Simple and Efficient Compilation of List Comprehension in
Common Lisp

Mario Latendresse
Bioinformatics Research Group
SRl International
Menlo Park, CA

latendre@ai.sri.com

ABSTRACT

List Comprehension is a succinct syntactic form to describe
lists in functional languages. It uses nested generators (i.e.,
iterators) and filters (i.e., Boolean expressions). The for-
mer generates lists, whereas the latter restricts the contents
of these lists. List Comprehension translation is commonly
based on Wadler’s rules that emit code based on recursive
functions. This code often results either in stack overflow or
in inefficient execution for many Common Lisp implemen-
tations.

We present a very simple technique to compile List Com-
prehension in the Loop Facility of Common Lisp, resulting
in efficient code that avoids stack overflow. Our translation
code is also very short, with an emitted code very close to
the user-specified list comprehension.

We also present a translation into more fundamental con-
structs of Common Lisp that often results in even more ef-
ficient code, although this translation is more complex than
using the Loop Facility.

The author has used the first translation technique for
compiling a new language called BioVelo, which is part of
bioinformatics software called Pathway Tools [2].

1. INTRODUCTION

In this paper, list comprehensions will be described as
S-exprs of the form (h ¢i...¢n) where the Common Lisp
expression h is the head and the ¢; are qualifiers. A qualifier
is either a generator or a filter. A generator has the form
(x <= X) where x is some identifier (this defines a new
variable) and X is a Lisp expression of type list. A filter is a
Boolean expression typically based on the variables defined
by generators. (This syntax will be extended in Section 4.)

For example, ((1ist x y) (x <- (1 2 3)) (y <- '(a
b))) gives thelist ((1 a) (1 b) (2 a)(2 b)(3 a)(3 b)). We
are interested in translating these list comprehensions into
efficient code in Common Lisp.

In March 2006, when searching on Google with the key-
words ‘translating List Comprehension Common Lisp’the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

first entry was Guy Lapalme’s paper, published in 1991 in
Lisp Pointers, titled Implementation of a “Lisp comprehen-
ston” macro [3]. This is the main publication on translating
list comprehensions in Common Lisp. Figure 1 shows La-
palme’s macro. It is certainly short with about twenty lines
of Common Lisp. It is based on Wadler’s three transla-
tion rules that use recursive definitions [4, p132-135]. This
macro handles the core of what a list comprehension is: a
sequence of generators and filters with a head expression
collecting the desired elements.

The simplicity of Lapalme’s macro is appealing — it was
considered simple enough to be the starting point of a more
elaborate translation involving a few more features for a
bioinformatics querying language, being implemented in Com-
mon Lisp, called BioVelo, which is based on List Compre-
hension.

But it was soon realized that many Common Lisp imple-
mentations were not handling tail-recursive calls well — and
these are prevalent in Wadler’s translation. For example, a
list comprehension with several thousands iterations, but
with a short list result, would overflow the stack. This was
surprising since the generated code had tail-recursive calls,
except for the recursive call handling the few elements that
were part of the result. This was unavoidable when the code
was interpreted on all tested implementations. One way to
avoid stack overflow was to compile the code with optimiza-
tion options for speed and not for debugging. This only
partly solved the problem as some implementations would
still create a stack overflow. Also, when analyzing the dis-
assembled compiled code, we could still see inefficiency as
some compilers maintain a constant stack space by literally
copying stack frames. It was time to find another translation
technique to avoid these shortcomings.

