Automatic Generation of Compact Programs
and Virtual Machines for Scheme

Mario Latendresse
Department of Computer Science
Rice University
latendre@cs.rice.edu

Abstract

Compact programs are not particularly needed on large work-
stations, but they become a necessity on small embedded
systems. For example, smart cards have on the order of 1K
of RAM, 16K of non-volatile memory, and 24K of ROM.
This is an extreme situation, but many embedded systems
also have memory constraints requiring compact code. Vir-
tual machine can be an effective approach to obtain com-
pact programs and bytecode is a common technique for en-
coding virtual instructions. If the instructions are tailored
for a particular language, the resulting virtual programs are
compact. We use a combination of techniques to automati-
cally generate new instructions and new compact encodings
for virtual instructions. The common bytecode encodings
align instructions on byte boundaries. Our encoding does
not align instructions, operational codes for instructions are
Huffman encoded, and argument lengths are not necessar-
ily a multiple of eight bits. New instructions are generated
to replace repetitive sequences of instructions in programs.
This process is done using a fixed basic set of instructions
and a sample of programs. The virtual machines are au-
tomatically generated in C. The resulting compressed pro-
grams are interpreted without decompression. This ap-
proach is general enough to be applied to C, Java and many
other languages. We demonstrate it on the Scheme language
using several benchmarks. The resulting Scheme virtual ma-
chines and programs run efficiently and are compact enough
to be ported on small embedded systems.

1 Introduction

Bytecode encodings of virtual instructions use a byte for the
operational code (opcode) and multiples of eight bits for the
arguments. We do not use this approach. More precisely, we
use a combination of four techniques to automatically gen-
erate a virtual instruction set capable of compact encoding
of programs. These techniques are:

1. Operational codes are Huffman encoded.

2. Repetitive sequences of instructions are replaced by
one opcode.

3. Creation of instruction formats having constant argu-
ments or lengths not necessarily a multiple of eight
bits.

4. Non alignment of instructions on byte boundaries.

Technique 1 shortens frequently occurring opcodes. This
should be done using statistics from program samples.

Technique 2 is similar to the Lempel-Ziv compression
technique. A repetitive sequence gets an encoding of its
own, that is, such a sequence becomes a new instruction
receiving its own opcode. We call them macro-instructions.
They may have several parameters.

Technique 3 saves memory space for the encoding of ar-
guments. In many cases, it is advantageous to fix one or
several arguments of an instruction. For example, the in-
struction pushi 0 can be very repetitive!. In such a case,
a new parameterless instruction pushi_0 should be created.
This introduces a new opcode. And in most cases, the ar-
guments have various lengths. For example, a program may
contain several pushi instructions with small arguments and
a few with large ones. In that case, it could be preferable
to have various formats to encode compactly the small ar-
guments.

Technique 4 is natural since lengths of opcodes and ar-
guments are not a multiple of eight bits. It brings some
complications to the specification of branching addresses.
In this work, we have adopted the following solution: The
instruction following a jump to a subroutine, and the begin-
ning of a subroutine, are byte aligned. All other branching
instructions specify a bit address.

Once an instruction set is generated, it is important to
use an efficient decoder. This is very tedious to do by hand,
due to the variable lengths of opcodes and arguments?. But
very efficient and compact decoders can be generated au-
tomatically. We have implemented such tools for the host
language C as explained in [14, 15]. The macro-instruction
implementations are also generated in C. It is done by con-
catenating the C code of the basic instructions contained in
the macro-instruction.

In this paper we focus on the compression techniques and
demonstrate its usefulness on Scheme.

1.1 Motivation

Compact programs are not particularly needed on large work-
stations, but they become a necessity on small embedded
systems.

For example, smart cards, a typical resource-constrained
device, have on the order of 1K of RAM, 16K of non-volatile
memory (EEPROM or flash), and 24K of ROM. This is an

1Suppose that pushi is an instruction that pushes an integer on
top of a stack.

21t could be done easily if a large amount of space in the form of
a lookup table is used.

