreePreprocessing Variables

In this paper, a free preprocessing variable (fpvar) is a
possible unbound identifier, as found by our symbolic pre-
processing algorithm, in a if-directive conditional. It may be
a macro. They are all discovered at line 30 of the symbolic
algorithm presented in Figure 1: if x is not found accord-
ing to v(z, T : S) or v(z, E : S), x becomes a fpvar. It
will appear in a c-value without a concrete value, that is, as
itself.

For example, in Figure 7, identifier E is a fpvar since
at line 2, in a if-directive conditional, it may be unbound;
likewise for S at line 6. Line 11 compiles f . ¢ defining
E and indirectly S; whereas line 12 directly defines S. In
both cases, the compile time definitions gave initial values
to fpvars.

We might also consider other identifiers as fpvar, but it is
in general impossible, from the source code alone, to detect
all intended free preprocessing variables. For example, line
13 is another valid compilation where identifier pri nt f is
intended as a fpvar—a macro of rank one. This is impossi-
ble to infer unless further information is given outside the
source code®. Nevertheless, as defined, the fpvar is suffi-
cient for specifying final Boolean terms.

The initial value of a preprocessing variable z is a con-
crete value, denoted ;. It may be specified before concrete
preprocessing as shown on lines 11 to 13 in Figure 7. Note
that in the definition of c-value terms 7~ and 7p the do-
mains FPvar and VTok are supposed disjoint. That is, a to-

5More on this in the conclusion.

#define R(x) 2##x
#define H(x R(x)

#if def i ned(

[* is not de |ned */
#el se)

/* Wis defined */
#endi f

P® NS oW

Figure 8. def i ned is evaluated during expansion

ken x may represent the fpvar = but it is made distinct to x,
since the former can resolve—during parsing—to the sym-
bolic value of = whereas the latter represent itself, that is the
value given to 2 outside the source code. It is an essential
part of our work that c-value representation is taking into
account parsing which occurs during preprocessing. More
on this topic in the next sections.

4 Conditional expansion, parsing, evaluation

Although a detailed formal semantics for ANSI C pre-
processing could be useful, it is not required for our pur-
pose. Instead, we present an informal explanation of con-
ditionals, detailed enough to define the interaction between
concrete preprocessing and the rewrite systems for c-values.

In concrete ANSI C preprocessing, expansion and evalu-
ation do not take place when a variable is defined; but only
when a variable is used. That is, a preprocessing variable
definition done with #def i ne, possibly with parameters,
is simply associated with a sequence of tokens. Expansion
occurs on the C code itself and on several directives, in par-
ticular the if-directives. Only the if-directive expansion and
evaluation is of interest to us.

Actually, when the condition of an if-directive is eval-
uated, there are possible macro expansions and parsing,
mixed with the evaluation of the def i ned operator to ‘0’
or ‘1’, and then a final parsing and evaluation based on the
operators ==, >, +, etc. If the result is zero, it is interpreted
as false; otherwise as true.

From the code presented in Figure 8 we can observe
the evaluation of the def i ned operator during expansion.
If this code is compiled with Wdefined, the macro call
H(defi ned(W) evaluates to H(1), then expands into
R(1) finally reaching 21 by string catenation: the condi-
tion’ 21 == 20’ evaluates to 0, which is interpreted as
false. We might consider the evaluation of def i ned(W
as its expansion, but token substitution and evaluation are
mechanisms that we must differentiate to define a precise
interaction of preprocessing with c-values.

The full details of cpp macro expansion is outside the
scope of this paper. It suffices to know that the rewrite sys-
tem R,, presented in the next section, interacts with it only

PE(c?el 062)
PE(t,...t,)

c¢?PE(e1) o PE(e2)
PE(t1...tp)

Figure 9. Symbolic parsing/evaluation based on
concrete parsing/evaluation

for the def i ned operator.

Once expansion is done, a term 7x is obtained (see Fig-
ure 12). The rewrite system R, is applied to it to obtain one
term 7.

The symbolic parsing and evaluating function, denoted
PE, is applied after macro expansion on a term 7x and
generates a term Z¢¢. It is based on a modified concrete
one, denoted PE as presented in Figure 9. The modified
concrete parsing and evaluation functions must handle fp-
vars. -

The function PE may generate errors of parsing or eval-
uation. This is actually part of the domain of 7¢.

The result of PE is wrapped into the function symbol Z
then the rewrite system R, described in the next section, is
applied: a final Boolean term is obtained.

The next section presents the three rewrite systems
briefly mentioned.