The Common Lisp Loop Facility [1, Chapter 26, by Jon L
White] became a candidate as a translation target to avoid
stack overflow and increase efficiency. Indeed, most Com-
mon Lisp implementations should implement it in such a
way that the stack space used is not proportional to the
number of iterations — even if the number of items collected
is proportional to the number of iterations. But it was first
thought that the translation of list comprehensions into the
Loop Facility would be complex given its quirky syntax. It
turned out just the opposite; the syntax of the Loop Facility
is such that the translation is very simple and easy to under-
stand. This was quite a surprise. It also turned out that the
additional features of our list comprehensions in Bio Velo,
namely, the use of tuple in generators and binding assign-
ments, were very easy to translate. Various optimizations

(defmacro comp ((e &rest gs) 12)
(if (null gs) ‘(cons ,e ,12)
(let ((ql (car gs))
(q (cdr gs)))
(if (not (eq (cadr ql) ’<-)) ; a generator?
‘(if ,ql (comp (,e ,0q) ,12) ,12) ;rule B
(let ((v (car ql)) ;rule C
(11 (third q1))
(h (gentemp "H-"))
(us (gentemp "US-"))
(us1 (gentemp "US1-")))

;rule A

‘(labels
((,h (,us) ; a letrec
(if (null ,us) ,12
(let ((,v (car ,us))

(,usl (cdr ,us)))
(comp (,e ,@0q) (,h ,us1))))))
Gh L,11)))))

Figure 1: A macro based on Wadler’s rules to trans-
late a Comprehension List in Common Lisp, using
recursive functions. This is taken verbatim from La-
palme’s paper.

can also be done without much effort.

Although the code emitted by our translation into the
Loop Facility should be easy to compile into efficient fun-
damental code, we also investigated the translation of list
comprehensions into fundamental Common Lisp constructs,
namely, the prog with go statements. We wanted to know
if the Loop Facility for the Common Lisp implementations
tested was compiled adequately for the loops we were emit-
ting. This lead to a translation that emits even more efficient
code for these implementations. It showed that some imple-
mentations do compile the loop macro into efficient code
while some others could do better.

The next section presents earlier work on translating list
comprehensions in Common Lisp, in particular, Lapalme’s
technique based on Wadler’s three rules and the problem of
efficiently executing its emitted code for many Common Lisp
implementations. In Section 3 we present our translation
scheme into the Loop Facility with translation examples.
Section 4 presents some extensions of List Comprehension
that are easily handled by our translation technique. Sec-
tion 5 shows some useful and simple optimizations that can
be applied to our emitted code. Section 6 presents another
translation mechanism based on the prog construct. Us-
ing four Common Lisp implementations, Section 7 compares
the running times of the code emitted by our two transla-
tion techniques to the translation using Wadler’s rules. We
conclude in Section 8.

2. PREVIOUS WORK

Sven-Olof Nystrom [5] has created a library under the
name collect that translates list comprehensions into Com-
mon Lisp. The list comprehension syntax used by Nystrém
is a bit unusual. The implementation is much more com-
plex than what is presented in this paper and it is not clear
that it is efficient as the translation uses a liberal amount
of funcalls, applys, and other expensive operations. The
translation is also much more complex, relying on CLOS

(LABELS ((H-1000 (US-1001)
(IF (NULL US-1001)
NIL
(LET ((X (CAR US-1001))
(US1-1002 (CDR US-1001)))
(LABELS ((H-1003 (US-1004)
(IF (NULL US-1004)
(H-1000 US1-1002)
(LET ((Y (CAR US-1004))
(US1-1005 (CDR US-1004)))
(IF (> 0 X)
(CONS X (H-1003 US1-1005))
(H-1003 US1-1005))))))
(H-1003 (A B CO))))N)
(H-1000 I150000))

Figure 2: Translation of (x (x <- i50000) (y <- ’(a
b ¢c)) (> 0 x)) based on Lapalme’s macro of Fig-
ure 1.

and more than 300 lines of code.

