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Abstract

We show that masquerade detection, based on se-
quences of commands executed by the users, can be
effectively and efficiently done by the construction of
a customized grammar representing the normal be-
havior of a user. More specifically, we use the Se-

quitur algorithm to generate a context-free grammar
which efficiently extracts repetitive sequences of com-
mands executed by one user – which is mainly used
to generate a profile of the user. This technique iden-
tifies also the common scripts implicitly or explicitly
shared between users – a useful set of data for re-
ducing false positives. During the detection phase,
a block of commands is classified as either normal
or a masquerade based on its decomposition in sub-
strings using the grammar of the alleged user. Based
on experimental results using the Schonlau datasets,
this approach shows a good detection rates across all
false positive rates – they are the highest among all
published results known to the author.

1 Introduction

Masquerade detection is probably the last protection
against such malicious activity as stealing a pass-
word. Anomaly detection, based on the user’s be-
havior, is one of the primary approach to uncover a
masquerader. It can be done using data from various
sources, ranging from sequences of commands (a.k.a
programs) executed by the user to sequences of sys-
tem calls generated from the user’s activities. In this

study, we use sequences of programs executed by the
user in a Unix environment. These programs are ei-
ther explicitly called by the user or implicitly called
via other programs (e.g. scripts). Our experimental
results are based on the Schonlau datasets [6] which,
as we will see in Section 3, have both classes of pro-
grams.

In masquerade detection, the normal behavior of
a user should be represented by a user profile. It
is typically built during the training phase, done of-
fline – a training dataset, free of masquerade attacks,
should be available to do it. The masquerade detec-
tion phase, where attempts are made to classify the
behavior of the alleged user, is done online and once
the training is completed. We can partition the user
profiles in two classes: local profiles where the normal
behavior of a user is solely based on the user’s data;
and global profiles where the normal behavior of a
user is also based on additional data – typically from
other users. The local profiles are usually simpler to
implement than the global ones. On the other hand,
the local profiles may have less capability at masquer-
ade detection. In our work we use global profiles.

We can further partition the classes of masquerade
detection approaches in two subclasses: approaches
that either update or do not update, during the mas-
querade detection phase, the user profile. This up-
date could be partial, for example by being only local:
only the behavior of the user has any impact on its
profile. In our work we use partial updating of the
global profiles. This simplifies the implementation
and deployment of our approach.
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In this work, we demonstrate that the Schon-
lau datasets have many repetitive sequences of com-
mands among users and in each training dataset. We
believe that this is typical of Unix systems where
common scripts are shared among the users. For
each user training data, we use a linear time algo-
rithm, called Sequitur, to extract the structure of
these repetitive sequences in the form of a context-
free grammar. We also compute local and global
statistics for these sequences. From the grammars,
we also extract the repetitive sequences having a min-
imum frequency and length. These sequences are
considered to be scripts that are shared among users
– we call them global scripts.

Section 3 motivates our approach by an analysis of
the Schonlau datasets. Section 4 presents the main
technique used by our approach and its experimental
results are in Section 5. Section 6 presents some infe-
rior variations of the main method. The analyzes of
some incorrect classifications are done in Section 7.
In Section 8 we discuss the computational cost of our
approach. We summarize other published methods
in Section 9. To make our paper self contained, we
review the Sequitur algorithm in the next section.

2 The Sequitur Algorithm

The Sequitur algorithm was created by Nevill-
Manning and Witten [4] to extract hierarchical struc-
tures from strings. It constructs a context-free gram-
mar based on one string: the language of that gram-
mar contains only that string. The construction of
the grammar is efficient as it can be done in linear
time on the length of the string. We will briefly de-
scribe this algorithm and state one important prop-
erty relevant for our detection algorithm.

