RegReg: a Lightweight Generator of Robust Parsers for Irregular
Languages

Mario Latendresse

Northrop Grumman IT
Technology Advancement Group/FNMOC/U.S. Navy

E-mail: mario.latendresse.ca@metnet.navy.mil

Abstract

In reverse engineering, parsing may be partially done
to extract lightweight source models. Parsing code con-
taining preprocessing directives, syntactical errors and
embedded languages is a difficult task using context-free
grammars. Several researchers have proposed some form
of lexical analyzer to parse such code. We present a
lightweight tool, called RegReg, based on a hierarchy of
lexers described by tagged regular expressions. By us-
ing tags, the automatically generated parse tree can be
easily manipulated. The ability to control the matching
rule mechanism for each reqular expression increases effi-
ciency and disambiguation choices. RegReg is lightweight
as it uses a minimal number of features and its implemen-
tation uses only deterministic automaton. It has been im-
plemented in Scheme which allows extending the tool in a
functional programming style. We demonstrate how Re-
gReg can be used to implement island and fuzzy parsing.
RegReg is publicly available under a BSD-like license.

1. Introduction

Source code containing syntactically incorrect code,
macro expansion, and embedded languages is a chal-
lenge for parsing. A formal description (i.e. context-free
grammar) of the underlying language may be very com-
plex to do; if not impossible in some cases. We qualify
such languages as irreqular.

Extracting specific source models for irregular lan-
guages is a challenge. An approximate, or partial, pars-
ing strategy may suit the task at hand since using a
full fledged solution may be too time consuming. Pars-
ing using regular expressions is such an approximation.
It cannot replace the more powerful context-free gram-
mar parsers, but it can be much simpler to build to ex-
tract partial models of a source code.

There are several works addressing the approximate
parsing [6, 5, 13, 20, 22, 18, 19, 24, 12, 4] in the context
of source code analysis.

Very interestingly, all of them, despite first ap-
pearances, use, in practice, regular languages. One
group uses a form of hierarchical lexers [6, 5] and
for [18, 19, 24, 12, 4] such a hierarchy can be used
to solve the presented cases.

We advocate, for partial and robust parsers, the use
of deterministic automaton built from a cascade (hi-
erarchy) of lexers, where the input of the first lexer is
a stream of characters, the second lexer input is the
stream of tokens generated from the first level, etc.
This approach still does not require the specification of
a context-free grammar, offers simple mechanisms for
disambiguation, is more efficient than a single lexer,
and allows the user to decompose the parsers in stages
with intermediary processing.

This supports the design of our tool, called RegReg,
a parser generator based on a cascade of lexers and
the automatic construction of parse trees. It also of-
fers tagged reqular expressions to generate tagged parse
trees: they are easy to process. We also present simple
and efficient ways to control the matching rule mecha-
nism such that lexical ambiguities can be controlled by
the user to enforce the desired choice.

Tools to generate parsers based on a cascade of lex-
ers have also been presented in [5, 3]. In [8], a cas-
cade of parsers is used; and techniques and tools have
been published [11, 10, 16, 17, 7] to extend the regu-
lar expression compilation to DFA (Deterministic Fi-
nite Automaton) or NFA (Non-deterministic Finite
Automaton) such that parse trees can automatically
be built. These tools are not as simple and extendible
as RegReg—and none of them are publicly available.

Efficiency, in particular determinism, is an impor-
tant feature advocated throughout the design of Re-
gReg. No mechanisms are ever introduced to slow down
parsing—in particular, introducing backtracking.

In Section 2 we present previous work to moti-
vate the design decisions of RegReg. Section 3 briefly
presents RegReg’s parser description language. Sec-
tion 4 delves more deeply into disambiguation through
the matching rule mechanisms. The essential imple-
mentation detail of RegReg is presented in Section 5.
Section 6 presents parsing examples using RegReg, and
in particular compare it to SDF capabilities through a
similar paradigm as the island parsing approach. Sec-
tion 7 addresses macro expansion and conditional pre-
processing. We present a summary and future work in
Section 8.

2. Motivation and Related Work

Building partial and robust parsers using regular ex-
pressions is not new. The analysis of the previous work
motivates the approach taken for RegReg.

Cox and Clarke present two studies [6, 5] on pars-
ing code using regular expressions. Their goal is not to
do partial parsing, but to completely parse as, say, a
LR parser. This is not the intended goal of RegReg,
but some of their results are instructive about the ca-
pabilities and limits of parsing using regular expres-
sions.

In their first work [5], a cascade of lexical scanners—
similar to RegReg—was used. They name their gener-
ator MULTILEX—unfortunately it is not publicly avail-
able. They show good recognition capabilities, except
in the case of nested constructs like arithmetic expres-
sions.