Instruction Standard Format
br d (s 24)
bf d (s 24)
pushi ¢ (s 24)
pushli ¢ (u 8
push 3 (u 16)
pushl ¢ (u 8
pushg ¢ (u 16)
pop @ (u 8)
alloc % (u 8)
storel % (u 8
storeli 1 (u 8)
storeg 1 (u 16)
ret 1 (u 8)

Figure 1: Machina basic instruction formats

extreme situation, but many embedded systems also have
memory constraints requiring compact code.

To tackle such small systems in Java, Sun has taken
the approach of defining smaller virtual machines, like the
KVM? [20], and apply restrictions on the language and the
libraries. For the smart cards, this comes with major con-
straints, where floating-point computation, threads, and gar-
bage collection have been removed. Tools are also provided

to reduce memory usage, like Java CodeCompacttm[20],
which preloads class files, resolves dynamic links, and gener-
ates a complete executable ROM version. But this approach
does not reduce the size of bytecoded programs.

The approach taken in our work is to generate a virtual
machine (VM) tailored for a set of programs, which includes
a tailored instruction set. This takes advantage of the fact
that many embedded systems have some specific class of pro-
grams to run. Even if a fixed set does not exist, a sampling
of program types can be known.

2 Machina

The Scheme compiler directly generates instructions for a
basic general VM named Machina. This machine is not tai-
lored for Scheme as its instruction set does not include any
particular operation for Scheme. This is intended to demon-
strate that from a general VM it is possible to come up with
a specific virtual Scheme machine.

Machina is a simple stack machine with forty six basic
instructions. It has a stack (S), a heap or memory (M), a
pool of global variables (G), and a constant pool (C). The
instructions are simple but this simplicity allows an auto-
matic generation of more complex instructions tailored for
the programs to execute. The complete instruction set is
shown in the Appendix, Table 7.

2.1 Scheme compilation to Machina

We use the front-end of Gambit-C’s Scheme compiler [8] to
generate Machina code. The compilation is straightforward
but some technical details are important to better under-
stand the generation of macro-instructions.

3The KVM uses on the order of 128K, including libraries. The
virtual machine itself is 40K-80K depending on the compiler and the
target platform used.

The dynamic tagging of objects use the three lower bits
of a 32 bits word. To tag a word, we use the instruction
pushi, where its argument is the tag, followed by or. To
untag, the sequence of instructions (pushi 7, not, and) is
used.

In general, there are no run-time checks performed, al-
though most of the required infrastructure is there. For ex-
ample, a function call pushes the number of arguments on
the stack, but the prologue of the function does not verify
this value. The resulting run-time system does not include
a garbage collector, but objects include a tagged word, and
call/cc has not been implemented.

Some Scheme basic operations generate long sequences
of Machina instructions. For instance, the creation of a rest
argument needs a sequence of seventy Machina instructions.
In a tailored Scheme implementation, this should take only
a few bytes.

Primitives, like car and cons are implemented using se-
quences of Machina instructions. If it is assumed that these
primitives are not rebound, they are in-lined by the com-
piler. If they occur frequently enough in the samples, their
pattern of instructions are detected by the creation of macro-
instructions. This is indeed the case in the experiment of
Section 3.1.

3 Generation of new instructions

The macro-instructions are the new instructions resulting
from a statistical analysis of program samples. A macro-
instruction is a sequence of basic instructions, possibly with
parameters and control flow. In this section, we explain the
general algorithm used, independently of Scheme, and in the
next section it is applied to Scheme using our compiler with
Machina as the target machine.

A compiler generates the sample programs using some in-
struction set. These resulting programs are divided in basic
blocks. A basic block may contain control flow instructions
as long as the resulting macro-instructions can be imple-
mented in the host language. For Scheme, we accepte basic
block containing control flow instructions and a later stage
eliminates all macro-instructions containing a jump instruc-
tion outside the macro sequence of instructions.

The creation of macro-instructions is done in three phases.
In the first phase, the frequencies of sequences are recorded.
These sequences may overlap. In the second phase, a greedy
algorithm chooses one sequence at a time to create macro-
instructions. This choice is based on space savings of non
overlapping applications of the sequences; that is, it is in
the second phase that the space saving of sequences is taken
into consideration. In the final phase, macro-instructions
and basic instructions may be attributed several formats, if
it reduces space. A format describes the number of bits for
each parameter, and may include one or several constants,
fixing the corresponding parameters, thus further reducing
space usage.