5 Threerewrite systems

As explained in the previous section, for symbolic pre-
processing, the different phases of evaluation of a condi-
tional requires different rewrite systems applied to the c-
values. Therefore, we will define three rewrite systems:

R4 isapplied for the def i ned operator during expansion;

R, is applied before parsing for the final evaluation of a
conditional;

Ry is applied after the final evaluation of a conditional to
obtain a Boolean term 735.

5.1 System R, for the def i ned operator

During concrete expansion the argument of the
def i ned operator is not expanded. Actually the opera-
tor is evaluated to 1 if its argument, a valid identifier, has
been defined; to 0 otherwise. These 0 and 1 can be used as
nominal values for arithmetic and relational operators ap-
plied at the final concrete evaluation. For symbolic prepro-
cessing, the argument of the def i ned operator is also not
expanded; but its symbolic value is a c-value which should
be rewritten to allow the final evaluation.

The rewrite system R, presented in Figure 10, is applied
during expansion. The function def represents the concrete

def(c?e10es) — c?def(er)odef(es)
def(l) — ‘O
Ry = def(T) — ‘17
def(ty...t,) — ‘1’

def(x;) — def(z7)?1’ 00’

Figure 10. Rewrite system for operator def i ned

def i ned operator. Note that def ranges over {‘0”,“1°},
whereas def ranges over {true, false}.

The last rule may appear redundant, as it rewrites def
into a c-value using def. But, in general, this is required
since the def i ned operator actually generates a token (‘0’
or “1°) which may be used to its nominal value in a numeri-
cal operation (e.g. +) or with other operators (e.g. ##, cate-
nation). In many cases, evaluation and other rewrite systems
will simplify def (z7) 7 ‘1’ ¢ ‘0’ to def(z7).

Proposition 1 The rewrite system R, is confluent and ter-
minating.

Proof Fortermination, the only unclear case is the first rule
since the others rewrite into terms without def. If we inter-
pret c-values as finite trees, the first rule reduces the appli-
cation of def to a term with trees of lower heights. Since
the trees are finite, this must terminate. It is confluent since
there are no critical pairs among the left hand sides of the
rules. O

Therefore, once expansion and Ry have been applied,
there are no def left in the sequence of tokens and c-values.
Such sequences are formally described by terms 7 in Fig-
ure 12. The next subsection describes the rewrite system to
apply over them.

5.2 System R. is applied before parsing and eval-
uation

The rewrite system R., presented in Figure 11 (on the
next page), is applied over 7x before parsing for the evalu-
ation of a conditional.

During concrete preprocessing, an if-conditional is ex-
panded then parsed into a valid conditional expression for
evaluation. But for symbolic preprocessing, the variables
are bound to c-values: expansion results into a sequence of
c-values and tokens; the concrete parser and evaluator can-
not be directly applied to it.

The system R, operates over the terms 7. Essentially,
R. moves tokens inward c-values and combines adjacent
c-values to obtain combinations of sequences of tokens.

Proposition 2 The rewrite system R, is confluent and ter-
minating.

(c?eroeg)t —
where t € VTok U FPVar

R, = t(c?e;0er) —
where t € VTok U FPVar
(01 ?61062)(02?63064) —

c?(ert)o(eat)
c?(ter)o(tes)

C1 ? (02 ? (61 63) < (61 64)) < (02 ? (62 63) < (62 64))

Figure 11. R, is applied over 7x before parsing and evaluation

TX = e
| €1 €2

EETC
e, e € TX

Figure 12. The terms 7x after macro expansion

Proof Termination is certain since all the rewrite rules re-
duce the length of terms 7. It is confluent since there are
no critical pairs on the left hand sides of the rules.C

The result of R, is a single c-value. It contains all possi-
ble sequences of tokens, as leaves of this tree, to be parsed
and evaluated. Once parsing and evaluation have been ap-
plied to it, a single term 7 is obtained. It is wrapped into
Z. The next subsection presents a rewrite system to obtain
asingle Boolean term 75 fromiit.

5.3 System R; is applied after evaluation

The rewrite system R ¢, presented in Figure 13, is applied
over 7¢¢ terms. Actually, several rules are not essential as
they could be translated by the last one. The other rules
simplify the resulting Boolean terms, in the sense that the
former reduce the size of the latter.

Proposition 3 The rewrite system R is terminating.

Proof Interpreting the terms 7¢4 as finite trees: all the
rules involving Z either rewrite without Z or rewrite Z
to trees of lower heights; similarly for Boolean terms.
The rewrite rules of c-values always reduce the number of
nodes; therefore it must terminate. O

The system R is not confluent as the following example
shows: true ? Z(2) o Z(3) may be rewritten as Z(2) using
rule 1 or as true A Z(2) V —true A Z(3) using the last
rule. Although, they are equivalent from the point of view
of Boolean algebra. We state without proof that modulo
Boolean equivalence, R is confluent.

