
Lazy Remote Procedure Call in C: Implementation and

Performance

Mario Latendresse

email: latendre@iro.umontreal.ca

Marc Feeley�

email: feeley@iro.umontreal.ca

January 6, 1997

Abstract

Lazy Remote Procedure Call (LRPC) is a high-level parallel construct, based on Lazy Task
Creation (LTC), which was designed to address the problem of task creation overhead and
load balancing in the context of a shared-memory parallel programming model. Previously,
Feeley described how LRPC could be implemented as a source to source transformation for
the C language. We have implemented this approach and have evaluated its performance on
benchmark programs. This paper reports on our experience, pointing out the disadvantages
of the approach in terms of restrictions on the C language, and the advantages in terms of its
simplicity and performance.

1 Introduction

To express parallelism in C we use a fork-join high level construct that can be used on a function
call. Syntactically this is an operator, noted \!!", as in:

function(arg1, . . . , argn) !! { declaration-list statement-list }

The compound statement is the added element to the function call. The function's body
and the compound statement are executed concurrently. The execution can proceed once both
are terminated and the value of the expression, if there is one, is the function's value.

Among other things, this parallel construct allows to express parallelism in divide and con-
quer algorithms without substantial code modi�cation.

Our approach in implementing such a construct is to perform a source to source transfor-
mation of the C program. Such a technique has the major advantages of allowing to use the
manufacturer C compiler and causing no lost of performance in sequential part of the code.
Indeed, most of the original code is kept unchanged and only where the parallel construct !!
is used a transformation is performed. The transformed program is linked to a small runtime
system that takes care of processor initialization and provides a simple task stealing mechanism.

A parallel call using !! is transformed to allow the function call to be stolen by another
processor whereas the compound statement is locally executed immediately. Once the compound
statement is terminated, if the function call is not stolen and is not evaluated by another
processor, it is locally evaluated. If the function call is stolen and it's evaluation is not yet
terminated, the local processor tries to steal another function call from another processor while
waiting for the actual call to terminate. A queue of deferred function calls is maintained for
every processor. Indeed the major transformation done at the source level is to allow to perform
this task.

�DIRO, Universit�e de Montr�eal

1

Time in seconds Speedup Tseq=Tp
Program Tseq T1 p= 2 3 4

sum 0.27 0.27 1.92 2.97 3.85

mm 2.08 2.13 1.82 2.60 3.46

scan 0.78 0.78 2.00 3.00 3.71

poly 1.92 1.94 1.97 2.90 3.69

�b 0.92 2.18 0.42 0.82 1.67

Table 1: Benchmark sequential and parallel-one-processor run time, and p=2,3,4 speedup

2 Performance

To test the performance of our approach we have used �ve benchmarks: a summation of 106

integers (sum), a multiplication of two 150x150 matrices of integers (mm), a parallel pre�x sum
applied on a vector of 106 integers(scan), a symbolic squaring of a 2000 terms polynomial(poly)
and the computation of the 30th Fibonacci number by a recursive method (�b).

The �rst four benchmarks, namely sum, mm, scan and poly show good performance absolute
speedup whereas the �fth, i.e. �b, shows weak absolute speedup. The reason for this weak
performance of �b is quite simple: there are as many fork calls as there are additions of integers,
in other words the granularity of the parallel calls are very �ne; and since these additions are
the only useful computation done, the fork calls overhead become substantial.

The experiment was done on a Silicon Graphics computer with four processors. The exe-
cution times are given in seconds. In these the time taken by the initialization phase of the
programs has been eliminated as well as the time to create the initial heavy processes to handle
parallelism under the operating system. The sequential times are the times taken by the original
C programs. Note that speedups are given versus the sequential time, not the one processor
time.

2