2.1 A review of the Sequitur algorithm

Recall that a context-free grammar is a quadruple
(S, N, Σ, P ) where Σ is the set of terminals, N the
set of nonterminals (N and Σ do not intersect), S the
start symbol (S 6∈ N∪Σ), and P the set of production
rules of the form nk → x1x2 . . . xn where xi ∈ N ∪Σ,
nk ∈ N ∪{S}. The nonterminal nk (or S) is the left-

hand side (lhs) of the production rule and x1x2 . . . xn

is its right-hand side (rhs). We will call the produc-
tion rule with lhs S, the main production; all other
productions are auxiliary productions. Notice that in
this study, the Unix commands form the set Σ.

Let C = (ci) be the string of elements ci ∈ Σ from
which a Sequitur grammar will be created. The gram-
mar is initialized with the main production S → c1c2,
where c1 and c2 are, in that order, the first two ele-
ments (e.g. commands) of C; they are removed from
C. In general, Sequitur proceeds sequentially on C by
adding to the end of the rhs of the main production
the next command of C not yet added. New produc-
tions will be created and deleted by maintaining the
following two constraints on the current grammar.

Unique Digram No digram, i.e. pair of adjacent
terminals or nonterminals, occurs more than
once (without overlap) across all rhss of the
grammar.

Useful Production Any nonterminal occurs more
than once across all the rhss of the grammar.

The constraint Unique Digram has a tendency to
create new production rules whereas the constraint
Useful Production removes some. In most cases, a
repeated digram occurs when adding an element of
C to the end of the rhs of the main production. A
new production rule nk → x1x2 is created if a digram
x1x2, where xi ∈ Σ ∪ N , repeats in the rhss of the
grammar and the digram is not the rhs of any ex-
isting production. The lhs nk replaces the repeated
digram. If the digram already exists as the rhs of
a production, the lhs of that production simply re-
places the repeated digram. A production with lhs
nk is removed if nk does not occur more than once in
all rhss of the grammar; if it occurs once, the rhs of
that production replaces nk – in other words, nk is
inlined. This is another case where a repeated digram
can be created.

Figure 1 presents two examples of grammars gen-
erated by the Sequitur algorithm. Lower case letters
are terminals and upper case letters are nontermi-
nals – i.e. we do not use Unix commands in these
examples. There are no relations between the non-
terminals of G1 and G2. Terminals are added to the
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Generation of Generation of
Grammar G1 Grammar G2

from input string from input string
dadabfbfeaeabgbg bcabcaca

S → dada S → bcabc

S → AA S → AaA
A → da A → bc

S → AAbfbf S → AaAa

S → AABB S → BB
B → bf B → Aa

S → AABBeaea B → bca (A inlined)
S → AABBCC S → BBca
C → ea

S → AABBCCbgbg S → BBC
B → bC
C → ca

S → AABBCCDD
D → bg

Final grammar G1 Final grammar G2

S → AABBCCDD S → BBC
A → da B → bC
B → bf C → ca

C → ea (deleted: A → bc)
D → bg

Figure 1: Two examples of the Sequitur algo-
rithm applied to the strings dadabfbfeaeabgbg

(left) and bcabcaca (right).

main production (i.e. S → . . .) until a repeated di-
gram occurs. We step through every time a digram
is replaced by a nonterminal (i.e. when a digram re-
peats) or a production rule is inlined/deleted. For
example, for G1, when the digram da occurs twice in
the main production, the new production A → da is
created. For G2, when the rule B → Aa is created,
the rule A → bc becomes useless – therefore it is
deleted and inlined in B → Aa. As a matter of fact,
for grammar G1, only the constraint Unique Digram
had to be enforced, but both constraints had to be
enforced for G2.

2.2 Relevant properties

The following proposition should now be obvious:

Proposition 1 (Repetition) The expansion of
any auxiliary production rule, from the generated
Sequitur grammar of string C, is a substring that
occurs more than once in C.

Notice that since the grammar generates exactly
the string C, the expansion of the main production
cannot repeat in C. In other words, the last proposi-
tion does not apply to the main production – this is
the main reason to treat it differently than the aux-
iliary production rules.