We can also make R; confluent by removing the first
eight rules. This would increase the size of final Boolean
terms. Or better, separate Ry in three rewrite systems, one
for Z, one for the first rules and one for the last.

In any case, after application of R; over a term 7¢¢ one
single Boolean term is obtained. This term is used on line
13 of the symbolic algorithm of Figure 1. By induction we
can prove that lines 16 and 21 always call V' with a ¢, being

true?e; o eq — e
false?e; oeg — e9
c?trueo false — ¢
c?false o true — —c
clece — e
c?(c?eroer)oes — clejoes
clero(c?ezves) — clejoes
Z(n) — true

Ry =4 wheren #0
Z(0) — false
Z(r) —
where r € Err
Z(e1 0 e3) — Z(e1) o Z(es)
where o € {A, V}
Z(c?e;0e3) — c?Z(e1) o Z(ez)
clepoey — cAerVeAes
where e1,es € Tp

Figure 13. Ry is applied over 7¢ after evaluation

. #if defined(F)
define X
#endi f

ed(X) && defined(Y)

NO oW

Figure 14. Example with no numerical values

a Boolean term; which proves that line 8 always annotates
a node with a Boolean term 7.

6 Rewrite Examples

In this section we present applications of the rewrite sys-
tems on concrete code segments. In the following discus-
sion, the preprocessing variable values are determined by
the symbolic algorithm presented in Figure 1. The pre-
sented cases are all simple enough to be manually calcu-
lated.

Figure 14 shows a code segment with three fpvars.

1. Atline 3, Xis boundto def(Fy)? T o X|.

CH#if def|ned(F)
. # define X
. #endi f

#if X >
t

_\IG)U\»&OJ[\D»—A

Figure 15. Example with numerical values

2. During the expansion of the conditional at
line 5 the term defined(X) is expanded
to def(def(F;)?T o X;) and rewritten to
def(Fr)7°1" o (def(X;)?71’0°0") ; the term
def i ned(Y) is expanded to def(YI) and rewritten
todef(Y7)? ‘1" o0’

3. The final expansion is the term (def(F)?‘1” o
(def(X1) 710 0%)) A (def(Y7) 71" 0 “07)

4. The parsing and evaluation of PE, wrapped with
Z, gives Z((def(F;)?1 o (def(X)?100)) A
(def(Y7)71¢0))

5. Applying all the rules for Z of R; we have
(def(Fr)?true ¢ (def(Xy)?trueofalse)) A
(def(Y7) ? true o false); applying rule 3 twice we
have (def(F7)?true o def(X;)) A def(Y);
applying the last rule we finally obtain
(def(Fy) AtrueV —def(Fr) Adef(X1)) Adef(Yr)

This last Boolean term could be simplified in some obvi-
ousway to (def(Fr)Vdef (X)) Adef(Yr)whichisindeed
the condition under which line 6 is compiled.

In Figure 15 numerical operations are involved in the
conditional of line 5.

1. At line 5 the expansion is the 7x term
(def(Fr)?20°0 Xy) “> 10 +* Y7

2. RE rewrites it to (def(Fy)7‘20 > 10 + Y; o
X; > 10 + Y])

3. Parsing and evaluation, wrapped in Z, give
Z(def(F])?QO >10+Yr0 X > 10+Y1)

4. RF moves the Z symbol into the term and rewrites to
def(F]) AN Z(20 > 10 + Y]) V —|def(F1) VAN Z(X] >
10+ Y7)

In this last example we can see that the concrete parsing
and evaluation function must be modified to handle uneval-
uated free preprocessing variable.

Figure 16 shows a code segment where the if-directive
conditional is not syntactically valid without macro expan-
sion. Indeed, if Mwere defined as “3’, the if-directive condi-
tional would be ‘3 0’ or ‘3 4" which are syntactically in-
valid conditions; but as it is, the condition is always correct

_# defin
. #endi f

o. #if MY

R N
H*
o
[¢]
@
=]

13. #endi f

Figure 16. R, handles dubious conditionals

1. #define M 3 <
2. #i f defi ned(X)
3. # define Y

4. #eI se.

5. # define Y 4
6. #endi f

7.

