Fast Symbolic Evaluation of C/C++ Preprocessing Using Conditional Values

Mario L atendresse

NGIT/FNMOC
7 Grace Hopper, Monterey, CA, USA.
E-mail: | at endr e@ret net . navy. m |

Abstract

C/C++ code relying on preprocessing can be quite com-
plex to analyze. This is often due to free preprocessing vari-
ables set at compile time. In general, preprocessing selec-
tively compile parts of the source code based on the val-
ues of preprocessing variables which may be free. In this
case, the relations between these parts can only be repre-
sented by conditional expressions using the free variables.
Traditional symbolic evaluation can be used to infer these
expressions, but its best case time complexity is exponential.
We present a new approach for symbolic evaluation that can
efficiently compute these conditions by binding variables to
conditional values and avoiding the path feasibility analysis
of traditional symbolic evaluation. It infers the exact condi-
tional expressions for which the lines of code are compiled
and the (conditional) values of preprocessing variables at
each point of the source code. Our prototype shows the ap-
proach as practical and scaleable to large C/C++ software.

1. Introduction

In C/C++, preprocessing is done by cpp, prior to com-
pilation itself. Automatic C/C++ code analysis and mainte-
nance traditionally assume that the preprocessing phase has
been done. In practice, free preprocessing variables, that is
variables set only at preprocessing time outside the source
code, must be set at some specific values to call cpp. This
is unsatisfactory since a large number of combinations of
values are possible (for example see [3, 11]).

A more acceptable approach is to compute, for each
line of code, the conditional expression that determines
its reachability (compilation), based on the free variables.
Moreover, the values of each preprocessing (hon-free) vari-
ables should be determined based on similar conditional ex-
pressions. With such fundamental information, more com-
plex analyses can be done.

For example, if the condition to reach a line is contradic-

#if Y==1
#define A 2
#endi f

#if Y==2
#define B 4
#endi f

9. #i f Y==3
10. #define C 8
11. #endi f

13. #if Y==4
14. #define D 16
15. #endi f

17. #i f defi ned(D)
18. I nt Xx;

19. #el se

20. char x;

21. #endi f

W= O Ut WN

Figure 1. On the left, a C source code, on the
right, its CFG.

tory, this line can never be compiled, and therefore points to
an erroneous design.

In Fig. 1, the lines beginning by ‘#’ are preprocessing
directives (spaces may precede ‘#’). In this case, the direc-
tives are #def i ne and #i f , the latter is composed of a
then- and/or else-block formed by the #el se and #endi f
lines. A define directive binds a preprocessing variable,
thereafter simply called a variable, with a list of tokens. If
the definition is parameterized, it is a macro. If the list of to-
kens is empty, asin#def i ne X we denote by T the value
of X. Such variables are bound. If a variable is not defined,
that is unbound, we denote its value by L. A programmer
can explicitly unbound a variable by using the #undef di-
rective. All bindings are global, that is, once an identifier
is defined its value is visible by all preprocessing directives.
On the right side of Fig. 1 is the control flow graph (CFG)
of the source code: A node embodies a block of lines of
the source code; an arc a branching decision. For two out

arcs of a node, one is labeled by the condition to take it, the
other one is taken when the condition is false. The predi-
cate def?(z) is true if and only if the variable z is defined,
that is, if its value is not L.

In symbolic evaluation, the initial values of variables are
unknown. We use the symbol z to represent the value of
variable z before preprocessing. The value of x; is one of
the preprocessing values, that is L, T, or a list of (parame-
terized) tokens.

Conditional compilation occurs when if-directives are
used. They adapt parts of code to hardware, operating sys-
tems, software version, etc. For example, line 18 is com-
piled only if D is defined. Line 14 is reached if the initial
value of Y is 4. The series of if-directives determine a type
for the C variable x.

The variables Y and D are not explicitly bound before
all their references. They are free variables. They can be
bound at compile time using some other means — for ex-
ample, on the command line calling the compiler. Note that
such variables are not considered unbound. Actually, their
values is symbolically represented as Y; and Dy, respec-
tively.

What is the condition to compile line 18, that is for x to
be of type i nt ? The answer is easily seen: if D is defined
prior to preprocessing or if Y7 is 4 then the type of x isi nt
otherwise it is char .

A programmer maintaining such code may be trying to
answer several questions regarding the conditional compi-
lation. For example, are lines 10 and 18 mutually exclusive
under all values of the free variables? (They are not.) What
are the possible values of D at line 16 and for which con-
ditions does it have these values? Are there lines which are
never compiled or reached under all possible values of the
free variables? Etc.

To answer these questions it is necessary to find, for each
line, the conditions for which it is compiled and the possible
values of variables. Therefore, these are the basic problems
addressed in this paper:

1. For each line of source code, what is the condition for
which this line is compiled or reached?

2. For each line referring to a preprocessing variable,
what are its possible values and under which condi-
tions do they have these values?

For the code of Fig. 1, this can be done manually, but for
large systems of thousands of lines, this is impractical.