In the more recent work [6], parsing is based on it-
erative applications of lexers. Once a match has been
found at one level, the resulting matched string is
rewritten and rescanned by the next level. By appro-
priate rewriting it is possible to recognize some lan-
guage constructs that are context-free. Their goal is
to remove the shortcomings of recognizing nested con-
structs as done in [5]. The main problem of their ap-
proach is the execution time: it took over six minutes
to parse a 8464 lines C program. Although, this may
be due to several reasons: their implementation was
not time efficient, the rewrite steps were too small, or
re-scanning is based on the lexicographic content of
tokens—‘constReal” and ‘constInt’ could both be rec-
ognized by the regular expression const.*. They show
that this approach is better than the cascade of lex-
ers of their previous work. Yet, their experimental ap-
proach is disputable: the code was preprocessed before
parsing. This partly nullifies the lexical approach to ro-
bustly parse code with preprocessing elements, since
they had to fix a certain number of free preprocess-
ing variables, probably eliminating some parts of the

code, and expanding all macros to some specific val-
ues'. Interestingly, they do recognize the usefulness for
a shortest-match strategy as in RegReg.

Bickmore and Filman [3] has designed MultiLex—not
to be confused with MULTILEX of Cox and Clarke—a
parser generator based on cascade of lexers, as in Re-
gReg. But unlike RegReg, it uses backtracking, that
is each level is implemented by a non deterministic au-
tomaton; and it has no facility to bind parts of matched
strings with identifiers, which RegReg provides. It has
been written in Common Lisp, but is not publicly avail-
able.

Dyadkin [8] proposes Multibox, a generator of syn-
tactical analyzers based on a cascade of parsers. Each
level, or box, is described by a LL(1) grammar. Un-
fortunately, the generator is not publicly available and
it is unclear how easy it can be used to build robust
parsers.

TLex [11, 10] is an advanced scanner generator. It
has a similar approach to RegReg in the identification
of sub-parts of the matched string: bindings may be
specified in the regular expressions. It does not use a
cascade of lexers, though. The API to retrieve the parse
tree is rather complex. Unfortunately, the TLex soft-
ware is no longer available.

The ASF+SDF Meta-Environment [23] is de-
signed to build parsers and transformers. To de-
scribe a parser, it uses the conventional approach of
two stage descriptions—regular and context-free gram-
mars. The user specifiable control over the lexer is the
use of sorts, rejection, and ordering. It has no short
matching rule as offered by RegReg. The ASF+SDF
meta-environment might be used for the construc-
tion of robust parsers, but: it is not lightweight
requiring a good investment in learning; and the im-
plementation is based on a deterministic simulation
of nondeterminism, scannerless Generalized LR pars-
ing (SGLR), which may turn out to be very inefficient
on some ambiguous grammars. In Section 6.2 we com-
pare the parsing capabilities of ASF4+SDF with Re-
gReg.

Revealer [20] parsing technique is entirely based on
regular expressions. The syntax to specify parsers is
based on XML. This is an unfortunate choice since
XML verbosity makes it user-unfriendly. The im-
plementation is based on the Perl language which
uses non-deterministic automaton for regular expres-
sion compilation. Consequently, Revealer does not pro-
vide any new implementation technique as a tool but

1 A macro may have different values in the code depending on
the free preprocessing variables.

rather a framework of components to parse and ex-
tract source models.

Van den Brand et al. [22] give an analysis of pars-
ing technologies in the context of irregular languages.
Their general conclusion is that building context-free
grammars for such languages is not an easy task. They
promote GLR parsing, even scannerless GLR parsing
where the boundary between the lexer and the syntac-
tical parser is eliminated by using non-regular gram-
mar to specify the lexer.

Cascade of lexers is also used in natural language
parsing [1]. Although not truly natural languages, me-
teorological bulletins—as defined by the World Meteo-
rological Organization (WMO)—have complex lexical
definitions: we have used RegReg to generate parsers
for them.

These works have a clear recurring element: robust
and partial parsers can be built using regular gram-
mars or a hierarchy of such grammars—supporting the
basic design approach of RegReg.

3. RegReg Parser Description

In this section we briefly present RegReg’s descrip-
tion language and how to instantiate parsers. Complete
details can be found in the RegReg documentation [14].

Figure 1 presents a basic example of a complete
parser description of three levels. At each level a list
of definitions is given. A definition is at least a sym-
bol and a regular expression. The definitions order is
relevant: the top ones are qualified as higher than the
lower ones; more on the use of order in Section 4.

Level 1 deals only with characters; level 2 is based
on tokens produced by level 1; and level 3 is based on
tokens from level 2. In general, no limit is set on the
number of levels, although at least one level 1 is re-
quired.