One of the main publication of a simple translation tech-
nique of list comprehensions in Common Lisp is Lapalme’s
paper [3]. Figure 1 shows Lapalme’s macro to translate a
comprehension list into recursive functions using Wadler’s
three rules [4, pl132-135]. An example of a translation,
shown in Figure 2, demonstrates a stack overflow problem
frequent for many Common Lisp implementations. Indeed,
assume that the global variable i50000 is bound to a list
of 50000 positive integers. This makes the Boolean ex-
pression (> 0 x) always false. That is, the result of exe-
cuting this code is the empty list. All the recursive calls
are in a tail location except the call (H1003 US1-1005) in
(CONS x (H1003 US1-1005)), but it is never executed since
no integer satisfies the expression (> 0 x). Therefore, we
expect a compiler to generate this code in such a way that
the stack space used — due to recursive calls — does not
depend on the length of 150000. Unfortunately, many Com-
mon Lisp compilers fail to do so as soon as the compiler op-
tions are not set toward strong optimization — for example,
forcing the removal of debugging information.

Even if the list is not empty, it would be possible to create
a translation such that the stack space does not grow with
the length of the result. Using an accumulator for every
defined recursive function would make this possible, but this
would bring more complexity to the translation technique.

This problem of stack overflow alone has prompted the
author to seek another translation technique of list compre-
hensions for Common Lisp. We discuss this translation in
the next section.

3. TRANSLATION TO THE LOOP FACIL-
ITY

Our simple translation mechanism of list comprehensions
into the Loop Facility is shown in Figure 3 which presents
the entire translation via the macro 1c and the function lcr.
The macro 1c always emits an external loop that repeats
only once — this is a syntax trick to handle the case where
the list of qualifiers does not contain a generator. See the
end of this section for a proof sketch where an example of
this case is presented.

(defmacro lc ((h &rest gs))
‘(loop repeat 1 ,@(lcr h gs)))

(defun lcr (h gs)
(if (null gs) ‘(collect ,h) ;; head
(let ((q1 (first gs))
(qr (rest gs)))
(if (eq (second ql) ’<-)
(let ((v (first ql1))
(r (third q1)))
‘ (nconc (loop for ,v in ,r ,@(lcr h qr))))
“(if ,q1 ,@(lcr h gr)) ;3 filter
)

;; generator

Figure 3: Our translation mechanism of list com-
prehensions into the Loop Facility. It translates the
same set of list comprehensions as Lapalme’s macro
of Figure 1. The macro 1lc is the main entry point
for translating a list comprehension.

(loop repeat 1
nconc (loop for x in 150000 nconc
(loop for y in ’(a b c)
if (> 0 x) collect x)))

Figure 4: Translation of (x (x <- i50000) (y <- ’(a
b ¢)) (> 0 x)) by macro 1c of Figure 3. This can be
compared with the result of Figure 2 resulting from
Wadler’s rules.

The function lcr does the main translation. It has three
cases: no more qualifier, the next qualifier q1 is a filter or a
generator. In the first case the translation is ¢ (collect ,h)
since there is no generator or filter to apply. In the second
case, the generation of an if guard on the rest of the quali-
fiers captures the correct semantics. Notice that we use ,@
to insert the result of translating the rest of the qualifiers.
This is required by the Loop Facility where one of if, nconc
and collect will be taken as a Loop Facility keyword — not
an expression to evaluate. The third case is for the genera-
tors, which is translated directly into a loop where v stands
for the variable provided by the user and r the expression
on the right side of <-.

As can be seen, the translation does not generate any re-
cursive definitions. This is the main difference with Wadler’s
technique. Also, no new variable name is generated as all
the loop variables are provided by the list comprehension it-
self. The translation code is also quite short, emitting code
that is short and efficient (see Section 7 for some benchmark
results).

Figure 4 shows the translation of the list comprehension
(x (x <= 150000) (y <= ’(a b c)) (> 0 x)). This code
is shorter than the code resulting from Wadler’s rules pre-
sented in Figure 2. Notice how the keyword nconc is inserted
right after repeat 1 and i50000. Similarly, the collect
and if keywords were inserted by the same piece of code
of lcr. This syntactic construct of the Loop Facility makes
the translated code efficient as the result of the inner-most
collect is passed up the nested loops without list copying.