To reduce processing time in the first phase, an infe-
rior frequency threshold is specified under which a sequence
should not be considered. This reduces processing time since
long sequences are constructed from shorter ones. Moreover,
an upper limit on the length of macro-instructions is used”.

4This eliminates the creation of very long macro-instructions due
to very long sequences of basic instructions for which the second phase
would prove them useless. For example, if the sample contains a se-
quence of 200 instructions pushi and the lower threshold of repetition
is 10, this would result in the creation of macro-instructions of length
2, 3, 4, ..., 191 instructions. But all become almost useless once one

For each (s1,Ps,) € S;

For each (b,j) € Ps,

S1 S
S2
I L
I I I
= =
Ii Ii Ii
i) | Litr Tin it

P, = P;, @ Ps,, If |Ps| > funin Add (s, Ps) to Sit1

Figure 2: Generation of sequences s of length i + 1
from sequences of length i > 2

The sequences of instructions are first considered as if
all arguments of these instructions were arguments of the
resulting macro-instruction. For example, in the sequence
(pushi 2, pushl 3, pushi 4) the macro-instruction has three
parameters. It is only after recording all frequencies of all se-
quences that macro-instructions with fixed parameters are
considered and possibly generated. For the preceding se-
quence, a macro-instruction with one parameter (pushi 2,
pushl *, pushi 4), where the star stands for a parameter,
could be generated. This is an important case to handle,
since many sequences have repetitive arguments.

An overview of the recursive technique used to generate
sequences is described in Figure 2. The set of all sequences
of length ¢ + 1 is generated using the set of sequences of
length . The generated sequence is s. The set P, contains
all places (b, j), for basic block b at instruction j, where s
occurs. The operation Ps, A P, is a set intersection where
the couples (b,) for Ps, is seen as (b,j +1). The value fiin
is the lower frequency threshold. In this way, it becomes
faster to generate all such sequences and to compute their
frequencies since it can be derived from the previous sets. A
linear scan of the basic blocks generates the basic sequences
of lengths two and three.

In the second phase, the greedy algorithm promotes the
sequence with the largest space gain as a macro-instruction.
The gain is the space saving of the bytecode minus the space
needed to implement the macro-instruction in the VM.

The bytecode saving is the length of replaced opcodes
minus the length of the new opcode multiplied by the fre-
quency of the sequence. This requires an evaluation of the
Huffman encoding of the new opcode taking into account
the new frequencies.

The C code for the macro-instruction is a concatenation
of the C code of the basic instructions. So, the space taken
for the implementation is based on the space of the imple-
mentation of the basic instructions of the sequence and the
space taken by a node in the decoder. It is an approxima-
tion since the size of the compiled concatenated code might

of them is chosen in the second phase.

libScheme R’RS library.
fib Recursive evaluation of Fib(28).

conform Type checking of a program.
earley Generation of a parser.

tak Evaluation of Tak(18, 12, 4).
gsort QuickSort of 1000 integers.
mm Squaring of a 100x100 matrix.
destruct Operations on lists.

Figure 3: Benchmarks used in experiments

be slightly different than the sum of its compiled part. The
selection of sequences as macro-instructions stops when no
gain can be obtained.

The final stage does a precise calculation on the space
saving by choosing the parameter lengths. This choice may
fix some parameters to some constant values.

The opcodes are constructed using canonical Huffman
codes as this allows very compact decoders [17, 14].

3.1 Application to Scheme

The benchmarks used to construct the VM are shown in
Table 3. The library libScheme is a modification of Dubé’s
library for BIT [6]. We in-lined all primitive operations that
existed in our compiler.

All these benchmarks were compiled using our compiler
and combined into one list of 58194 Machina instructions.
This list was divided in basic blocks and the generation of
new instructions was done using the method of the preceding
section.