This simple proposition is the basic element of our
approach: the grammar can be used to represent
some repeated sequences of the input data C – the
training data in the context of masquerade detection.
Indeed, not all repeated sequences are extracted from
C. That is, the converse of this last proposition is not
true: There are repeated non-overlapping substrings
of C that may not be the expansion of any produc-
tion of the Sequitur grammar. This is obvious once
we consider that any proper substring of the expan-
sion of an auxiliary production repeats in C, yet it is
not the expansion of that production. It is not even
the case that a repeated substrings in C will neces-
sarily be the substring of the expansion of an aux-
iliary production. For instance, for G1 in Figure 1,
the substring ab repeats in the input string, yet it is
not the substring of the expansion of any auxiliary
production. Despite this fact, a large number of re-
peated sequences are substrings of the expansions of
auxiliary production rules.

The Sequitur algorithm not only generates a gram-
mar that mostly represents the repetitive sequences,
it does so recursively. That is, repetitive sequences
that occur inside or across longer ones have their
own production rules. For example, this is appar-
ent in grammar G2 of Figure 1 where the digram
ca is repeated across two productions, the main one
and in production B. This sort of repetitive structures
does occur in the context of executed commands since
scripts may be embedded inside other scripts.
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3 Motivation of Our Approach

Schonlau et al. [6] have made available some datasets
for the study of masquerade detection algorithms.
They are available at www.schonlau.net.

These datasets are based on the commands exe-
cuted by 70 users of a multi-user Unix systems. The
acct auditing facility was used to collect the com-
mands. Actually, acct records the programs exe-
cuted and not the commands directly typed by the
users – more on this below – but to remain consistent
with the documentation of the Schonlau datasets, we
still use the term commands to refer to the executed
programs. Among the 70 users, 20 were used as po-
tential masqueraders and 50 as potential victims of
masquerades. The data from the 20 masqueraders
are not explicitly available. For each of the 50 users,
5000 commands can be assumed to be from the legit-
imate user. They are used as training data. For each
user, 10000 more commands are provided, divided in
100 blocks of 100 commands: each block either comes
from the legitimate user or from one of the 20 mas-
queraders – this is the testing data. This is done with
a known uniform random distribution, but we should
not use that knowledge during training or detection
of masquerades. Among the 50 users, 29 have at least
one masquerade block.

There are many long common substrings (i.e. se-
quences of commands), among users, in the training
sets as well as in the testing sets. In all likelihood,
many were generated by executing scripts – i.e. com-
mands that usually execute several programs without
the user intervention. In fact, the technique used to
collect the sequences of commands (i.e. the acct au-
diting facility) does record the programs executed –
not the commands typed directly by the users.

For example, user 16 has a sequence of 35 com-
mands – see Figure 2 – which occurs more than 20
times in its training data. Such a sequence of com-
mands can hardly be taken as directly typed by the
user, but is more likely emitted by a script.

In general, the Schonlau training datasets contain
hundreds of long sequences (i.e. more than 10 com-
mands) repeated more than ten times. The gen-
erations of the 50 Sequitur grammars, presented in
the next section, clearly demonstrate the existence of

getpgrp LOCK true ls sed FIFO cat date generic

generic date generic gethost download tcpostio

tcpostio tcpostio tcpostio cat generic ls generic

date generic rm ls sed FIFO rm UNLOCK rmdir

generic tcppost sh LOCK

Figure 2: A sequence of 35 commands occurring
20 times in the training data of user 16.

these sequences. We believe that this is not a pecu-
liarity of the Schonlau datasets but rather an aspect
of the way programs are composed on Unix systems.

In summary, the large number of repetitive se-
quences indicates an important aspect:

Many repetitive sequences of commands are
probably not directly typed by the users
but produced by scripts which are explicitly
called by the users. We conclude that the
profile of a user should be based on those
repetitive sequences.

The main problem is to discover those repetitive
sequences. This motivates our approach presented in
the next section.

4 Our Approach

In this section we present the techniques used in our
approach to represent the normal behavior of a user
– i.e. its profile – and detect masqueraders.