The 1c macro can handle tuple assignments in a gener-
ator, which is a form of restricted pattern matching. For

(loop repeat 1
nconc (loop for (x y) in ’((1 a) (2 b) (3 ¢))
collect x))

Figure 5: The translation of (x ((x y) <- *((1 a) (2
b) (3 ¢)))) by macro lc of Figure 3. Its execution
gives the list (1 2 3). This shows that the transla-
tion done by 1lc handles tuple assignments.

example, the list comprehension (x ((x y) <- ((1 a) (2
b) (3 ©)))) contains the tuple (x y) which is a pair of
variables. Figure 5 shows the translation of (x ((x y) <-
’((1 a) (2 b) (8 c©)))). This list comprehension succes-
sively binds x to 1, 2, and 3 at the same time (i.e., in parallel)
variable y is bound to a, b, and c. This cannot be handled
by the comp macro of Figure 2.

In the rest of this section we present a proof sketch of the
correctness of the translation. This is inductively done on
the length of the list of qualifiers.

For the base cases: the translation is correct when the
list of qualifiers is empty, that is, for a list comprehen-
sion of the form (h). Indeed, it generates the code (loop
repeat 1 collect h) which simply gives a list containing
the singleton h. For a list of qualifiers of length 1, the
qualifier is either a filter or a generator. This would be
either (loop repeat 1 if ¢ collect h) or (loop repeat
1 nconc (loop for z in Xcollect h)) for (h ¢) and (h
(zr <= X)), respectively. In both cases, these are correct
translations.

Inductively, assume the translation is correct for a list of
qualifiers of length n > 0; then it is correct for a list of length
n + 1 by considering four cases as the last and penultimate
qualifiers are either filters or generators. These four cases
are

1. ...nconc (loop for x in X nconc
(loop for y in Y collect h))...

2. ...nconc (loop for x in X if ¢ collect h)...
3. ...if ¢ nconc (loop for z in X collect h)...

4. ...if q if r collect h...

that correspond to the cases generator/generator, genera-
tor/filter, filter /generator, and filter/filter, respectively. They
can be directly verified to be correct according to the Loop
Facility semantics.

4. EXTENDING THE TRANSLATION

The previous section presented the basic translation into
the Loop Facility. Here, we show that it can easily be ex-
tended in several directions still based on the Loop Facility.

The basic translation mechanism assumes that the gen-
erators are based on lists. That is, when writing (x <- L)
the expression L is assumed to return a list. It would be
useful to generalize L to vectors and strings. This can easily
be done since the Loop Facility allows vectors and strings
as arguments for the loop variable by replacing the keyword
in to across.

The tuple matching still works with the data type vector
although it does not make sense with the string type as each
element, a character, cannot be a tuple. The translation is

(defmacro lce ((h &rest gs))
‘(loop repeat 1 ,@(lcer h gs)))

(defun lcer (h gs)
(if (null gs) ‘(collect ,h) ;; head
(let* ((q1 (first gs))
(op (second q1))
(qr (rest gs)))
(if (member op ’(<- <-- := <..))
(let ((v (first ql1)) ;;generator or binder
(r (third q1)))
¢ (nconc
(loop for ,v
,(if (eq op ’<--) ’across
(if (eq op ’<..) ’from ’in))
,(if (eq op ’:=) ‘(list ,r) r)
,@(if (eq op ’<..) ‘(to ,(fourth qi1)))
,@(lcer h qr))))
‘(if ,ql ,0(lcer h qr)) ;3 filter
))))

Figure 6: Translation of extended List comprehen-
sions into the Loop Facility. The extension includes
generators that can be list, vectors, strings, and a
range of integers. It also has the binding operation

simple if the type of the sequence is known. This can be
implemented by using, say, <-- for string and vector, instead
of <- for list.