The traditional symbolic evaluation, pioneered by [6]
and used in [4] for C/C++ preprocessing, cannot be used
in practice to solve these problems, since its best case
complexity is exponential on the number of conditional
branches.

Traditional symbolic evaluation traverses all paths of the
CFG. In case of Fig. 1, they are sixteen paths formed by

the first four if-directives. These can be labeled by the con-
ditions that are considered true or false. For example,
(a,d, f,g) is a possible path. Yet it is contradictory, since
Y cannot be equal to 1 and 4 at the same time, in other
words this is not a feasible path. Only five are feasible
(e.g. (a,d, f, h)). Traditional symbolic evaluation, as used
in [4], consider these sixteen paths, and combines disjunc-
tively the sixteen conditions to form the full condition to
compilei nt x; . The resulting condition is, relative to the
number of if-directives, exponential in size. The computa-
tional complexity of this technique is not only in O(2™) but
in ©(2™), where n is the number of sequential if-directives.
That is, we cannot even expect an average computational
complexity lower than exponential.

If three files, each having six if-directives, are included at
the beginning of Fig. 1, using the include directive, the num-
ber of paths to reach i nt x; would increase to 23*6+4,
That is, over four millions paths would have to be consid-
ered. The size of the disjunctive Boolean expression would
be very large, despite the fact that all these included if-
directives are probably irrelevant for the condition to reach
line 18.

In this paper we present a new symbolic evaluation ap-
proach that can, in practice, efficiently solve the two main
problems. This approach is based on conditional values.

It is also necessary to determine the satisfiability of con-
ditions, since iteration is possible with the include directive.
Although the general problem is NP-complete, we use ap-
propriate simplification rules for conditional values to bring
practical efficiency.

This paper is organized as follows. Section 2 introduces
conditional values, the fundamental technique of our ap-
proach. Simplifications of conditions with conditional val-
ues are presented in Section 3. In Section 4 our general sym-
bolic evaluation algorithm is presented. Section 5 presents
two concrete examples to illustrate our symbolic evaluation
using conditional values. Section 6 addresses the problem
of iterations. Section 7 discusses syntactical cases for which
conditional macro expansion is complex. Section 8 presents
experimental results of our prototype. Related works are
presented in 9. We conclude in section 10.

2. Conditional values

Our approach uses a new symbolic representation called
conditional value or c-value denoted ¢ — e; ¢ e Where ¢
is a conditional expression and the expressions e; and e,
are c-values or base values. It is interpreted as: if c is true
then its value is e; otherwise it is e2. Since c-values may be
nested, they can represent all base values a variable has at a
particular line of the source code.

For example, in Fig. 2, the value of W at line 6 is
Yr = 1 — 290 3. It indeed represents the value of W af-

#if Y ==
#define W2
#el se
#define W3
#endi f

#ifdef Y
#define U Y
#el se
#define U W
#endi f

= O © w0 U b W~

—

Figure 2. Two c-values are generated by this
code; Yy = 1— 203 for W and def?(Y;) —
Y]O(YI =1— 203) for U.

ter the if-directive since the value of W is 2 if the initial
value of Y is 1, otherwise it is 3. Note that the Boolean
expression uses the symbol Y; and not the symbol Y, since
the Boolean expression refers to the initial value of the vari-
able. After the second if-directive, at line 12, the c-value of
Uisdef?(Yr)— Yo (Y =1— 2¢3). The c-value of U
has a nested c-value, namely the c-value of W. Indeed, in
general c-values may be nested.

The notion of c-values avoids the combinatorial analysis
of paths. This is our fundamental means to avoid the major
pitfall of traditional symbolic evaluation.

With the analysis of all paths that may reach a line, any
symbolic evaluation would require an exponential time, rel-
ative to the number of if-directives. On the other hand, by
using c-values this analysis is no longer required. The next
section presents simplification rules for c-values.

3. Simplification of conditional values

In this section we look at simplification rules on c-values.
They are useful when they help determine the status (e.g.
satisfiable, tautology, contradiction) of Boolean expressions
with c-values.

We also apply common simplification rules on negation
and Boolean connectives A and V as well as transformations
to reduce the size of a Boolean expression through Boolean
algebra. For example, ¢ vV false = c.

Conditional values and the predicate def? provide new
opportunities for simplifications. The fundamental rules
used, expressed as equivalences, are given in Fig. 3. Some
more rules, or equivalences, which are derived from these
fundamentals equivalences are presented in Fig. 4.

Fundamental rule 1 is used only if e; and e, are of type
Boolean; some common particular cases are derived to pro-
duce rules 7 to 10 of Fig. 4.

Fundamental rules 2 to 5 are specifically for the predicate
def?. Rules 3 and 4 simply express the meanings of defined
(T) and undefined (_L). Rule 5 represents a very common

l.coeoes=cAerVcAes
where e; and e, are Boolean expressions.

def?(c— e; 0ey) = c— def?(er) o def?(eq)
def?(L) = false

def?(T) = true
(

def?(tokens) = true

o o~ w D

(cmeroe) t es=c— (egrtes)o(extes)
where ¢ is any token.