‘We dub the resulting machine, and its encoded programs,
by the name Schemina, an hybrid form of Machina for Scheme.
It took about two minutes of cpu time to build the entire
instruction set and generate the C code of the VM.

Table 8, in the Appendix, contains twenty eight of the
eighty macro-instructions created. The column ‘Format’ de-
scribes the length of parameters and the fixed constants.
For example, macro 17 has format (s 3 u 3 ¢ 2) which
means that the first argument is a signed three bit inte-
ger, the second an unsigned three bit integer, and the third
parameter has been removed since it is fixed at constant
2. It would be too long to explain the origin of all of those
macro-instructions, but here are some explanations for some
of them.

Macro-instruction 1 originated from the calling sequence
of functions. The first three instructions remove the closure
tag and push on the stack the code address and performs the
jump to a subroutine. It has no parameter since constants
7 and 1 have fixed the original parameters.

Macro-instruction 2 allocates a closure with no free vari-
ables in the heap and initializes its first component. Macro-
instruction 3 removes the three bit tag. Macro-instruction 4
is part of a sequence of instructions for a conditional expres-
sion. It generates value 26, for true, or value 10, for false,
depending on a boolean value on the top of the stack. It is
the conversion of a Machina boolean to a Schemina boolean!

Primitives are also present in these macro-instructions.
The primitive car is implemented by the compiler as the
sequence pushi 7, not, and, pushi 0, and pusha. By speci-
fying 0 as its second argument, macro-instruction 6 contains
this sequence, with the additional instruction pushl at the
beginning and pushi at the end. So, this macro-instruction

Bytecode Schemina gzip
Size Factors Factors

[ibScheme 32040 23% 16%
fib 169 18% 7%
tak 582 26% 37%
earley 26271 31% 19%
conform 28599 23% 17%
mm 2550 30% 29%
destruct 3371 22% 22%
qsort 5827 57% 45%

Figure 4: Compression factors

embodies a more practical instruction, that is a car of a local
variable followed by the use of an integer. By specifying 1
as the second argument, this macro-instruction implements
also cdr. Note that the second argument has only two bits.

The long macro-instruction 28 originates from the cre-
ation of a closure in the heap and storing its address in a
global variable. This is a frequent sequence of instructions
found from a series of global Scheme function definitions.

The last phase also created some new formats for the
basic Machina instructions. For example, four new instruc-
tions for pushi were created having formats (s 5), (s 8),
(s 11), and (s 14). Maximum formats of arguments of 32
bits were forcefully introduced in the instruction set to allow
any standard Machina program to be loaded in this VM.

One important general observation is that it is not obvi-
ous how to generate by hand a set of virtual instructions to
compactly encode programs. The obvious approach would
be to implement the known primitives, the tagging, the un-
tagging, the call to a function, etc., as virtual instructions.
What these results show is that there is no such obvious di-
vision. As shown, it is better to implement a combination
of primitives by one virtual instruction with a very short
parameter, add more functionality to a task, for example
loading a local variable followed by an integer, etc. And
parameter lengths are more complicated to choose by hand.
It is more accurate to let a program evaluate that appropri-
ately.

4 Benchmark results

We present two types of results: speed of execution and size
of programs.

4.1 Space usage

Table 4 presents the size of the benchmarks encoded for
Schemina as compression factors relative to the size of the
bytecode Machina. The bytecode was generated by using
an eight bit opcode and the standard instruction formats
of table 1. Using our techniques, the compression factors
range from 18% to 57%°. In comparison, gzip compression
factors range from 17% to 77%. Of course, the techniques
used by gzip are different, and no direct execution would
be practically feasible, but this gives a point of comparison.
The program gzip is better on large files. This is under-
standable given the fact that it uses a window technique.
Our technique is close to gzip performance and sometimes
better.

5The compression factor is the value ¢/s where c is the size of the
compressed program and s is the size of the uncompressed program.

These results compare the sizes of the compressed codes
with Machina bytecodes. But what are the performances
compare to other Scheme systems?