In BioVelo, there is a binding operator denoted :=, where
a tuple of variables or a single variable is on its left side and
a general expression is on its right side. It binds the single
variable or list of variables to the value or tuple of values of
the expression. The single or multiple variables are then in
the scope of all following qualifiers. This can be translated
by still using a loop construct where the list is made of only
one element, the value of the expression.

Our last extension provides the primary ingredient to gen-
erate lists of integers ranging from one integer to another
integer — that is translated to the from/to Loop Facility.
It is specified by using <. . instead of <-, for a generator, as
in (x (x <.. 1 153)) which generates the list of integers
from 1 to 153.

These extensions are handled by the translation macro
1ce of Figure 6.

5. OPTIMIZATIONS

Translating into the Loop Facility opens up several desir-
able optimizations. Here, we sketch the translation needed
to accomplish some of them.

Sometimes only the size of a list comprehension is needed,
asin (length (1c (x (x <- i5000) (primep x)))) where
primep is true only when x is a prime number. There is no
need to collect the elements of the list to only return its
length. Since the Loop Facility has the count keyword, we
expect it to do exactly that — not constructing any list. So,
in our translation, instead of using collect we would use the
Loop Facility keyword count, that is emit count x instead
of collect x; for generators, we replace nconc between the
emitted loops by sum. Also, lcr would have to know the
context, that is the fact that only the length is needed, not

;35 h is the head and gs the list of qualifiers
(defmacro 1c2 ((h &rest gs))
(let ((tail (gensym "tail")))
‘(prog ((,tail (list nil)) rhead)
(setq rhead ,tail)
,(lc2r h gs tail)
(return (cdr rhead))

)))

;35 tail is the identifier to access the end
;33 of the resulting list.
(defun lc2r (h gs tail)
(if (null gs)
‘(block nil (rplacd ,tail (list ,h))
(setq ,tail (cdr ,tail)))
(let ((q1 (first gs))
(qr (rest gs)))
(if (eq (second ql) ’<-)
(let ((v (first q1))
(r (third q1))
Qv (gensym "1v")))
‘(prog (,v (,1v ,r))
loop
(if (null ,1v) (go endls))
(setq ,v (car ,1lv))
,(lc2r h gr tail)
(setq ,1lv (cdr ,1v))
(go loop)
endls
))
“(if ,q1 ,(lc2r h gqr tail)) ;; filter
NN

;5 generator

Figure 7: A macro emitting fundamental code to
translate list comprehensions. The resulting code
should be as efficient as the Loop Facility, if not
more efficient. The benchmark results of Section 7
demonstrate this for four Common Lisp implemen-
tations. Note, this code does not handle tuple as-
signments as the 1c macro can.

the resulting list. This is easily done by adding a parameter
to lcr.

In some other cases, only knowing if the length is zero or
not is all that is needed. For example, for the following ex-
pression (< 0 (length (lc (x (x <- X) (primep x)))))
there is no need to know the exact length of the lists. For
this to be efficient, the iteration should stop as soon as one
element is about to be added to the list of results. To do
so, it suffices to use the return keyword instead of collect.
That is, to emit return nil if length equal to zero is spec-
ified and otherwise to emit return true if length greater
than zero is specified. In this case, the keyword nconc must
be replaced with do.

6. TRANSLATION INTO FUNDAMENTAL
CONSTRUCTS

We analyze the following question: how can we generate
Common Lisp code that does not depend on the Loop Fa-
cility and is as efficient (if not more efficient) as the Loop
Facility? More precisely, what are the more fundamental