7.c1— (o> e10ex)oes = (1 Aex) = e 0 (¢ —
62063)

8. ca—ero(ca—reroes) = (ncr Aex)— exo (e —
61063)

9. c—vece=ce

Figure 3. Fundamental equivalences to sim-
plify c-values.

case: a variable that has a specific value, that is a sequence
of tokens, is defined. For example, def?(Y; > 3— 40 T)
is equivalentto Y; > 3 — def?(4) ¢ def?(T) according to
rule 2; it can be further simplifiedto Y; > 3 — trueotrue
by rules 4 and 5; and finally to true by the derived rule 7.

Rule 6 is very general but used mostly when ¢ is a re-
lational or arithmetic operator. For example, applying it to
Yr=15203)>1gives(Y7=1)—2(2>1)0(3>1)
which is equivalent to (Y; = 1) = true ¢ true which is
true by the derived rule 7.

Rules 7, 8 and 9 are often used in conjunction to simplify
c-values of the form ¢; = (c2 — e1 0 e3) o e3 Or ¢; —
e1 ¢ (ca — ey © e3) Where a pair e; are equal. For example,
the c-value X = 2— (Y = 3— 4¢5) o5 can be simplified
(X =2AY =3)=40(Y =3 505) byrule7and
thento (X = 2AY = 3)— 45 by rule 9. Application of
these rules unfolded nested c-values.

In general it is necessary to detect when a condition is
satisfiable. Otherwise, infinite iteration, due to recursive
inclusion of files, would trap the symbolic evaluation. A
satisfiability test is used in our general symbolic evaluation
on all conditions. Such a problem is NP-complete, but the
simplification rules efficiently solve most of the practical
cases.

4. The symbolic evaluation algorithm

In this section we present the essential elements of our
symbolic evaluation algorithm as shown in Fig. 5. The main

=

def?(c— e10e3) =cAdef?(e1) V —cAdef?(es)
def?(c— T oe) = cV def?(e)

def?(c—> eo T) = —cV def?(e)

def?(c— L oe) = —cAdef?(e)

def?(c— eo L) = cAdef?(e)

def?(—def?(x;) > T o x) = true

c— true ¢ true = true

c— falseo false = false

© o N o 0o &M D>

c— true ¢ false =c¢

[y
©

c— falseo true = —¢

Figure 4. Some derived equivalences from
Fig. 3 to simplify c-values.

algorithm is from line 1 to 6, but the essential work is done
by the recursive function E.

The symbolic evaluation is done on the CFG A of the
source code: each node is either a preprocessing directive
or it is a block of C/C++ code. Assume that each node of A
is initialized with an empty list of conditions.

We could also add a list of all variable bindings for each
node to fully answer the second problem mentioned in the
introduction. But in practice, only some variables will be
useful for further analysis and can be extracted by this algo-
rithm as needed.

There are two important variables: c. represents a suf-
ficient condition for which the current node of code may
be reached and a global stack S of tables. A table is a set
of variable bindings, that is an association list of identifiers
and values. The current table is at the top of S. The value
of a variable z is the first value found by searching the ta-
bles starting from the top of S. That is, the top table of S is
used first and if no binding is found for x the next table on
S is used, etc. If for all tables no value is found for z, its
symbolic value is zy. We denote this search by v(z, S).

At line 2, the algorithm initializes the stack S with one
empty table and at line 3 calls E with the root node of A
and true for the current condition.

After the execution of E, each node of A has a list of
conditions. These lists answer the first problem formulated
in section 1: The full reachability condition of a node is
the oring of conditions in its list. So, for each node, the dis-
junction of the list of conditions forms the full condition un-
der which this node is reached or compiled. The empty list
forms the condition false. Also, only one table remains in

. Main

Push empty table [] onto S

Call E(A, true)

The CFG A contains all conditions

The table in S has the final variable bindings
. End

D Ot s W N =

7. Procedure E(n,c.) {

8. add ¢, to condition list of node n

9. test node n for possible infinite iteration
10. Casenoden

11. block of C/C++ code: nothing to do

12. define: add definition to top table of S

13. if: Let ¢ be its expanded/simplified condition
14. if c. A cis satisfiable then {

15. Push empty table [] onto S;

16. Call E(n.then,c. A c)

17. Pop top table from S and assign it to T
18. } else Ty is empty

19. if c. A —c is satisfiable and n.else exists then {
20. Push empty table [] onto S;;

21. Call E(n.else,c. A —c)

22. Pop top table from .S and assign it to 7%
23. } else Ty is empty

24. Merge(T, Ty, S, ¢)

25. End Case

26. If n.next exist then Call E(n.next, c.)

27. }

28. Procedure Merge(X,Y, S, ¢) {
29. For-eachvariablez in X orY

30. Bind z with c— v; ¢ vy into the top table of S
31. where v isv(z, X : 5)

32. vpisv(z,Y : S)

33. }

Figure 5. Our symbolic evaluation algorithm
for C/C++ preprocessing.