The syntax of regular expressions can be specified
with s-expressions using prefix operators ‘:’, ‘*’ ‘4’
“?’, etc., as token line at level 2. A Lex-like syntax can
also be used using binary infix operator ‘|’ and unary
postfix operators ‘?’, ‘*’) ‘+’, as token w at level 1. In
that case it is a string. Both ways can be used simul-
taneously as for token n at level 1. Non-printable char-
acters are coded using ‘\’ and their encoding values;
but since it is an escape character in Scheme strings,
it must be doubled. The dot (‘.’) represents all possi-
ble characters of the underlying Scheme implementa-
tion.

In some cases it is preferable to use the infix no-
tation for succinctness (i.e. sets of characters as in
"[A-Za-z]") but in some cases it is preferable to use
s-expressions as in the second and third levels which re-

1. (RegReg

2. (declare (name examplel))

3. (macros

4. (blank "[\\010\\0131"))

5. (level 1

6. (w "{p=[A-Za-z]*}{1=[A-Za-z]}")
7. (n ((=£f "[1-9]") "{r=[0-9]1*}"))
8. (s "[-,=1"M)

9. (e "[.;:tI™M)

10. (b "{blank}+"))

1. (level 2

12. (1ine ((+ (? b) (: s wmn)) e)))
13. (level 3

14. (text (* line) process-text)))

Figure 1. A parser description in RegReg

fer to tokens. An s-expression is more amenable to in-
dentation, so it should be used for complex and long
regular expressions.

The s-expression ‘macros’ is a section to describe fre-
quently occurring regular sub-expressions. They can be
referred to by any level by enclosing its name with curly
braces when using the string syntax, as in token b at
level 1, or simply as an identifier in a s-expression.

Line 2 names the resulting structure describing the
parser with which we can instantiate a real parser at
run-time. Each level is an autonomous lexer, imple-
mented as a deterministic finite automaton (DFA). The
input of level 1 is the character stream available via
the standard input functions in Scheme. The input of
a level ¢ > 1 is the stream of tokens generated from the
level ¢ — 1; it has also access to the parse trees of level
i— 1.

RegReg regular expressions are actually tagged reg-
ular expressions (TRE). Tagging is done using the
binding equal operator ‘=’. For example, for token
w at level 1, in ‘{1=[A-Za-z]}’, the ‘=" binds the
matching substring with the identifier 1. In that case
it can only be one letter. The other binding opera-
tion in w is ‘{p=[A-Za-z]*3}’ between p and the sub-
string matching ‘[A-Za-z]*’. For example, the string
"HELLO" would create the bindings p — "HELL” and
Il — 70O”. For token n at level 1, there is a binding for
f, using the s-expression syntax, and a binding for r.

For every TRE definition, there is an implicit bind-
ing between the identifier for that definition and the
resulting tagged parse tree.

When a match is found against a string s, a parse
tree is built over s according to the structure of the reg-
ular expression. The operators ‘*’, ‘+’ and sequencing
generates lists; and list of characters are converted to
strings. A sub-expression in a TRE generates a subtree.
Note that the choice operator ‘|’ (‘. for s-expression)
disappears since only one choice is assumed after the

(text
((line
O (w ((p "Her") (1 "e"))))
(" ™) (w ((p "ar") (1 "em)))
(" ") (m (£ "3") O
(™" (w ((p "word") (1 "s")))))
(e "."M))
(line
("™ w O @"a")n
(" ") (w ((p "secon") (1 "d"))))
(" ™) (w ((p "Lin") (1 "e"))))
(e "."MN))

Figure 2. A tagged parse tree

match is done—ambiguities are always resolved to one
case. Bindings are represented as 2-tuples, with the
identifier first and the subtree second.

For example, the string "Here are 3 words. A
second line." gives the parse tree of Figure 2.

Note that for the substring ‘3’, the binding for r dis-
appears since there is no substring matching the sub-
TRE ‘[0-9]%’.

For each definition, the name of a Scheme function
may be specified. It is called with the resulting tagged
parse tree when the parser finds a match. The func-
tion must return a pair whose head is a symbol and
tail is a tagged parse tree. This can simply be the in-
put of the function or a modified version of it. There-
fore, user functions can manipulate the intermediate
results of the parse and pass modified intermediate re-
sults to higher levels. This approach is still in the func-
tional programming style since the other levels receiv-
ing the results are unaware of the existence of these
functions.

Adding intermediate processing functions becomes
necessary if the analyzed files are large. Otherwise,
huge parse trees are built requiring large amount of
heap space before any processing is done. And in most
cases, it is simpler to process intermediate well-defined
results. This is the case for lightweight source mod-
els extraction.