4.1 Constructing the user profile

For each user, a Sequitur grammar is generated based
on the uncontaminated sequence of commands C (e.g.
the sequence of 5000 commands for the Schonlau
datasets). As it was shown in Section 2, the pro-
duction rules represent repetitive sequences of com-
mands. For each production rule, we compute the
total frequency of its expansion in C. This can be
efficiently done since the frequency of each lhs (non-
terminal) is maintained during the generation of the
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Production Rules Frequencies
User Others

A → B C 4 0
B → cat mail csh 42 231
C → D E 12 0
D → F java 22 0
E → csh make 14 0
F → G java 33 0
G → java wr H base I I egrep 42 0
H → J dirname 45 1545
I → egrep egrep 84 1126
J → expr expr 50 1762

Table 1: Excerpt of production rules for the
grammar of user 1.

grammar1: The total frequency is computed recur-
sively by taking into account the productions where
the lhs occurs.

For each production, besides the total frequency,
we compute the frequency of its expansion across all
other user training data – this is the across frequency.

We also compute the global set of scripts used by
all users. It is the expansion of all production rules
that occur at least five times among all users. This is
used by our detection algorithm to reduce the nega-
tive impact of unseen commands that, we believe, are
actually part of an unseen script (see the next section
for its usage).

The production rules themselves are not very im-
portant, it is rather their expansion, and their asso-
ciated frequencies, that are used during the detection
of masquerades. For example, it would be acceptable,
and more efficient, for our detection algorithm to rep-
resent the set of expansions in a trie; although the
Sequitur algorithm is an efficient means to discover
some repetitive sequences. We did not implement
the trie mechanism since we are not emphasizing the
efficiency of the implementation.

1The frequency of a lhs is maintained to apply the Useful

Production constraint – if the frequency of the lhs falls below
two, the production must be inlined and removed from the
grammar (see Section 2).

Average number of rules 260.9
Average length of the expansions 11.4
Average frequency of the expansions 15.7
Maximum frequency over the 50 users 1664
Maximum length over all expansions 486

Table 2: Statistics for the 50 Sequitur grammars.

Table 1 presents an excerpt of the Sequitur gram-
mar of user 1. The entire grammar is much larger
and cannot be easily presented. For each production,
two frequencies are displayed: the frequency of the
expansion of that production in the training data for
user 1, and its frequency in the training data for the
49 other users. For example, the expansion of J (i.e.
expr expr) occurs 50 times in the training data of
user 1, and 1762 times in the training data of all other
users. Table 2 presents some statistical facts for the
50 grammars constructed by the Sequitur algorithm
based on the 50 users training data.

Another part of the training phase is the determi-
nation of a constant for the evaluation function of a
block during the detection phase. This part is de-
scribed in Sub-section 4.3.

4.2 Detection of Masquerades

The Schonlau datasets have, for each of the 50 users,
a sequence of 10000 commands which might be con-
taminated in block of 100 commands by some other
users. Therefore, in the following explanation the
detection algorithm is described on a block of com-
mands.

Let G be the grammar of the alleged user for the
block to be classified. The classification of a block
is based on its evaluation and a global threshold. If
the value, obtained from the evaluation, is larger or
equal to the threshold, the block is considered nor-
mal; otherwise it is considered a masquerade. The
evaluation of a block is done by sequentially break-
ing it into substrings which are expansions of some
production rules of G. In general, during the overall
evaluation of a block, we have a set of segments of
the block not yet matched with any production rule
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of G. An expansion of a production rule of G which
is a substring of a segment is a candidate to break
that segment. We use the following evaluation func-
tion e, on productions p, for which their expansions
are substrings of at least one of the current segments
of the block.

e(p) = lp
fp

fp +
Fp

k

(1)

where lp is the length of the expansion of produc-
tion p, fp the frequency of the expansion of the pro-
duction, Fp its across frequency, and k a constant.
The next subsection motivates the form of that equa-
tion and describes our technique to determine a good
value for k – a search that is done offline during train-
ing.

The production p0 that gives the largest value is re-
moved from the segment: this either eliminates com-
pletely the segment, generates two other segments, or
only one.