S and it has all preprocessing variable bindings associated
with their conditional values. If a preprocessing variable is
unreachable, it will not be in that table.

The recursive procedure E takes two arguments, a node
n and a condition c..

Line 8 adds the current condition ¢, to the list of condi-
tions of node n. This node may have been visited several
times since an iteration may exist, so line 9 tests for a possi-
ble infinite iteration. Section 6 explains in more details this
case.

There are three cases for each node of the CFG: a block
of C/C++ code, a definition of a preprocessing variable (or

macro) and an if-directive. We have included the essential
cases, since all the other directives (e.g. #war ni ng, #un-
def, #el i f) are either irrelevant or can be implemented
using these cases.

For a block of C/C++ code, there is nothing further to
do as the current condition ¢, has been added to its list of
conditions and no preprocessing directives have to be con-
sidered.

For a define-directive, the definition is added to the cur-
rent table which is at the top of S. This algorithm accepts
redefinitions but refers only to the latest definition.

For an if-directive, its condition is expanded and simpli-
fied using the rules of the previous section. By recursion,
the current condition ¢ has also been simplified. In practice,
it is often the case that the simplified version becomes true
or false and satisfiability becomes trivial to establish. Oth-
erwise, a more general procedure is used. If it is satisfiable,
line 15 pushes an empty table onto S. This is necessary
since all directives of the block form a separate entity. At
line 16, the recursive call E is made with the root of the
then-block as the current node and the simplified form of
¢. A c as the current condition. This call will use the empty
table to possibly insert new bindings.

If the inverse condition is satisfiable and there is an else
part, a similar recursive call is made for that block. Note
that, in general, both the then- and else-block may be eval-
uated.

At line 24, two tables have been created, T} and T». They
are merged and inserted into the top table of S by proce-
dure Merge. Line 26 recursively iterates on the next existing
node.

The merging of two tables of bindings is described in
lines 28 to 33. This is where all c-values are generated. It
takes two tables X and Y, a stack of tables S and a condi-
tion ¢. The merging operation inserts all variable bindings
found in X orY into the top table of S. The notationY : S
is a stack formed by table Y on top of stack S. So, the value
vy comes fromY” or one of the tables of .S (this is similar for
v but with X). The bind operation of line 30 removes any
existing binding of z, if one exist. The c-value c = vy o vy
becomes the value of x in the top table of S.

Note that in E, for each table pushed onto S, a corre-
sponding pop is done. Therefore after the initial call of E,
at line 4, only one table remainsin S.

5. Two examples of our symbolic algorithm
5.1. A short example

Fig. 6 shows a short example with a trace of created vari-
able bindings. To reduce clutter, we only show the table of
bindings at the top of the stack S. A couple (z,v) repre-
sents a binding between variable = and value v. A table is

0. (1
1. #define A1 [4,1D)
2. #l f ==2 []2
3. #define A 3 [(4,3)]
4. #endi f (A, YT =2—301)]
5. #if Y==4 (2
6. #define B 5 [(B,5)2
7. #if W=6 (s
8. #define C 7[(c,7N]s
9. #endif [(B 5) (C Wr=6— 7<>C])]
10. #endi f [(A, YT =2 301),
(B Y] =4 5<>B]),
(C,Y[=4— (W] =6— 700]) OC])]l

Figure 6. On the right is the table bindings on
top of stack S.

a list of such bindings represented between square brackets
[...]. A subscript (e.g. 1) on the right of a table gives its
height in the stack. For example, at line 3, the stack of ta-
bles is [(A, 1)]1[(4, 3)]2, with [(A4, 3)] at the top; at line 8,
the stack is [(A,Y; = 2— 301)]1[(B, 5)]2[(C, 7)]5. Atline
10, the stack is fully presented as there is only one table left
at the end of the symbolic evaluation.

At line 0, an empty table is pushed on stack S as speci-
fied at line 2 of the algorithm of Fig. 5. Function E is called
and since at line 1 it is the definition of variable A, this adds
binding (A, 1) to the top table and E is called recursively
on the next node (line). At line 2 the condition ciis Y1 = 2.
It refers to the initial value of Y since it has no value in
all the tables of S; and an empty table is pushed onto the
stack since a then-block is entered; E is called recursively
for it. A binding (A, 3) is added to this new table at line
3. It returns and binds T; with the table [(A4, 3)]. There is
no else-block, so a merge is done with Ty (X for Merge)
and an empty T, (Y for Merge). The merge occurs only for
this variable, it has value 3 for X and 1 for Y : S, creat-
ing the c-value Y; = 2 —» 3 o1 for A. (Note that line 4,
as any #endi f , is not directly processed by the symbolic
evaluation since it is an end marker of the then-block node
in the CFG.) Lines 5, 6, 7, 8, and 9 generates similar op-
erations. At line 10, variables B and C are merged with
the table created at line 4. Note that C' can be simplified to
(Y1 =4AWr=6)— 7ToCyusingrules 7 and 9 of Fig. 3.