A very relevant point of comparison is the BIT system
developed by Dubé[6]. It is a very compact implementation
of Scheme on a 16 bits micro-controller having a compiler
and a tailored VM. This implementation supports integer,
char, string, vector, list, and procedure, but not the other
basic types of Scheme. It has a real time garbage collector
and implements call/cc. Its R*RS library uses around 5K
bytes. On the other hand, it sacrifices speed of execution
for space.

Table 5 presents the size of the benchmarks for BIT and
our system. For Schemina and BIT two versions of each
benchmark are presented due to the different compilation
techniques used in both systems. In column ‘With Library’,
the specified sizes include the necessary R*RS library code
for proper execution. In column ‘Without Library’, the sizes
do not include the R*RS library code. In this case, the code
sizes give the direct memory space used by the code as if the
whole R*RS library were available in the VM. The bytecode
sizes of MzScheme [9] were obtained using distribution 101,
and without any part of the R*RS library.

The fib program is very small for Schemina in both ver-
sions. It is much larger in BIT with the library. This is
due to the compilation technique. The BIT compiler relies
on the library to do fixnum arithmetic. But our compiler
in-lined the code for them, not relying on any part of the
library. For conform, the versions with library are very close
in size, but it becomes higher for Schemina without the li-
brary code. All Schemina codes are smaller than MzScheme
and in many cases quite smaller.

Using our tools the VM can be generated with various
decoders ranging in size and speed of decoding. If we com-
pile a VM having an 8 bit canonical decoder for the Pentium,
the resulting executable is 29K. If we use a 6 bit canonical
decoder, it falls to 27K. Note that part of the R*RS library
exists in the VM, since the macro-instructions cover some
of those functions and are directly implemented in C in the
VM.

4.2 Speed of execution

The Schemina benchmarks have similar speed compared to
other interpreted Scheme systems. Table 6 shows the execu-
tion times for BIT, Gambit, MzScheme, and Schemina, where
garbage collection times have been subtracted for Gambit
and MzScheme. We use Gambit interpreter version 3.0 and
MzScheme bytecode compiler. We use an 8 bit canonical
decoder for Schemina. For two benchmarks, BIT could not
terminate with 64K of heap.

This comparison is not intended to be precise enough
to draw some conclusions on the speed benefits of the tech-
niques used by Schemina. There are too many differences be-
tween BIT, Schemina, Gambit, and MzScheme®. Tt is rather
a comparison showing the practicality of the approach when
considering speed of execution.

All Schemina programs are faster than BIT. This is due
to two major reasons: the library coding technique, and
the run-time mechanism used by BIT. Schemina can also
have slow execution time due to the library, and this shows
quite well for conform where a large part of the library is
used. Overall, the execution time of Schemina programs are
comparable to tailored Scheme systems.

SIn particular, Gambit interpreter has a single stepping facility
built-in and points to source code when an error occurs.

BIT BIT Schemina Schemina MzScheme

With Without With Without

Library Library Library Library
fib 1372 115 31 31 234
tak 1363 209 152 152 247
earley 6217 4613 8155 6947 7031
conform 6492 3722 6482 4007 10692
mm 1749 409 762 489 797
destruct 1894 555 755 497 958
gsort 4318 2943 4370 3355 10054

Figure 5: Size of benchmarks for BIT, Schemina, and MzScheme

BIT Gambit MzScheme Schemina |

fib 15.05 6.27 1.67 1.29
tak 14.93 4.58 1.61 1.80
earley - 1.86 0.69 1.48
conform | 79.42 6.74 2.66 13.03
mm 56.97 10.22 4.26 4.55
destruct | 4.45 1.69 0.68 0.77
gsort — 3.30 1.02 4.47

Figure 6: Execution times in seconds

5 Related Work

Patterson and Henessy manually designed a compact native
instruction set by studying sample programs generated from
C code [18].

Wilner [22] was a early study of compressing program
code using Huffman encoding. The decoding was done at the
microprogramming level on a Burroughs B1700. This com-
puter was an ideal candidate since it could handle streams
of bits. The decoding technique used was not efficient since
it was done bit by bit.

Baker [1] made a study of techniques to find similarities
in bytecodes. Although it was mainly geared towards finding
pairs of similar code segments, not counting the occurrences
like we do in this work.