The previous process is repeated on all current seg-
ments of the block until no more segments contain a
substring which is the expansion of some production
rule of G. Let F be the set of productions found by
that process, then

∑
p∈F e(p) is the base value of the

block.

The remaining segments may contain previously
unseen commands from G. If a segment contains a
global script as a substring, the unseen commands
of that global script are counted as one unseen com-
mand. That is, a value of one is subtracted from
the base value for each global script found, and their
unseen commands are not considered individually.

For the remaining unseen commands, their fre-
quency, with a maximum of 4, is subtracted from the
base value of the block. Based on experimental re-
sults, it does not change substantially the evaluation
if the frequencies are not taken into account, that is,
if a value of −1 is given to each unseen commands.

Notice that the value of e(p), according to Equa-
tion 1, cannot have a value larger than lp – e.g. for a
block of 100 commands, its value cannot exceed 100.

4.3 Determining a value for k

In Equation 1, the value k serves as an averaging fac-
tor for the across frequency Fp. In fact, if we were

assuming k = 49, the expression
Fp

k
would be the

average frequency of the expansion of production p

among the 49 other users. Actually, the main inten-
tion of that expression is to compare the frequency
fp to the across frequency Fp taking into account the
number of other users. But it is not clear that the
value 49 is the right one – its value should be deter-
mined during the training phase for all users.

Essentially, the technique we have used to deter-
mine k is the following – it was done for each integer
value from k = 1 to k = 49, picking the best result.
For each user, ten blocks of 100 commands are ran-
domly selected from each other users training data.
In the case of the Schonlau datasets, 490 blocks are
selected for each user. The evaluation of each block is
done according to the method of the last section. The
lowest total, across all users, is considered the best.
For the Schonlau datasets the best value for k is 7. In
the section on variations of our method (see Section
6), we also show the detection results – a ROC curve
– when using the extreme value 49. The results are
in agreement with this procedure: the overall perfor-
mance of the detection is better with k = 7 than with
k = 49; although for very low false positive rates, the
value k = 49 is better.

4.4 Updating the user profile

During the detection phase, the profile of the user
is modified if the block is classified as normal. The
Sequitur algorithm is applied – using the new nor-
mal block as input – to modify the user grammar.
This would usually extend the grammar by adding
new production rules. The frequencies of the pro-
duction rules are modified accordingly, but the across
frequencies are not modified; and the global scripts
set is not extended. In other words, only the local
aspect of the profiles of the users are maintained, not
their global aspect; this greatly simplifies the appli-
cation of our approach in a distributed environment.
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Figure 3: ROC curve for our main method, for
k = 7. The x-axis is logarithmic. Also included
are some best-outcome results (triangles) of
other good performing methods.

5 Experimental Results

Figure 3 presents the main results of our approach us-
ing a Receiver Operating Characteristic curve (ROC
curve). This shows the relation of the false posi-
tive rates versus the detection rates of masquerades.
We have also included some best-outcome results for
some other good performing methods (these results
were taken from [5, 6]). Notice that the x-axis is log-
arithmic since we prefer to have a more precise view
of the detection rates for false positive rates below
10%.

The ECM method of Oka et al. gives some of
the best results previously published. Our approach
detects even more masquerades at all false positive
rates. To our knowledge, no published results based
on the Schonlau datasets are better at any false pos-
itive rate.

6 Variations of our Method

In this section we present some further experimental
investigations done on our main method. Three vari-
ations were tried: 1) with value k = 49; 2) no global
scripts; and 3) only the frequencies of the commands
are used, not the sequences. The last case also cov-
ers another variation to our main method, namely, to
evaluate positively the already seen commands that
are left out after decomposing a block during detec-
tion. Case 3 will show that this would diminish the
detection rate.

6.1 With k = 49

This is a very simple variation to show that the tech-
nique used to determine k is successful on the Schon-
lau datasets. Figure 4 presents the ROC curves for
both k = 7 and k = 49. We can see that for k = 7
the detection rates are higher for most of the false
positive rates; although it is better for k = 49 when
the false positive rates is below 0.3%. Still, the case
k = 49 is a viable alternative superior to all other
published methods.