The user functions can manipulate the parse trees
without any API; but a simple one is provided by the
scanner, in the form of four functions, which fulfills
most needs. Function gstree(k,t), where k is a sym-
bol and ¢ a tagged parse tree, returns the subtree which
is bound to k (it does a pre-order search); function
gstree-all(k,t) returns all subtrees in ¢ which are
bound to k; function tree->string(¢) converts a parse
tree ¢ to the string used to build it; and gstks(k,t) is
the composition of gstree and tree->string.

I: s, a string

na, a vector of DFAs generated
H by RegReg.
;3 0: parse tree of s.

)
E)

(define (parse-string s na)
(with-input-from-string s

(lambda O

((make-parser read-char na "")))))

© 0 O Ut = W N

Figure 3. Instantiating a parser

By default the longest matching rule is used. But
qualifiers short or prefer can be specified for each def-
inition to modify that behavior. Parse tree construc-
tion can be deactivated with qualifier discard. Sec-
tion 4 covers these.

Once a parser description is compiled by RegReg
into a structure describing it, a functional parser can
be instantiated via the driver; this is covered in the
next subsection.

3.1. Instantiating a parser

Figure 3 presents a simple example of a function in-
stantiating a parser from a cascade of lexers bound to
the variable na—the result of compiling a parser de-
scription. The function make-parser returns a func-
tion of arity zero; it allocates all necessary buffer spaces
which can grow as much as the heap space can allow.
Identifier read-char is the usual Scheme function to
read one character from the current input—in this case
from the string bound to s. The empty string could
be a non-null prefix string for the parser to read be-
fore using read-char. On line 9, the parser is immedi-
ately called after its creation. Consequently, the func-
tion parse-string returns the tagged parse tree of s.

This example demonstrates that parsers are dynam-
ically created at run-time. This operation is efficient as
minimal amounts of buffer spaces are allocated. More
complex situations may arise where different parsers
are created to serve other needs found at execution
time.

4. Lexical Disambiguation by Control-
ling the Matching Rule Mechanism

This section presents the control, offered by RegReg,
over the matching rule mechanism to disambiguate lex-
ical matching.

Indeed, ambiguity abounds in a lexical analyzer un-
less some mechanisms are provided to enforce a choice.
The most common disambiguation mechanisms are
based on what to do next when an accepting state

of a regular expression is met. This can be a short-
est matching rule, the longest matching rule or varia-
tions of these.

Most scanner generators assume the longest match-
ing rule, but this is not always useful. In terms of the
automaton, the longest matching rule is: as long as
the scanner matches the input, it continues processing;
if a failing state is reached it returns to the last ac-
cepting state (if any). If two accepting states are met,
the one associated with the highest definition is cho-
sen. This is the default rule in RegReg among the rules
of one level.

We provide two qualifiers to override this longest
matching rule: short and prefer. The short quali-
fier forces the scanner to stop as soon as an accept-
ing state is reached; whereas prefer forces the scan-
ner to consider preferred tokens only once an accept-
ing preferred state is reached—the scanner continues
to search for the longest match for the preferred to-
kens.

We will see in Section 6 that these two options com-
bined are more appropriate, for robust parsers, than
the ordering of sorts as in SDF; this is mainly due to
the short qualifier, unavailable in SDF.

The following two subsections present more precisely
the short and prefer qualifiers. The third subsection
presents the discard qualifier to deactivate the parse
tree construction.

4.1. The short qualifier

The qualifier short, applied to a TRE, enforces a
shortest matching rule for that TRE: as soon as the
automaton finds an accepting state for the qualified
TRE, it stops. It would override any prefer qualifica-
tion. If two TREs are qualified with short, the highest
defined TRE is chosen.

Figure 4 shows a common example for the use of
a shortest matching rule. The token start describes
a string starting with ‘BEGIN’ and ending with ‘END’,
with any characters in between. If the longest match
is used, the scanner would read the entire input be-
fore making its decision; but the user wants to stop
as soon as the word ‘END’ is scanned after seeing
‘BEGIN’. The qualifier short just does that. There-
fore, for the string ‘BEGIN hello END Allo END’ only
‘BEGIN hello END’ matches.

Note that this behavior could be described by dis-
allowing ‘END’ in the sub-regular expression ‘.*’. If
for example, the operator minus (=) were provided,
we could have written ‘(.*)-(.*END.*)’ to specify all
strings but not the ones containing ‘END’. But such
constructions—and in general the minus and com-

1. (RegReg

2. (declare (name example_short))

3. (level 1

4. (start "BEGIN.*END" (short))))
Figure 4. Shortest rule applied to a TRE

1. (RegReg

2. (declare (name example_prefer))

3. (macros (L "[7;{}I1%"))

4. (level 1

5. (for "for\\({L}; 7{L}; 7{LI\\I?{LI; I\\D "

6. (prefer) process-for)

7. (blank "[\\010]+")

8. (token "[~ \\010]1+")))

9. (level 2

10. ((file (* (: blank token for))))))

Figure 5. Qualifier prefer

plement operators—are quite costly in space (DFA)
whereas the short qualifier reduces space and has no
running time cost.