5.2. A longer example

Let us apply the algorithm to the code presented in Fig. 1,
reproduced on the left of Fig. 7 with the table of bindings at
the top of the stack and the current condition c..

At line 0, the current condition ¢, is true, and the stack

Code Current table on top of stack Current condition

0. [T true

1. #if Y==1 (2 Yr =

2. #define A 2 [(A,2)]2 Yr=1

3. #endi f (A, Yr =1=20 A1 true

4.

5. #if ==2 Hz YI =2

6. #define B 4 [(B,4)]2 Yr=2

7. #endi f (A, YT =1—20A;),(B,YT =240 B)h true

8.

9. #i f ==3 HQ YI =

10. #define C 8 [(C,8)]2 Yr=3

1. #endi f [(A, YT =1— 20 Af),(B,YT =240 B),(C, YT =3—=80C1))1 true

12.

13. #i f Y==4 (]2 Yr=4

14. #define D 16 [(D,16)]2 Yr=4

15. #endi f [(A,Y; =1— 20 Af),(B,Y; =2— 40 By),(C,Y; =3—>80C;), true

16. (D,Y] =4— 160D1)]1

7. #i f defined(D) []» def?(Yy =4— 160 Dy)
18. int Xx; []2 def?(Y; =4— 160 Dy)
19. #el se

20. char x; []2 —def?(Y; =4— 160 Dy)
21. #endi f (A, YT =1— 20 Af),(B,YT =240 B),(C, YT =3—>80C;), true

(D,Y; =4— 160 D)1

Figure 7. A symbolic evaluation trace showing the stack top table and the current condition.

S contains one empty table.

When the first if-directive is met, the then-block is en-
tered with the current condition Y; = 1. Moreover, a new
empty table is stacked onto S. At line 2, the variable A is
bound to 2 in this new table.

At the exit of the if-directive, line 3, the top two tables
are merged to form the new top table. In this example, the
merging is simple since the old table is empty and the new
table contains only one variable, namely A. From the old
table, A has no value, that is its value is Ay, and in the top
table it is 2. The if condition is Y; = 1 so A has value 2 un-
der that condition and the old value otherwise, symbolically
YI=1—-2¢ A[.

When the second if-directive is met, a new empty table
is pushed and the current condition becomes Y; = 2. Then,
the variable B is bound to 4 in the new top table. At the exit
of the then-block, the top table is merged with the old table.
This table contains the old binding for A and the c-value
Y; =2— 4 ¢ By for B.

Similar operations are done for C and D, resulting in
a table of four bindings before considering the directive
#i f defined(D). At this point, the c-value of D is
Yr = 4 — 16 o Dy. So, the condition is equivalent to
def?(Y; = 4 — 16 ¢ D;) — which simplifies to Y7 =
4V def?(Dy). This is indeed the full condition for which

the linei nt x; iscompiled. That is, if the initial value of
Y is 4 or the variable D is defined at the beginning of the
preprocessing, then line 18 is compiled.

5.3. These examples show linear time complexity

As can be seen through these examples, our symbolic
evaluation does not backtrack or consider several paths. It
strictly proceeds forward by merging variable bindings us-
ing c-values. Although some if-directives are considered to
evaluate variables A, B, and C, they do not substantially
affect the efficiency to evaluate #i f defi ned(D).

Note also that even if there were a large number of if-
directives, before the five directives considered, it would not
exponentially increase the evaluation time or size of the c-
values. The c-values length increase at most linearly with
each new binding. It is also a direct consequence of the
merging algorithm that if these directives do not create new
bindings for Y or D, then the c-value of D is not affected
in any manner. Therefore, these independent directives do
not increase the evaluation time of the directive #i f de-
fi ned(D) — anecessity if a long series of if-directives is
analyzed.

_#i f 1defined(H

_ . #if ldefined(Q
. #define H

. #define G
. #i ncl ude "g.c"

1

2

3. ...

4. #include "h.c"
5
. #endi f 6

#endi f

SO W N

Figure 8. At left, file h. c, atright, file g. c; they
depend on each other.

6. Iterations

Although they are not explicitly provided by directives,
iterations may occur in C/C++ preprocessing due to file in-
clusions. A common example is presented in Fig. 8: files
h. c and g. ¢ mutually includes each other. No infinite loop
exists since guarded if-directives, based on variables G and
H avoid multiple inclusions.

In general, any form of iteration is possible. Symbolic
evaluation must properly handle all cases to avoid infinite
loop or reporting an infinite loop when in fact none exist. As
we will see, this is possible for preprocessing, even with free
variables, since it comes down to determining if Boolean
expressions are satisfiable or contradictory.