6.2 No Global Scripts

This is a simple variation of our main method: no
global scripts are used when evaluating unseen com-
mands. The resulting ROC curve, compared to our
main method with k = 7, is presented in Figure 5.
The general tendency is an increase in false positives
for the same rate of detection. There is clearly a de-
cline of the detection rates around the 1% false pos-
itive rate compared to the main method with global
scripts.

6.3 Command frequencies only

Our method is based on repetitive sequences of com-
mands. This sub-section looks into a simpler version
based on the frequencies of the commands for the
user and across all users without taking into account
their ordering. We apply a similar evaluation as func-
tion e (see Eq. 1). Namely, for each command c of a
block we use the following equation where fc is the
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Figure 4: ROC curve for our method for k = 49
(dotted line) compared to the determined k =
7 (solid line) .

frequency of the command c in the training data of
the user, Fc the across frequency of the command c

among all other 49 users and k is a constant.

v(c) =
fc

fc + Fc

k

(2)

We sum over all commands of the testing block
resulting in one value. The frequencies, with a max-
imum of four, of the unseen commands in a block
are negatively added to this value. As the previous
method, one global threshold value is used to classify
a testing block. Updating of the frequencies of the
user, not the global ones, is also applied using that
threshold.

Figure 6 presents the results for k = 7 by varying
the threshold value from −4 to 70. ECM is better
for at least one false positive rate and Naive Bayes
is slightly better. This is also clearly inferior to the
main method presented in the previous section. This
shows that the ordering of the commands is impor-
tant.
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Figure 5: ROC curves for our method without
using the global scripts (dotted line) compared
to the original main method (solid line).

7 Failure Analyzes

In this section we analyze some of the erroneous clas-
sifications done by our approach – the main method
with k = 7. We believe this shows the limit of our
method but also of the difficulty of improving any
method on the Schonlau datasets.

First, as a general view, Figure 7 presents his-
tograms of false positives, false negatives and de-
tected masquerades for different thresholds. These
histograms give a general idea of the dispersion of
false positives and negatives across users. It also gives
a quick view of the users that appear problematic.

For false positives, at threshold 12, user 20 has a
very large number of them compared to the other
users. There is a total of 72 false positives, and 30
are generated by that user. If user 20 were taken out
of the statistics at that threshold, the false positive
rate would fall to 0.88% with the same detection rate.
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Figure 6: ROC curves using the command fre-
quencies with k = 7 (dotted line) compared
to the original main method with k = 7 (solid
line).

7.1 False negatives

At threshold 23, user 12 has six false negatives – the
largest number for that threshold. Its testing block
69 has the decomposition presented in Table 3; it is
valued at 61.782. It is the first false negative for user
12 with that threshold. More precisely, for thresholds
20 to 31 it has the value 61.68. The value may differ
with other thresholds since the grammar is updated
according to that threshold. Its value ranged from 55,
with thresholds of 50 to 85, to 66.63, with thresholds
of -2 to 19. Essentially, this block, as six others,
evaluates to a high score across all thresholds despite
being a masquerade. How can a masquerade gives
such a high evaluation?

One substring of length 38 has a value of 33.25.
By itself, this substring alone is enough to make it
a false negative. The main observation: It occurs 3
times in the training data and 3 times for all other

2Recall that the maximum value of a decomposition is 100.
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Figure 7: Combined histograms of false pos-
itives (gray), false negatives (black) and de-
tected masquerades (white). The x-axis rep-
resents users; the y-axis the number of blocks.

9



Production Rules e(p) lp fp Fp

A → B B 33.25 38 3 3
H → I J 11.32 14 20 33
X1 → X2 X3 K 8.7 23 2 23
C → D E generic 3.61 8 10 85
X5 → L M 3.36 6 2 11
F → G find 0.68 3 37 877
X6 → ls generic 0.68 2 48 460
Skipped substrings: (cat generic) (cat generic ls)

Table 3: The decomposition of testing block 69
of user 12, a masquerade, that evaluates to
61.78. The Xi nonterminals were generated
during the updating of the grammar.

users. The evaluation function could be blamed: it
offers no difference between a substring that occurs
often or not for low frequencies across all users. Yet,
this block, as six others, really appears as coming
from the legitimate user.