Some uses of short contradict the TRE descrip-
tion. For example, applying short to ‘[a-z]+’ does
not make sense, since the scanner would stop as soon
as a lower case letter is scanned. Thus, the TRE should
have been described as ‘[a-z]’.

Its implementation is quite simple: the final nodes of
a regular expression qualified as short are stripped of
any outgoing transitions; see Subsection 5.1 for more
detail.

4.2. The prefer qualifier

Figure 5 defines a regular expression for a for state-
ment: it has several optional parts to catch several pos-
sible syntactic errors—it is indeed very liberal. For ex-
ample, it matches the syntactically incorrect ‘for () {’
and ‘for (i=0;;;’. It is qualified as prefer to avoid rec-
ognizing a for statement followed by non spaces as a
token. For example, without a prefer qualifier, the
string ‘for(;;);i=0" would be recognized as a token,
skipping the syntactically correct for statement, since
the longest matching rule would be applied.

A TRE qualified with prefer is called a preferred
TRE.

The short qualifier does not offer the correct behav-
ior in that case. For example, it would stop the scan-
ner as soon as ‘for(;’ is scanned in ‘for(;i<10;);’,
but the whole string should be scanned to catch the en-
tire for statement.

The meaning of prefer, derived from the imple-
mentation as presented in Subsection 5.2, is as follows.

While scanning, if at least one preferred accepting TRE
is reached all non preferred TREs are no longer consid-
ered and all the preferred TREs that are lower than the
highest accepting TRE reached are also no longer con-
sidered. Note that this does not imply any additional
work on the part of the scanner, as the automaton is
built in such a way to automatically offer this seman-
tics.

No contradictory statements, as for the short qual-
ifier, can be made with prefer. For example, qualify-
ing [a-z]+ as prefer is not contradictory since the
longest match is sought.

5. An Efficient Implementation

RegReg, the generator as well as the driver, is cur-
rently implemented in Scheme—a minimalist language
in programming concepts with a functional subset.
Consequently, we believe it can easily be ported to
many other functional languages like OCaml, Haskell,
Common Lisp, etc. The parser generator has only
around 1500 lines of code, and the scanner driver has
around 800 lines of code. Scheme with its advanced
data structures and high order functions provides rele-
vant programming features for succinct programming.

The approach taken for RegReg is to provide a
lightweight tool with few bells and whistles, but enough
to build robust and efficient parsers. The added fea-
tures to control the matching rules were chosen to
maintain an efficient tool and a clear semantics—this
is demonstrated in this section by presenting some de-
tails of its implementation.

We assume the reader is familiar with determinis-
tic finite automaton construction (DFA) from a regu-
lar expression as described in [2]. Such an automaton
can recognize a string, but it does not build a parse
tree for it.

The automatic generation of the tagged parse trees,
by the lexer, is based on approach described in [7]. We
have modified it to avoid the use of a matrix for chains
of operations, eliminated the use of the operation sel
since we generate only one parse tree for each match,
and introduced a new operation set to bind subtrees
to identifiers.

The technique is essentially as follows. While trans-
lating a TRE to a NFA, every transition is annotated
with one of the following stack operations:

pushE Pushes an empty list on top of the stack;

push Pushes an input character, or a token subtree
pair from a lower level automaton, on top of the
stack;

snoc Conses the top stack element at the end of the
list of the second top stack element; removes the
top stack element;

nop Does nothing;

set Binds an identifier to the top stack element.

Furthermore, the transformation from NFA to DFA
generates chains of operations on every DFA transi-
tion.

At parse-time, these chains are used to construct the
parse tree once an accepting state is reached. The right
sequence of chains is found by going from the accept-
ing state back to the start state. This chain is applied
to the input using a stack; which is empty at the be-
ginning of the parse. The result, on top of the stack,
is a tagged parse tree; it is removed and passed to the
user function or the higher level.

Other efficient approaches has been described, in
detail, in the literature: Kearns [10, 11] and Lau-
rikari [16, 17] describe different approaches to auto-
matically build parse trees from which subtrees can
be efficiently extracted by some forms of addressing.
Dubé and Feeley’s approach appears the simplest to
implement as it integrates well with the conventional
Thompson-Glushkov technique [9, 21, 2] of automaton
construction from a regular expression. Yet, it is un-
clear which technique is the most efficient.

We describe how the qualifiers prefer, short and
discard are implemented in the following subsections.