(LET ((#:1tail21| ’(NIL)) RHEAD)
(BLOCK NIL
(TAGBODY
(SETQ RHEAD #:|tail21])
(PROG (X (#:|1v22| I5000))
LOOP (IF (NULL #:|1v22|) (GO ENDLS))
(SETQ X (CAR #:1v22]))
(PROG (Y (#:|1v23| 15000))
LOOP (IF (NULL #:|1v23|) (GO ENDLS))
(SETQ Y (CAR #:1v23]))
(IF (<= Y 10)
(BLOCK NIL
(RPLACD #:|tail21| (LIST X))
(SETQ #:|tail21| (CDR #:|tail21]))))
(SETQ #:11v23| (CDR #:|1v23]))
(G0 LOOP)
ENDLS)
(SETQ #:11v22| (CDR #:|1v22]))
(GO LOOP)
ENDLS)
(RETURN (CDR RHEAD)))))

Figure 8: The translation of (x (x <- i5000) (y <-
i5000) (<= y 10)) by 1lc2.

constructs of Common Lisp that should be used when emit-
ting code to ensure that it is not dependent on the transla-
tion of the Loop Facility?

Doing so eliminates any dependency on the Loop Facil-
ity and ensures that list comprehensions are translated into
efficient code even when weak optimization settings of the
compiler are used. It is also an analysis of what the Loop
Facility ought to be doing to compile efficiently the kind of
loop constructs that the macro 1c emits.

All the list comprehensions need to do the following: keep
a list of all the results being accumulated, and for each gen-
erator, iterate through the list, binding each element to a
variable, optionally applying any filters found on its right.
The prog construct — using the go statement — is a funda-
mental element of Common Lisp that can do this. Figure 7
presents a translation of list comprehensions that uses prog.
The macro 1c2 emits the base code to define two variables,
one of which is used by the code emitted by 1lc2r to add
new elements to the final resulting list (see (rplacd ,tail
(list ,h))). The variable rhead simply keeps the head of
the resulting list so that the result can be returned from the
most external prog; whereas the variable tail gives access
to the tail of the resulting list to insert new elements. Notice
that we use the constant list (nil) as the first cell for the
result, although the nil element is dropped once the result-
ing list is created. This is required by the emitted rplacd in
1lc2r to operate properly when the first element is inserted.
For each generator, a new variable is emitted for the list.
Instructions go and if are used for flow control. The same
tags endls and loop are reused for all generators as the in-
ner generators shadow the outside tags which is the desired
semantics. Figure 8 presents the translation of (x (x <-
i5000) (y <- i5000) (<= y 10)) by lc2.

Section 7 presents, among other things, the speed of ex-
ecution of the code emitted by this macro compared to the
one using the Loop Facility. Essentially, this code is often
the most efficient regardless of the optimization settings of

the compiler used.

7. BENCHMARK RESULTS

We compare the execution speed of the translation schemes
comp, 1lc, and 1c2 (i.e., the macros presented in Figures 1, 3,
and 7 respectively) using four Common Lisp implementa-
tions: Allegro Common Lisp, SBCL, LispWorks, and Clisp.
We use the comprehensions (x (x <- i5000) (y <- i15000)
(< x 0)) which generates the empty list, and (x (x <-
i5000) (y <- i5000) (<= y 10)) which generates a list of
50000 integers. (The variable 15000 is bound to the list of
integers from 1 to 5000.)

We do not report speed of interpretation as we are inter-
ested only in the speed of compiled code. We only report
that the interpretation of the code emitted by comp over-
flows the stack for three tested implementations, not the
code emitted by 1c and 1c2. The exception is SBCL which
compiles in its default evaluation mode — the comp code did
not overflow the stack for this implementation.

We compiled the code using four different optimization
settings. For each of these optimizations and each imple-
mentation we executed the code three times. We present
the rounded arithmetic average of the times in Table 1. The
times in bold-face indicate the fastest execution for either
the A or B list comprehensions and for each implementa-
tion.

There is only one case where the code emitted by comp is
slightly faster than the code emitted by 1lc, for SBCL with
the optimization OO0, but in this case, 1c2 emits slightly
faster code. For two implementations, comp emits code that
generates a stack overflow for all optimization settings, and
for one implementation it happens if the optimization qual-
ity debug is not below 2. This is comprehensible since in
this case the compiler keeps the evaluation stack to help
debugging — even though tail-recursive calls are involved.