Ernst et al. [7] compress native code coming out of a
C compiler. A tailored VM is generated for a C program.
The intermediate representation is compressed using macro-
instructions and fixing parameters. Instructions are aligned
on byte boundaries. It is similar to Proebsting’s [19] work.
Their technique is competitive with gzip on native code. But
it is not reported if the compression obtained is due to the
use of the VM or the compression of the virtual program.
Moreover, no timing of the execution of compressed pro-
grams is reported, although they show that the intermediate
form can be compiled efficiently.

Several works compress native programs, using Huffman
codes, doing decompression at the hardware level [12, 16, 2].
Decompression occurs between memory and cache and is
mostly transparent to the processor. The advantage of this
approach is the use of hardware to decompress, but this
advantage comes with an increase hardware complexity. The
compression factors are somewhere around 80% on native
code.

Cooper and MclIntosh [4] reduce program size by replac-
ing repetitive sequences of instructions with a branching in-
struction. Suffix trees are used to identify repetitions in the
native executable code. The code saving is on average 5%,

that is a 95% factor of compression. This work differs from
ours since it is done on native code where it is not possible
to create new instructions and new instruction formats. De-
bray et al. [5] propose a similar approach but it is done at
the compiler level which brings more opportunity for com-
paction. They obtain an average 78% factor of compression.

Hoogerbrugge et al. [10] have very good results in pro-
ducing compact code and in spirit it is one of the closest
work to ours. It is similar to the ideas found in the Thumb
and MIPS16 processors [21, 13] where only a part of the pro-
gram is compressed. It gives a faster execution by compress-
ing only the less used parts. A tailored VM is automatically
generated given a C program. They obtain a 70% factor of
compression when comparing the native codes.

Closer to Scheme, Scheme 48[11] is a compact implemen-
tation that was successfully used in a medium size M68000
based system [3] using 512K of RAM and 256K of EPROM.
The VM executable uses about 24K of EPROM , with an
initial heap image of 80K.

6 Conclusion

‘We have presented the use of four techniques to encode com-
pactly virtual instructions: Huffman encoding of opcodes,
replacement of repetitive sequences of basic instructions, in-
struction formats having argument lengths non multiple of
eight bits, and non alignment of instructions on byte bound-
aries. These techniques are supported by tools to gener-
ate the necessary macro-instructions, decoders, and portable
implementation allowing experimentation by the developer
to generate a tailored instruction set given a sample of pro-
grams.

We have demonstrated their usefulness on Scheme, by
showing that they can create particular instructions from
general basic ones resulting in very compact programs and
virtual machines.

In particular, it was shown that designing an instruction
set by replacing repetitive sequences of elementary instruc-
tions and performing a precise evaluation of the parameter
lengths can result in non trivial virtual instructions capable
of good compression of programs for Scheme.

Our benchmarks demonstrate the compactness results
and the speed of execution.

7 Acknowledgments

Thanks to Marc Feeley for helpful comments and revision of
this paper. This work has been funded in part by Ericsson.

References

[1]

[3]

[4]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Brenda S. Baker. On finding duplication and near-
duplication in large software systems. In Proc. Sec-
ond IEEE Working Conference on Reverse Engineer-
ing, pages 86-95, July 1995. Received IEEE Outstand-
ing Paper Award.

Martin Benes, Andrew Wolfe, and Steven M. Nowick.
A high-speed asynchronous decompression circuit for
embedded processors. In Proc. Conf. on Advanced Re-
search in VLSI, September 1997.

Rodney A Brooks. A robust programming scheme for
a mobile robot. Languages for Sensor-based control in
Robotics, ed Ulrich Rembold Klaus Hormann, NATO
ASI series, Springer-Verlag, 1987, 1987.

Keith D. Cooper and Nathaniel McIntosh. Enhanced
code compression for embedded RISC processors. In
Proc. Conf. on Programming Languages Design and
Implementation, 1999.

Saumya Debray, William Evans, and Robert Muth.
Compiler techniques for code compression. In Work-
shop on Compiler Support for System Software, 1999.

Danny Dubé. Un systeme de programmation Scheme
pour micro-controleur. Master’s thesis, Université de
Montréal, April 1996.