In the case of Fig. 8, it is easily handled since the sym-
bolic evaluator evaluates the conditions as the preprocessor
does: the variables G and H are defined in the top table and
no multiple inclusion occurs. So, for example, when includ-
ing file h. ¢ for the first time, the conditional #i f ! de-
fi ned(H) contains a free variable, but on the inclusion by
g. ¢ this condition becomes false.

On the other hand, there are other more complicated
cases where conditions always contain free variables. These
expressions can be satisfiable, yet when provided with spe-
cific values they become false. Therefore, we cannot re-
port an infinite loop even though some lines of code (node
in the CFG) are processed multiple times.

In C/C++ preprocessing, the number of nested file inclu-
sion is limited. If the limit is &, this implies that no node of
the CFG should be visited more than & times. This effec-
tively gives symbolic evaluation an upper limit to stop all
infinite iterations that may occur.

For example, consider Fig. 9 where an infinite iteration
occurs when T and F' are defined; but if only one is de-
fined, there is no infinite loop, so symbolic evaluation can-
not report one. Yet it must proceeds to properly infer the
Boolean expression: To avoid the infinite loop, it limits to &
the number of visit to any CFG node. These repeated visits
may simply generate the same conditions. Once the dis-
junctive condition, formed from the list of these conditions,
is simplified, the correct full condition is obtained.

_#if defined(F)

1. #i f defined(T)
2. ...
3. #i ncl ude "f.c"
4
5

1

2. ...

3. #include "t.c
4
5 . #endi f

~ #endi f
Figure 9. At left, filef . c, atrightfilet . c; there

is no infinite loop if at most one is defined at
preprocessing time.

7. Syntactical restrictions on if-directives

In general, an if-directive may have a non-expanded con-
dition having no syntactical structure, but for which macro-
expansion leads to a correct syntactical form. That is, prior
to macro-expansion a condition is simply a list of tokens,
but after macro-expansion it should have a syntactical struc-
ture of a Boolean condition. We restrict if-conditions to be
such that macro-expansion does not depend on non eval-
uated conditions occurring in conditional values of substi-
tuted variables. These cases rarely occur; if they do, they
point to obscure conditional compilations difficult to under-
stand and maintain.

For example, Fig. 10 line 4 shows an if-directive that
cannot be handled by our symbolic evaluation. To be han-
dled by cpp, the variable Mmust be bound to tokens in-
ducing a correct parsing of ‘3 M 4’. If it is undefined, the
value of Mis ‘“+ 1 ==’ and condition ‘3 M 4’ becomes
‘3 + 1 == 4’, which is true. But in general, symbolic
evaluation does not know if Mis defined and cannot parse
the condition ‘3 M 4’ properly, since some value of Mmay
lead to a parsing error. On the other hand, if the symbolic
evaluation can determine a base value for M when reach-
ing line 1, parsing of ‘3 M 4’ becomes deterministic and a
correct decision can be reached.

Cases involving macro with parameters can lead to com-
plex conditional syntactical analysis. For example, Fig. 11
shows a case where the parsing of ‘M , 50) * not only de-
pends on the value of M but also on the macro called. The
first gcc invocation, at line 9, makes the condition, on line
5, true. The second makes it false and involves a macro
unknown in the source code. In general, it may be the case
that Mis initialized with a macro call completely unknown
in the source code. In such cases, the conditions become not
only arithmetical problems, but also syntactical combinato-
rial problems. Our symbolic evaluation cannot completely
handled these cases although it detects them and pinpoints
to bad preprocessing code that should be rewritten to be-
come more understandable.

1. #i fndef M

2. #define M + 1 ==
3. #endi f

4. #if 3 M4

5. int x = 10;

6. #endi f

Figure 10. An example of an if-directive not
handled by our symbolic evaluation.

1. #define X(X,y) x+y

2. #i fndef M

3. #define M X(20

4. #endi f

5. ##if M, 50) == 80

6. int x = 10;

7. #endi f

8.

9. gcc -D M=X(30 f.c

10. gcc -D MEY(40' -D Y(x,y)=x*y’ f.c

Figure 11. Example using a macro with pa-
rameters and initializations on gcc invoca-
tions.

8. Experimental results

We have written an implementation of our algorithm in
Scheme [5], a Lisp dialect, and applied it to some Unix C
code. We have not made any effort to make it fast or space
efficient. We have used a 930MHz Pentium I11 with 512MB
of RAM computer, running Linux 2.2.12. All reported tim-
ing information comes from the Gambit [2] interpreter, ver-
sion 3.0. That is, the symbolic evaluation implementation
executes interpreted, not compiled.

8.1. A Java virtual machine implementation

Harissa [10] is an implementation of a Java Virtual Ma-
chine (JVM). Its main file vm ¢ includes four times the
file vm_exec. c, each time by defining new preprocessing
variables to tailor four different JVMs. It is an interesting
case, as most nodes of the CFG are preprocessed four times
with different variable values.

Parsing the 12420 lines (8227 are C lines) resulted in
3386 nodes in the CFG. It includes 72 files, 1291 defini-
tions and 652 if-directives. Given this large number of con-
ditional directives, any attempt to analyze all paths would
take a huge amount of time.