7.2 False positives

The 46th testing block of user 20 is not a mas-
querade, although it is evaluated at −2.21. It is
a false positive. Table 4 presents the decomposi-
tion of that block. Only three substrings of length
2 were found in the grammar. The rest of the block,
which mainly contains the substring ‘configure
configure configure’, was skipped since no pro-
duction expansions were substrings of it. Although,
the command configure was just seen in the pre-
vious block. In order to give a higher value to this
block, the individual commands should be taken into
account. But as it was shown in the section on varia-
tions of our main method – for command frequencies
only – this would have an overall adversed effect.

Table 5 presents the decomposition of the testing
block 6 for user 49, a false positive. It has value 27.04
– not an extreme case as the previous block. As it
can be seen from the values Fp, the reason for the low
score is that the substrings of block 6 are common
among other users. It is difficult to apply any global
approach to avoid such a false positive.

Production Rules e(p) lp fp Fp

A → configur sed 1.59 2 2 25
A → configur sed 1.59 2 2 25
A → configur sed 1.59 2 2 25
Unseen commands: config.g(3), tr(18).

Table 4: Decomposition of testing block 46 of
user 20. It is not a masquerade although its
value is very low at −2.21. The block contains
the substring configur configur configur nu-
merous times. The command configur is first
seen in the previous block which has a high
evaluation of 80.8.

Production Rules e(p) lp fp Fp

A → B C D E 14.77 38 2 22
X1 → X2 F 6.08 10 10 45
G → H I 3.53 21 16 553
J → grep echo 1.94 2 5 1
K → L gethost 1.27 4 39 584
M → xwsh sh 0.48 2 5 111
Unseen commands: drag2(3)

Table 5: Decomposition of testing block 6 of
user 49; its value is 27.04; it is not a masquer-
ade.

8 Computational Cost

The efficiency, or computational cost, of an anomaly
detection algorithm is an important aspect. If it
is very costly, it may become useless. Two phases
should be considered for the efficiency of our method:
the training phase and the detection (classification)
phase.

For conducting our experiments, the implementa-
tions of the Sequitur and detection algorithms were
done using the Scheme language. We compiled the
code using the Bigloo 2.6c compiler on a Red Hat 9
system. All times reported are for a 2.26GHz, 1GB,
Intel Pentium 4 computer.

The generation of the 50 grammars, for user 1 to
50, took 38.3 seconds: An arithmetic average of 765
milliseconds per user. This includes the time to read
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the 5000 commands from a file. Some grammars took
longer or shorter to generate. For example, grammar
30 took only 90 milliseconds to generate. This is due
to the low number of generated production rules –
only 42 compared to the average of 260. The average
performance could easily be improved as there was no
effort to implement an efficient Sequitur algorithm.

The classification of a block has two parts: its eval-
uation and the updating of the grammar. Over the
50 users and their testing blocks, that is 5000 blocks,
the average time to evaluate and update for one block
was 127 milliseconds. For user 30, the average was
40 milliseconds. Without updating, the average time
to classify a block, over 5000 blocks, was 55 millisec-
onds.

9 Related Work

In comparing experimental results between methods,
we believe it is important to take into account a ma-
jor aspect: does the method use local or global pro-
files to represent the normal behavior of the users. A
global representation is more complex to implement
than a local one. Our method is global while some
others reported in this section are local; although the
updating of the profiles for our method is local.

Schonlau et al. [6] have reported the results of six
methods: Hybrid Multi-step Markov, Bayes 1-step
Markov, Compression, Uniqueness, Sequence-match,
and IPAM. The experimental results are inferior to
ECM for all false positive rates. For example, none
of these methods, for the updating case, have a de-
tection rate superior to 40% for a false positive rate
of 1%. Our experimental results are superior to all
of these.