Jens Ernst, Christopher W. Fraser, William Evans,
Steven Lucco, and Todd A. Proebsting. Code com-
pression. In Proc. Conf. on Programming Languages
Design and Implementation, pages 358-365, June 1997.

Marc Feeley, James S. Miller, Guillermo J. Rozas, and
Jason A. Wilson. Compiling higher-order languages
into fully tail-recursive portable c. Technical Report
1078, Université de Montréal, DIRO, August 1997.

Matthew Flatt. PLT MzScheme: Language manual.
Technical Report TR97-280, Rice, 1997.

Jan Hoogerbrugge, Lex Augusteijn, Jeroen Trum, and
Rik van de Wiel. A code compression system based on
pipelined interpreters. Software - Practice and Ezperi-
ence, 29(11):1005-1023, September 1999.

Richard Kelsey and Jonathan Rees. A tractable
Scheme implementation. Lisp and Symbolic Compu-
tation, 7(4):315-335, 1995.

T.M. Kemp, R.M. Montoye, J.D. Harper, J.D. Palmer,
and D.J. Auerbach. A decompression core for Pow-
erPC. IBM Journal of Research and Development,
42(6), November 1998.

K. Kissell. MIPS16: High-density MIPS for the Em-
bedded Market. Silicon Graphics MIPS Group, 1997.

Mario Latendresse. Génération de machines virtuelles
pour Dezécution de programmes compressés. PhD the-
sis, Université de Montréal, May 2000.

Mario Latendresse and Marc Feeley. Fast and compact
decoding of Huffman encoded virtual instructions. (In
preparation).

[16]

[17]

(18]

[19]

[20]

21]

[22]

Charles Lefurgy, Peter Bird, I-Cheng Chen, and Trevor
Mudge. Improving code density using compression tech-
niques. In Proc. Int’l Symp. on Microarchitecture, De-
cember 1997.

Alistair Moffat and Andrew Turpin. On the implemen-
tation of minimum redundancy prefix codes. IEEE
Transactions on Communications, 45(10):1200-1207,
October 1997.

D. Patterson and J. Hennessy. Computer Architecture,
a Quantitative Approach. Morgan Kaufmann, 2nd edi-
tion, 1996.

Todd A. Proebsting. Optimizing a ANSI C interpreter
with superoperators. In Proc. Symp. on Principles of
Programming Languages, pages 322-332, 1995.

Sun. Java 2 Platform Micro Edition (J2ME) Technol-
ogy for Creating Mobile Devices. Sun Microsystems,
May 2000.

J. L. Turley. Thumb squeezes ARM code size. Micro-
processor Report, 9(4), March 1995.

W. T. Wilner. Burroughs B1700 memory utilization.
AFIPS FJCC, 41:579-586, 1972.

A Machina basic instruction set and some generated Schemina instructions

add Plsp — 1] <~ P[sp]+ P[sp—1]; sp ¢ sp—1

sub Plsp—1] < P[sp—1] — P[sp]; sp«+ sp—1

mul Plsp—1] «+ P[sp] x P[sp—1]; sp«sp—1

div P[sp —1] + P[sp—1] div P[sp]; sp < sp—1

rem P[sp—1] < P[sp—1] rem P[sp]; sp+ sp—1

and Plsp—1] «+ P[sp] AP[sp—1]; spsp—1

or Plsp—1] «+ P[sp]V P[sp—1]; spsp—1

asl Plsp — 1] « P[sp — 1] << PJsp];sp « sp—1

asr P[sp —1] < P[sp — 1] >> P[sp];sp < sp—1

lsr P[sp — 1] < (unsigned)P[sp — 1] >> Pl;sp <~ sp—1

eq P[sp — 1] < If P[sp] = P[sp — 1] Then true Else false; sp +— sp —1
neq Plsp — 1] « If P[sp] # P[sp — 1] Then true Else false; sp < sp —1
gt P[sp — 1] « If P[sp] < P[sp — 1] Then true Else false; sp < sp —1
1t P[sp — 1] «— If P[sp] > P[sp — 1] Then true Else false; sp < sp —1
not Plsp] < ~PJsp];