5.1. Implementation of qualifier short

The qualifier short has a straightforward implemen-
tation.

As usual, during the transformation from NFA to
DFA, a DFA node represents a set of NFA nodes; and
if a DFA node contains a NFA accepting node, it be-
comes a DFA accepting node. But if the NFA accept-
ing node is associated with a TRE qualified as short,
then all outgoing transitions are removed from the DFA
node containing it. Moreover, the DFA node is marked
by that NFA node: its corresponding token is associ-
ated with the DFA node. If a DFA node contains more
than one NFA short node, the one associated with the
highest TRE definition is chosen.

Note that during scanning, this removal of all transi-
tions makes it irrelevant to verify if a node is marked as
short. And this increases speed since no looking ahead
is done—which is the usual behavior for the longest
matching rule—when reaching that accepting node.

A clear and precise semantics can be derived from
this implementation: for one level, when an accepting
state is reached for at least one TRE qualified with

short, the scanned string is immediately attributed to
the highest one of those TREs.

5.2. Implementation of qualifier prefer

The prefer qualifier implementation is similar to
short but slightly more complicated. In the following,
a preferred NFA node is from a preferred TRE; and
NFA nodes are ordered according to their correspond-
ing TREs.

A preferred TRE is transformed to a NFA with pre-
ferred nodes only. As usual, for the NFA to DFA trans-
formation, the set of NFA nodes making up a DFA
node depends on the set of NFA nodes outgoing tran-
sitions; but this set is curtailed as follows.

If the set contains no NFA accepting node, the set is
not reduced; but if there is at least one accepting pre-
ferred NFA node: 1) the DFA node is accepting and its
representative is the highest preferred accepting NFA
node; 2) the non preferred NFA nodes and the preferred
NFA nodes which are lower than the representative ac-
cepting node are removed from the NFA nodes form-
ing this DFA node. This reduction in the set of NFA
nodes also reduces the number of outgoing transitions,
and forces the scanner to only consider the right pre-
ferred TRE once an accepting node of preferred TRE
has been reached.

This implementation may increase the size of the au-
tomaton since more different sets of NFA nodes may be
generated which would represent more DFA nodes. But
it could also reduce it. It definitely does not slow down
the scanner.

A precise and clear semantics for prefer can be de-
rived from this implementation as explained in Subsec-
tion 4.2.

5.3. The discard qualifier

In Figure 6, the second level describes the entire file
as a sequence of strings, tokens and blanks. The strings
may not span several lines. Only strings are of inter-
est, as only one function, namely process-string, is
called for each string recognized. The entire parse tree
describing the file is of no interest: constructing it could
be an large task if the file is made of millions of lines;
and the parser could run out of heap space. Therefore,
it is efficient and more robust to discard the parse tree
of file and simply return an empty parse tree as a re-
sult. The qualifier discard just does that. Note that
short or prefer can be specified with discard, as in
(short discard); but short and prefer are incom-
patible.

. (RegReg

(declare (name example_discard))

(level 1

(blank "[\\010\\013]+")

(string "\"["\"\\010\\013]*\"?"
process-string)

(token "[~ \"\\010\\013]1+"))

(level 2

(file (x (: string token blank))

(discard))))

© 0 O Ut = W N

,_.
e

Figure 6. Qualifier discard deactivates parse
tree construction for a specific TRE

6. Robust Parsing Examples

Two well known approaches to partial and robust
parsing are fuzzy [12, 4] and island parsing [18, 19, 24].
In this section we present some of the work based on
these approaches and analyze how RegReg can solve
the case studies addressed by these approaches. In the
last subsection we present a general approach to build-
ing robust parsers in RegReg.

6.1. Fuzzy parsing

Fuzzy parsing [12, 4] is semi-formally defined in [12].
Its definition is based on context-free grammars and is
not, a priori, a lexical approach. A fuzzy parser for a
context-free grammar G = (N, X, R, S), based on a set
of anchors A C ¥—where N is the set of non-terminals,
Y. the set of terminals, R the set of production rules
and S the start symbol—is a set of sub-parsers P,, one
for each anchor symbol a € A. Each sub-parser gram-
mar is a subset of G based on one non-terminal. A par-
tial parser is formed by scanning the input, and when
an anchor «a is found, the sub-parser P, is called.

Even though its formal definition is based on
context-free parsers, the fuzzy parser examples in [12]
can be described by regular grammars. Moreover, the
case studies of [12], done on the C++ language, pre-
processed the input before parsing.

For example, the class tree generator ctg tool pre-
sented in [12], as well as CodeAnalyzer and Sniff,
extract class definitions of C++ programs by us-
ing the anchors class, struct, private, protected,
and public. They only need to scan the input, look
for the anchors, and when one is recognized, they ex-
tract a minimal amount of information like the base
class name. All the rest of the input is skipped. Ctg
is based on the flex generator. Sniff has a hand-
coded parser.