Our prototype takes 6.4 seconds to symbolically evalu-
ate this software, where most nodes are visited four times.
There are 1012 preprocessing variables in the final table.

For example, line 1171 of vm exec. c:

addCal | Profil e(m pc-m >code-3,cnj;

is reached under condition:

def?(PROFI LER;)
A—-def?(NOVMQUI CK_I NSTRUCTI ONS;)
A-def?(VMINO.QUI CK;)

This condition is not apparent from the source code,
since the variable NO.VM.QUI CK_I NSTRUCTI ONS is
used 1000 lines before this line to conditionally define
VMNO.QUI CK; line 1171 is in turn conditionally compiled
if this latter variable is not defined. This simple exam-
ple shows that manually analyzing even simple conditional
compilation may be very time consuming.

Since each CFG node contains the conditions of its
traversal, it is possible not only to get the exact condition
of reachability (by oring them), but also to analyze each in-
dividual case.

8.2. Linux header file ker nel . h, version 2.2.12

The Linux kernel header file ker nel . h, the old ver-
sion 2.2.12, was symbolically evaluated. It directly includes
files | i nkage. h and st dar g. h, which includes sixteen
other files (e.g. va-cl i pper. h, va- nB8k. h) defining
various macros to handle variable number of arguments on
different CPU architectures and software. The total number
of lines is 2399 and the CFG has 828 nodes.

It takes 0.6 second for the symbolic evaluation of the
CFG, which means that the exact Boolean conditions are
derived for all lines of all files, not just one line, in less
than one second. The final table contains exactly 100 pre-
processing variable bindings.

In contrast, [4] finds one condition for one line at a time.
We cannot directly compare our execution time with theirs,
since they do not report any specific time for the full (ex-
act) conditions found, although they report that:“The goal
of finding the full condition to reach a tested code line
seeks to cover all the combination of conditions, thus is of
course time consuming.” This is expected since their al-
gorithm considers all paths. As a matter of fact, the file
st dar g. h contains a nested series of more than twenty
four if-directives which generates over four millions paths.

Here are three examples of line reachability conditions
derived by our algorithm:

e Line 40 of filekernel . h
#def i ne FASTCALL(x) x

is reached under condition

~def?(_i 386__;) A def?(__KERNEL __;)
A —def?(_LI NUX_KERNEL _H;)

For the same line, [4] finds the full condition

~def?(__i 386__;) A def?(__KERNEL ;)

since they assume the variable _LI NUX KERNEL H
as undefined before symbolic evaluation. In general,
they consider all variables defined after being tested by
#i f ndef to be “safe guarders”, which they assume
undefined before symbolic evaluation. Our result is
more complete, though, as it truly represent the exact
condition to reach that line; in any case, if such results
are expected, we could bind such variable to value L
before our symbolic evaluation and obtain the same re-
sult. Our approach is therefore more general.

e Lines 18 and 19 of file va- cl i pper. h:

#define valist __gnuc_va.li st
#define _valist _gnucwva.li st

are reached under condition

(—def?(__need__va.listy)
Vdef?(_.VARARGS H/))
Ndef?(_cl i pper ;)
A—def?(_ANSI _STDARGH._)
A-def?(_STDARG.H;)
Adef?(__KERNEL __;)
A—def?(_LI NUX_KERNEL _H;)

e Line 29 of file | i nkage. h:
#define _ALIGN .align 4

is reached under condition

—def?(__arm_y)

A —def?(_LI NUX_LI NKAGE_H;)
A def?(__KERNEL __;)

A —def?(_LI NUX_KERNEL _Hy)

9. Related works

Livadas and Small [9] have built a GUI tool to slice parts
of C source code, taking into account preprocessing vari-
ables and directives, but it does not infer the Boolean ex-
pressions for line reachability.

Krone and Snelting [7] based their graph display of con-
figuration structures on C preprocessor directives. They
mainly focus on the overall software structure. They do
not take into account variables set inside #i f def ; there-
fore they do not infer the complete Boolean expressions for
each line of code.

Harsu [3] presents a technique to translate source code
containing preprocessor directives. The author pinpoints
the difficulty of processing source files with numerous free
preprocessing variables; even when automatic translation is
involved.

1. #i f ldefined(W && defined(2)
2. z =z + 1;

3. #endi f

4.

5. #i f defined(W && !defined(2)
6. W=w+ 1;

7. #endi f

8.

9. #i f defined(W && defined(2)
0. W= W+ z;

11. #endi f

Figure 12. A series of three if-directives gen-
erate eight paths.

Kullbach and Riediger [8] propose a folding technique
to hide some parts of the source code based on the prepro-
cessing directives. This technique addresses the problem
of maintenance of code with preprocessing directives, al-
though it is mainly a visual approach.