Wang and Stolfo work [7] has the advantage of us-
ing a local representation for the normal behavior of a
user. It is therefore not a surprise that we obtain bet-
ter experimental results. Moreover, the main objec-
tive of that work was to demonstrate that a one-class
training was as good as a two-class training approach.

Ju and Vardi [2] masquerade detection algorithm
is based on rare sequences of commands. There is
an instance of the algorithm for each length (e.g. 3,
5). They call their approach Local Command Pat-

tern (LCP). We believe that the weakness of LCP is
the lack of variable length sequences as used in our
approach. They do not present any particular algo-
rithm to discover the sequences as they are extracting
all sequences of a fixed length. One of the best results
is a false positive rate of 1.11% with a detection rate
of 59.74% (for sequences of length 5).

Maxion and Townsend [3] have used the Naive
Bayes approach on the Schonlau datasets. Such
an approach is similar to the command frequencies
method presented in Subsection 6.3 as it does not
take into account the order of the commands but only
the probabilities of occurrence of the commands. In
general, a Naive Bayes classifier has to classify sets of
observations among a set of categories. In this case,
for each user u, there are two categories: user-u, or
not-user-u. The probability of category user-u given
the command c, is denoted p(u|c). It can be eval-

uated using Bayes rule, namely p(u|c) = p(c|u)p(u)
p(c) .

The probability of user u emitting command c, that
is p(c|u), was evaluated using

fc,u+α

5000+αA
where fc,u is

the frequency of commands c for user u in its train-
ing data, A is the number of distinct commands in
the training data, and α a small constant (e.g. 0.01).
The category not-user-u can similarly be evaluated.
The two probabilities are compared to classify a block
of commands as either a masquerade or coming from
user u. This approach is global as it refers not only
to the user command frequencies but also to the fre-
quencies for all other users. It also uses updating
during detection. Their experimental results with
the Schonlau datasets are good. For example, they
report as one of their best results a false positive rate
of 1.3% with a detection rate of 61.5%. Our method
has a lower false positive rate, namely 0.85% (for
k = 7), at such a detection rate. From their ROC
curve published in [3], we conclude that our method
has a higher detection rate for all false positive rates.

Coull et al. [1] use techniques from bioinformatics
to detect masqueraders. Although the approach is in-
novative and the representation of the user behavior
is local, the experimental results are not convincing.
For example, they consider that one of their best re-
sults is a detection rate of 75.8% with a false positive
rate of 7.7%; at such a detection rate, our method
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has a much lower false positive rate, namely 1.8%
(for k = 7).

Oka et al. [5] designed a method called Eigen Co-
occurrence Matrix (ECM) for anomaly detection. It
is based on Eigen face recognition techniques. The
method is global but the experimental tests were done
using only local profiles. The computational cost ap-
pears high but this is probably due to their imple-
mentation technique. The results obtained are the
bests published for local profiles. We have exten-
sively compared the results of this method with ours
in the ROC curves of Sections 5 and 6 – our results
are even better at all false positive rates. We believe
this is mainly due to the global representation of our
approach.

10 Conclusion

Our masquerade detection method based on repeti-
tive sequences of commands was shown to be effec-
tive on the Schonlau datasets. As far as we know,
the experimental results reported in this paper are
superior to all published results based on the Schon-
lau datasets. More precisely – for all false positive
rates – the detection rate is higher than all published
methods, known to the author, for that datasets.

Our approach is quite efficient by using the Sequitur

algorithm which is linear on the length of the training
data. This could be completed with a more efficient
data structure to store the discovered repetitive se-
quences.

Our method has the advantage of full control over
the false positive rates. A unique global threshold
can be varied to increase or decrease it – even below
1%.

We also believe our method naturally fits its envi-
ronment. For instance, the global scripts correspond
to a clear identifiable operational reality of the com-
puting environment. If some of them were known, our
algorithm could easily be improved by relying less on
our heuristic to guess them.
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