Such a partial parser can easily be specified using a
regular grammar. In RegReg, each recognition of a class

declaration can be processed by one function maintain-
ing a graph relation. All the rest is discarded using the
discard qualifier. The parser is very efficient since only
the parse trees of the class headers are built.

On a 40 MHZ SPARCstation IPX, the rate of pars-
ing of ctg and Sniff is around 100 KB per second, and
CodeAnalyzer is around 40 KB per second. Ctg and Sniff
parsing speeds are difficult to beat since they are based
on deterministic automaton.

Sniff has 1500 lines of C++ code. The overall Code-
Analyzer program has 10000 lines of C++ code. And
these are only instances of fuzzy parsers, to extract
the hierarchy of C++ classes, and not tools to gener-
ate such parsers, like RegReg.

The overall complexities of these implementations
show the need of a custom designed tool for partial
and robust parsing.

6.2. Island parsing

The goal of island parsing [18, 19, 24] is to create
partial and robust parsers. An island grammar defini-
tion is based on a context-free grammar G. The def-
inition given in [18] is based on a set of constructs of
interest I C ¥*, which are substrings of L(G). An is-
land parser recognize the substrings of I (island) in the
strings X*.

There are no specific tools to build these parsers, as
any tool could potentially be used. Moonen and Ver-
hoeven use the ASF4+SDF Meta-Environment to build
island parsers.

Interestingly, all examples in [18, 19, 24] of island
parsers, based on the SDF tool, used regular languages.
They use the context-free description of SDF, but these
turn out to describe regular languages. (Although, the
case study of [19] has a grammar of 148 productions
which is not completely presented.)

For example, in Figure 7 is a simple COBOL island
parser, from [24] (pp. 21-22, we have combined two
descriptions to make the example self-contained), de-
scribed in SDF to extract copy statements. Although
it uses the context-free SDF section, this grammar is
regular. This is the case for all parser descriptions pre-
sented in [24]. RegReg can handle all these cases; but
with greater simplicity as demonstrated below.

Figure 8 presents the equivalent description in Re-
gReg. We can readily prove that this parser is complete:
at level 1 the three tokens _, dot and token cover all
possible input characters and level 2 refers to all pos-
sible combination. The token Island uses the prefer
qualifier to force its selection over token when such an
input sequence occurs. Note that even though we have
to specify all lexical details in RegReg, like the lay-

1. lexical syntax

2. [A-Z][A-Za-z0-9\-_]* -> Id
3. lexical restrictions

4. Id -/- [A-Za-z0-9\-_]

5. context-free syntax

6. "COPY" Id -> Copy

7. Copy -> Island

8. Island -> Token

9. Drop -> Token

10. Token* "." -> Sentence

11. Sentence* -> Program
12. context-free priorities
13. Island -> Token >

14. Drop -> Token

Figure7. A COBOL island parser in SDF[24]

1. (RegReg
2. (declare (name COBOL_copy))
3. (macros
4. (_ "[\\010]+")
5. (Id "[A-Z] [A-Za-z0-9\-_]*"))
6. (level 1
7. (Island ("COPY" _ Id) (prefer))
8. (Token "[~. \\010]+")
9. (Dot L)
10. -)
11. (level 2
12. (Program
13. (* (= Sentence
14. (x (: Token _ Island)) Dot)))))
Figure 8. A RegReg equivalent of Fig. 7
out token _ which is pre-defined in SDF, the descrip-

tion remains succinct.

In [24] the running time comparisons of SDF and
Perl are not in favor of SDF: Perl can be an order of
magnitude faster than SDF. This is not SDF’s fault,
but points to the fact that island parsers tend to be
based on regular expressions which is Perl’s strength.

RegReg can be faster than Perl as demonstrated in
Table 1. The C code of 102KB is GC-Boehm os_dep.c
file; the other two files are duplicated concatenations.
They were scanned to find calling statements of one
variable argument, as described by the regular expres-
sion ‘.*[a-zA-Z]+[1*\\([a-zA-Z]+\\)’. The island
parser Scheme code was compiled using Bigloo 2.5¢c
with option -04. Perl v5.6.0 was used with a script
looking at every line for that pattern. All executions
were done on a 500MHz Pentium III. RegReg is around
60% faster for that search. This is not a thorough
benchmarking as Perl has chaotic execution speed due
to non-determinism. But this shows the sound imple-
mentation approach of RegReg. It also shows that since
Perl is faster than SDF, RegReg may be expected to

File size Perl (sec.) RegReg (sec.)
102KB 1.94 1.18
204KB 3.85 2.37
816KB 7.73 4.65

Table 1. Perl vs. RegReg timings, searching
calling statements

1. (RegReg

2. (declare (name robustl))

3. (level 1

4. (casel ... (prefer))

5. -

6. (tk "~ \\010]+")

7. (- "[\\0101+"))

8. (level 2

9. (file (x (: tk _ casel ...)
10. (discard)))))

Figure 9. The general structure for robust
parsers in RegReg

be an order of magnitude faster than SDF. But more
benchmarks should be used to compare them.