Overall, the translation mechanisms 1lc and 1lc2 always
avoid any stack overflow for the four implementations. It is
indeed hard to see how any Common Lisp implementation
would create a stack overflow given the code emitted by 1lc
and 1c2. For the four implementations, the fastest execu-
tions were obtained using either the 1c or 1c2 translation.

8. CONCLUSION

We have shown that translating list comprehensions into
the Common Lisp Loop Facility is very simple and creates
more efficient code when compared to Wadler’s translation
technique based on recursive functions. The translation can
also be easily extended to tuple assignment in generators
and on vectors and strings. Compared to general recursive
definitions, the Loop Facility avoids any stack overflow since
it is often used as an iteration mechanism for which the stack
space does not grow with the number of iterations.

The Loop Facility is efficient, but we have also shown that
the fundamental construct prog can provide even more effi-
cient code when translating some list comprehensions. This
comes with an increase in the complexity of the translation
mechanism, yet is not more complex than using recursive
functions.

The reader may also have concluded that a subset of the
Loop Facility can be used as if it were a List Comprehen-
sion Facility — although this is not as pleasant as the usual
syntax of List Comprehension.

Implementation Opt. Time in milliseconds

comp | Ic 1c2
Code A

Allegro 8.0 00 818 351 317
o1 1105 421 344

02 SO 871 861

03 SO 984 878

LispWorks 4.4 00 SO 363 360
o1 SO 363 357

02 SO 543 363

03 SO 537 714

SBCL 0.9.18 00 673 728 653
o1 680 633 683

02 694 670 700

03 804 774 731

ClLisp 2.41 00 SO 7340 4786

o1 so 7227 5234
02 SO 7407 5504
03 SO 8229 7350

Code B
Allegro 8.0 00 861 424 357
o1 1181 453 391
02 SO 961 891
03 SO 1005 898
LispWorks 4.4 00 SO 627 761
o1 SO 620 834
02 SO 978 994
03 SO 998 1535
SBCL 0.9.18 00 704 583 593
o1 741 587 613
02 751 587 654
03 758 593 758
CLisp 2.41 00 SO 11122 9440
o1 SO 11386 10805
02 SO 10174 10174

03 SO 12250 10741

Table 1: Execution times of the compiled list com-
prehensions A) (x (x <- i5000) (y <- i5000) (< x
0)) and B) (x (x <- i5000) (y <- i5000) (<= y 10))
for four Common Lisp implementations using var-
ious optimization settings. The variable i5000 is
bound to the list of integers from 1 to 5000. Each
time is an arithmetic average from three runs; ‘so’
denotes stack overflow. Optimization Oz is ((speed
3) (space z) (debug z) (safety z)). The shortest
times for code A or B for each implementation are
in bold. All implementations ran on Windows XP,
600 MHz CPU, 128 MB physical RAM.

9. ACKNOWLEDGMENTS

Thanks to JonL. White for discussing optimization re-
sults using a Lucid compiler, and an anonymous referee who
pointed out a programming error.

10. REFERENCES

[1] Guy L. Steele Jr. Common Lisp, The Language, Second
Edition. Digital Press, 1990.

[2] Peter D. Karp, Suzanne Paley, and Pedro Romero. The
Pathway Tools software. Bioinformatics, 18(S):225-32,
2002.

[3] Guy Lapalme. Implementation of a ”Lisp
comprehension” macro. SIGPLAN Lisp Pointers,
IV(2):16-23, 1991.

[4] Simon L. Peyton-Jones. The Implementation of
Functional Languages. Prentice-Hall, 1987.

[5] Sven-Olof Nystrom. Generalized comprehensions for
Common Lisp. http://user.it.uu.se/ svenolof/Collect,
2007.