8. #i f M Y

9. 2;

10. #endl f

Figure 17. Possible parsing erroron M Y

under the two possible combinations. The rewrite system
R. handles this correctly:

1. At line 7, the cvalue of M is
(def(X;)?7'3 <’¢*3 ==7) and the c-value of
Yis (def(X7)? 4’ “0%)

2. The expansion of the condition of line 9 is the term
(def(X;)?7'3 <03 ==7) (def(X1) 74’0 0)

3. R.givesdef(X;)?(def(X;)?'3 < 4’63 < 0')o
(def(X[)?*3 == 4’63 == O")

4, Parsing and evaluation by PE, with Z wrapping, gives
Z(def(X7)? (def(X7)?100) 0 (def(X7)?000))

5. Applying Ry gives def (X7y).

Indeed, the conditional at line 9 depends only on whether
or not variable X is defined. Consequently, symbolic evalu-
ation has found that line 10 is compiled if X is defined.

As a last example, Figure 17 shows a case of possible
parsing error. At line 8, the conditional is not syntactically
valid when X is defined: itis ‘3 < == 1’. Butitis valid
otherwise.

Here is a step by step evaluation:

1. At line 6, Mis bound to ‘3 <’, Y is bound to
def(Xy)?'== 1’4’

2. At line 8, expansion gives the 7x term
(‘3 <) (def(X)?'== 1"¢*4")

3. R.givesdef(X;)?73 < == 1’03 < 4’

4. The parsing and evaluation function PE gives
def(Xy)?error o 1; wrapped in Z it is

Z(def(Xy)?error o1)
5. RF gives (def(X7) Aerror)(—def(Xs) A true)

The interpretation of an error value in a Boolean term is
up to the application that uses symbolic evaluation. Differ-
ent purposes may need different interpretations.

7 Related Work

Somé and Lethbridge [18] work addresses the problem
of parsing C code in the presence of conditional compilation
for the language Mitel-Pascal. It mainly considers parsing
combination of code segments under the control of condi-
tional compilation. Logically incompatible conditionals are
determined to avoid parsing combinations of incompatible
code segments—it reduces the number of parsing instances.
But the determination of logically incompatible condition-
als does not take into account expansion and control-flow.

Baxter and Mehlich [2] apply a form of rewriting to con-
ditionals of if-directives over the concrete syntax. Given
some preprocessing variable bindings, a set of rewrite rules
is applied on the concrete syntax; some if-directive condi-
tionals may be simplified and possibly removed if evaluated
to true or false. That work differs from our approach
on several aspects: the rewrite rules are based on the local
concrete syntax of directives whereas we apply them taking
into account control-flow; the rules are heuristics that catch
some subset of possible simplifications; macro expansion is
not taken into account; and it is used once a set of bindings
for some free variables is known. Our approach solves this
problem since simplifying Boolean expressions given some
bindings provides a rewriting of if-directive conditionals.

Kullbach and Riediger [13] use folding (hiding) and un-
folding (showing) on concrete syntax as a visual aid in un-
derstanding source code. The technique was implemented
as part of the GUPRO program understanding environ-
ment. The authors do not address the problem of condi-
tional macro definitions—control-flow of preprocessing is
not addressed.

Favre [6] presents APP, an abstract representation of
cpp directives. It is a formal approach as the author pro-
vides a denotational semantics of APP in his Ph.D. thesis;
yet there is no efficient technique presented to symbolically
use this semantics.

Krone and Snelting [17, 12] perform a limited control-
flow analysis of preprocessing to infer the interrelations be-
tween code segments. For preprocessing, many aspects are
not addressed: macro expansion, macro evaluation and mul-
tiple inclusion of files under different variable definitions.

Our approach solves this particular problem since these in-
terrelations can be found by combining the Boolean expres-
sions of segments.

Hu et al. [10] address similar problems as ours; but as
discussed in [14], the technique used is too inefficient to
be applicable in practice—the best time complexity grows
exponentially as the number of if-directives.

Dehbonei and Jouvelot [3] use a form of conditional ex-
pressions for program analysis. It is applied to interproce-
dural constant propagation analysis. It was not designed to
handle a mixture of parsing and evaluation.

8 Conclusion and Future Work

Conditional values are at the heart of our symbolic eval-
uation of preprocessing. In essence, the conditional values
are used to avoid path analysis, but they become useful only
if a set of convergent rewrite rules are applied to interact
correctly with macro expansion, parsing and evaluation of
conditionals.

We have presented three rewrite systems applicable at
different phases of macro expansion and evaluation in the
presence of conditional values. These different systems are
necessary to correctly handle macro expansion and evalua-
tion semantics as in ANSI C. They rewrite any conditional
expression containing conditional values into Boolean ex-
pression based on the free variables. Once rewritten, con-
ventional techniques of Boolean expression simplifications
can be applied.

We have also discussed the problem of free preprocess-
ing variables identification and the expected limitation of
any systems trying to determine them.