The work of Hu et al. [4] addresses very similar prob-
lems of this paper. They offer two techniques, one to find
the “simplest sufficient condition to reach/compile” a line
and another for the “full condition to reach/compile” it.
Their approach uses the common technique of symbolic
evaluation using paths, pioneered by [6].

Their first technique uses the shortest path. We believe
this has a major flaw, since the path found can contain a
series of contradictory constraints. It is a well known fact
that symbolic evaluation using paths can go through a series
of constraints that are contradictory and it is quite common
to go through such paths[1]. These are infeasible path and
symbolic evaluation by itself does not identify them. Giving
the shortest path, and not verifying that its constraints are
not contradictory, can provide an incoherent condition to
reach that line. Such a condition can hardly be useful since
another path can be non-contradictory.

It is also very debatable if a shortest path condition is
useful, since there are a large number of paths having the
same length. Consider Fig. 12, a series of three conditional.
There are eight shortest paths, from line 1 to 10, of length
three: Seven are contradictory and only one is not, namely
the one that assumes the first two conditions are false and
the third is true. So, a path simply uncovers a series of
constraints, possibly contradictory, under which the line is
reachable. Given the numerous shortest paths to reach a
line, it is very difficult for the programmer to give any pre-
cise meaning to one of them. It is actually necessary to have
a theorem prover to derive non-contradictory paths. But that
problem is not addressed in their paper since simplifications
of conditions is done in a last phase by an external simplifier
detached from the symbolic evaluator.

The second technique uncovers all paths, in the CFG, to
one line under analysis, to derive the full (exact) condition

of reachability. (This is one of the problems adressed in this
paper.) As discussed in sections 1 and 8, this technique is
very inefficient, since there are 2™ paths for a series of n
(not necessarily nested) if-directives. A series of more than
thirty if-directives is common, resulting in billions of paths.
Indeed, the authors do not report any evaluation time for the
full conditions found.

10. Conclusion and future work

It has been shown that symbolic evaluation of C/C++
preprocessing can be done efficiently by using conditional
values (c-values). The conventional symbolic approach of
analyzing execution paths has been shown to be of expo-
nential time complexity in the best case; whereas using c-
values, it has a linear time complexity for that case.

This evaluation gives, for each line of code, a symbolic
conditional expression determining its reachability and the
conditional value of each preprocessing variable. This fun-
damental information can be used to do further code analy-
sis.

C/C++ preprocessing has an important constraint,
namely the limit of nested file inclusions, that makes it pos-
sible to avoid infinite iteration. Without this constraint, iter-
ation analysis would become undecidable.

Experiments on some Unix software have shown the
practicality and efficiency of our symbolic algorithm. It was
specifically shown to be much faster than traditional sym-
bolic evaluation by avoiding exponentional time complex-
ity.

Simplification of conditional values is an important as-
pect of our approach; without them, determining condi-
tional expression status (e.g. satisfiable, tautology, contra-
dictory) could be time consuming.

Our set of simplification rules is based on our common
sense and experiments — not all reported in this paper. This
set could be incomplete to efficiently tackle some cases. In
this regard, future work may provide an expanded set of
useful simplification rules.

References

[1] P.D. Coward. Symbolic execution systems — a review. Soft-
ware Engineering Journal, pages 229-239, November 1988.

[2] M. Feeley. Gambit Web Page. URL:
www.iro.umontreal.ca/~gambit/.

[3] M. Harsu. Translation of conditional compilation. Nordic
Journal of Computing, 6(1), Spring 1999.

[4] Y. Hu, E. Merlo, M. Desmarais, and B. Laglie. C/C++
conditional compilation analysis using symbolic execution.
In Proceedings of the international Conference on Software
Maintenance (ICSW’'00), 2000.

[5] R. Kelsey, W. Clinger, and J. R. (Editors). Revised® report
on the algorithmic language Scheme. ACM SIGPLAN No-
tices, 33(9):26-76, 1998.

[6] J. C. King. Symbolic execution and program testing. Com-
munications of the ACM, 19(7):385-394, July 1976.

[7] M. Krone and G. Snelting. On the inference of configu-
ration structures from source code. Technical Report 93-
06, Gausstrasse 17, D-38092 Braunschweig, Deutschland,
1994.

[8] B. Kullbach and V. Riediger. Folding: An Approach
to Enable Program Understanding of Preprocessed Lan-
guages. Fachberichte Informatik 7-2001, Universitét
Koblenz-Landau, Universitat Koblenz-Landau, Institut fiir
Informatik, Rheinau 1, D-56075 Koblenz, 2001.

[9] P. Livadas and D. Small. Understanding code containing
preprocessor constructs. In IEEE Third Workshop on Pro-
gram Comprehension, pages 89-97, Washington, DC, USA,
November 14-15, 1994.

[10] G. Muller and U. P. Schultz. Harissa: A hybrid approach to
Java execution. |EEE Software, 16(2):44-51, 1999.

[11] H. Spencer and G. Collyer. ifdef considered harmful, or
portability experience with ¢ news. In Summer ' 92 USENIX,
pages 185-198, June 1992.