exg tmp < P[sp]; P[sp] < P[sp —1]; P[sp — 1] + tmp

dup Plsp+1] < P[sp]; sp+sp+1

pushli ¢ PJsp] + P[sp — (P[sp] +1)]

pushi 3 Plsp+ 1]« 4 sp+sp+1

push i Plsp+1] «+ &Cs; sp+sp+1

pushl 3 Plsp+ 1]« P[sp—i]; sp+sp+1

pushg ¢ Plsp] «+ G[i]; sp < sp+1

pusha Plsp — 1] « M[P[sp] x4+ P[sp—1]]; sp+sp—1

pushac Plsp—1] + M[P[sp]+ Plsp—1]]; sp+ sp—1

pop ¢ Sp — sp — 1

popv sp < sp — (1 + P[sp]);

storea MI4P[sp]| + Plsp—1]] < P[sp—2]; sp < sp—3

alloc i hp < (P[sp] + hp)'; P[sp+ 1] < hp;sp < sp+ 1

storeac M]IP[sp] + Plsp—1]] <~ P[sp —2]; sp < sp—3

storel 1 Plsp —i] < P[sp]; sp«sp—1

storeli ¢ P[sp — (P[sp] +)] «+ P[sp];sp « sp — 2

storeg 1 G[i] « Plsp]; sp+sp—1

br d pc+pc+d

bf d sp < sp—1; If P[sp + 1] = false Then pc + pc+d

jsr tmp < P[sp]; P[sp] < pc; pc « tmp

ret i pc+ Plsp|; sp+—sp—i—1

writec Output character P[sp]; sp < sp—1

stop Stop program execution

Figure 7: Machina instruction set

‘ ‘Sequence Format

1 | (pushi *) (not) (and) (dup)

(pushi *) (pusha) (jsr) (c7cl)
2 | (pushi *) (alloc *) (dup) (pushi *)

(exg) (pushi *) (storea) (dup) (c 8c8c3c0
3 | (pushi *) (not) (and) (c T
4 | (bf 2) (pushi *) (br 1) (pushi *) (c 26 c 10)
5 | (pushi #*) (pushl *) (c 18 ¢ 2)
6 | (pushl *) (pushi *) (mot) (and)

(pushi #*) (pusha) (pushi *) (u3c7s2sb5)
7 | (dup) (pushi #*) (exg) (pushi *)

(storea) (dup) (c 3 cO0)

(pushi *) (alloc *) (dup) (c 8 c 8)

(pushl *) (pushi *) (not) (and)

(pushi *) (pusha) (pushi *) (u3s4s1s2)
10 | (pushi *) (exg) (pushi *) (storea) (c 34 c 1)
11 | (pushi *) (storea) (c 0
12 | (pushl #*) (pushi *) (c2cl)
13 | (exg) (pushi *) (storea) (c 2)
14 | (pushl #*) (pushl *) (c 0u2)
15 | (pushi *) (not) (and) (pushi *)

(pusha) (pushi *) (c7c0cT)
16 | (push *) (exg) (pushi #*) (storea) (u8cl)
17 | (pushi *) (pushl *) (pushi *) (s 3u3c?2
18 | (pushi #*) (pushl *) (pushi *) (s 7u?2s 2)
19 | (pushi #*) (pushl *) (c 18 ¢ 1)
20 | (pushi *) (pushl *) (c 0 u 3)
21 | (pushi *) (pushg *) (c 18 u 7)
22 | (pushi *) (or) (c 3
23 | (dup) (pushi #) (c 0)
24 | (push *) (exg) (pushi #*) (storea) (u 6 c 1)
25 | (pushi *) (pushg *) (s 3u3)
26 | (pushi *) (alloc *) (c 12 ¢ 8)
27 | (pushi *) (pushi *) (c 10) (c 10)

28 | (storea) (dup) (push *) (exg)
(pushi *) (storea) (pushi *)

(or) (storeg *) (pushi *) (u6clc3udshb)

Figure 8: Some Schemina instructions, that are macros generated for Scheme using Machina