It would be useful to design a user language to specify
not only the free preprocessing variables, but the range of
values they might take. In this manner, further information
can be provided to symbolic evaluation, and the tools based
on it, resulting in more precise analyses. Such a language
could be based on conditional values.

We have built a prototype in Scheme, but a complete im-
plementation of our approach in a common working envi-
ronment, as in xemacs, would provide a better basic mod-
ule upon which tools—for the practitioner—could be built.

References

[1] G.J. Badros and D. Notkin. A framework for preprocessor-
aware C source code analyses. Software& Practice and Ex-
perience, 30(8):907-924, 2000.

[2] 1. D. Baxter and M. Mehlich. Preprocessor conditional re-
moval by simple partial evaluation. In Eighth Working Con-
ference on Reverse Engineering (WCRE’01), pages 281-
290, 2001.

(3]

[4]

[5]

(6]

[7]

(8]

(9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

B. Dehbonei and P. Jouvelot. Semantical interprocedural
analysis by partial symbolic evaluation. In ACM SIGPLAN
Workshop on Partial Evaluation and Semantics-Based Pro-
gram Manipulation (PEPM’92), San Francisco, pages 14—
20, June 1992.

N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In
Handbook of Theoretical Computer Science, Volume B: For-
mal Models and Sematics (B), pages 243-320. 1990.

J.-M. Favre. The CPP paradox. In 9th European Workshop
on Software Maintenance, Durham (England), September
1995.

J.-M. Favre. Preprocessors from an abstract point of view. In
Proc. of the International Conference on Software Mainte-
nance, pages 329-338. IEEE Computer Society Press, Nov.
1996.

Software in the spotlight: FPP, a new implementation of an
old preprocessor. ACM SIGPLAN Fortran Forum, 15, Au-
gust 1996.

A. Garrido and R. Johnson. Challenges of refactoring C pro-
grams. In Proceedings of the international workshop on
Principles of software evolution, pages 6-14. ACM Press,
2002.

M. Harsu. Translation of conditional compilation. Nordic
Journal of Computing, 6(1), Spring 1999.

Y. Hu, E. Merlo, M. Dagenais, and B. Lagiie. C/C++ con-
ditional compilation analysis using symbolic execution. In
Proceedings of the International Conference on Software
Maintenance (ICSM’00), 2000.

IEC. ISO/IEC 1539-3 (1999-02): Information technology —
Programming languages — Fortran — Part 3: Conditional
compilation. International Electrotechnical Commission, 3,
rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzer-
land. Telephone: +41 22 919 02 11. Telefax: +41 22 919 03
00. E-mail: i nfo@ec. ch. URL: http://wwv. i ec.

ch, 1999.

M. Krone and G. Snelting. On the inference of configuration
structures from source code. In Proceedings of the 16th In-
ternational Conference on Software Engineering, Sorrento,
Italy, 1994.

B. Kullbach and V. Riediger. Folding: An Approach
to Enable Program Understanding of Preprocessed Lan-
guages. Fachberichte Informatik 7-2001, Universitat
Koblenz-Landau, Universitdt Koblenz-Landau, Institut fir
Informatik, Rheinau 1, D-56075 Koblenz, 2001.

M. Latendresse. Fast symbolic evaluation of C/C++ prepro-
cessing using conditional values. In Proceedings of the Sev-
enth European Conference on Software Maintenance and
Reengineering (CSMR’03), pages 170-179, March 2003.

T. C. Lethbridge and N. Anquetil. Architecture of a
Source Code Exploration Tool: A Software Engineering
Case Study, Computer Science Technical Report TR-9707,
University of Ottawa, Ottawa, Canada, November, 1997.

P. Livadas and D. Small. Understanding code containing
preprocessor constructs. In IEEE Third Workshop on Pro-
gram Comprehension, pages 89-97, Washington, DC, USA,
November 14-15, 1994.

G. Snelting. Reengineering of configurations based on math-
ematical concept analysis. ACM Transactions on Software
Engineering and Methodology, 5:146-189, April 1996.

(18]

[19]

[20]

S. Somé and T. Lethbridge. Parsing minimization when
extracting information from code in the presence of con-
ditional compilation. In Sixth International Workshop on
Program Comprehension, Ischia, Italy, pages 118-125, June
1998.

H. Spencer and G. Collyer. #ifdef considered harmful, or
portability experience with C news. In Summer *92 USENIX,
pages 185-198, June 1992.

M. Vittek. Refactoring browser with preprocessor. In Pro-
ceedings of the Seventh European Conference on Software
Maintenance and Reengineering (CSMR’03), pages 101-
110, March 2003.