6.3. Partial and Robust parsing in general

We believe that the general approach of island pars-
ing, where a very general parser is first specified, and
then specific constructs (islands) are defined, is the
most flexible paradigm for partial and robust parsers.
Moreover, we advocate that the simplest way to do so
is through regular grammars only, since they allow sim-
pler control of ambiguities.

Figure 9 presents the general structure of such ro-
bust parsers in RegReg. The tk, _, and file tokens
are enough to parse any file. To extract some spe-
cific source models, new cases should be added with
the prefer qualifier. In some cases, the qualifier short
should be used to recognize prefixes as mentioned in
Subsection 4.1. Each additional token case should also
be added to the file token and should provide its
own function to extract the relevant information. The
discard qualifier should only be removed if the over-
all parse must be analyzed—which is quite rare for the
extraction of lightweight source models.

When adding a new construct, if it already exists as
a prefix of another preferred token, it should be added
first. More levels may be needed if the added cases are
complex.

1. #if defined(T)
2. # define X <
3. #else

4. # define X ==
5. #endif

6.

if (a X y) y++; else at+;

Figure 10. Parsing with macro expansion

7. Macros and Preprocessing

Textual preprocessing with conditional compilation
and macro expansion may greatly hinder parsing. A
simple table facility with an emulation of expansion
can provide an approximate solution to it, but it is
far from being a complete solution: due to conditional
compilation a macro may have several values at expan-
sion time. A simple table mechanism cannot solve such
a problem.

For example, in the code segment of Figure 10 the
parameterless macro X has two possible values at line
6. A form of “conditional binding” is needed at line 6
to handle all possible cases.

As far as we know, and despite numerous research
projects done on this subject, no tool has ever been
designed to handle such parsing. For example, Sniff [4]
does not expand such macros. We intend to integrate
the approach of [15] in RegReg to do such parsing.

8. Summary and Future Work

RegReg is a tool to generate robust parsers based on
a cascade of lexers, automatically building parse trees,
and allowing succinct specification through tagged reg-
ular expressions. It is available under a BSD-like license

t [14]. As far as we know, there are no other publicly
available tools to generate parsers based on a hierar-
chy of lexers.

RegReg, unlike Perl, strives for efficiency by using
only deterministic automata adding no features that
would require backtracking. Moreover, the added fea-
tures to control the matching rule mechanism have a
tendency to increase speed and reduce automaton size.
The user may even selectively deactivate the construc-
tion of parse trees for each regular expression to fur-
ther increase efficiency.

We have shown that by using a cascade of lexers, au-
tomatically built tagged parse trees and a minimalist
number of features to control matching, we can suc-
cinctly describe robust parsers to extract lightweight
source models over irregular languages. We have more
specifically shown that such approaches as island and
fuzzy parsings, as used in practice, can easily be imple-
mented in RegReg.

RegReg is a lightweight tool as it provides the right
features for partial parsing; and at the same time, it is
implemented to allow extensions through the underly-
ing Scheme language.

The use of tagged parse trees, built automatically
from the tagged regular expressions, meshes well with
the purely functional programming style available in
Scheme. The parser driver is designed to avoid any un-
comfortable limitations, i.e., limited buffer size or fixed
number of lexer levels. Parsers are created dynamically
by a function call allowing well defined integration of
RegReg into other tools written in Scheme.

As described in Section 7, to completely parse in
the presence of macros and conditional compilation,
macros should be expanded and a control flow analysis
of preprocessing directives should be done. This should
be provided by the tool. To do so in RegReg, we intend
to incorporate the approach described in [15].

Several different approaches are described in the lit-
erature to automatically build parse trees from regu-
lar expressions. We have used the approach of [7], yet
other approaches [16, 10] might turn out to be more ef-
ficient in practice.

References

[1] S. Abney. Partial parsing via finite-state cascades. In
Proc. of Workshop on Robust Parsing, 8th European
Summer School in Logic, Language and Information,
Prague, Czech Republic, pages 8-15, 1996.

[2] A.V.Aho,R. Sethi, and J. D. Ullman. Compilers; prin-
ciples, techniques and tools. Addison-Wesley, 1986.

[3] T. Bickmore and R. E. Filman. MultiLex, a pipelined
lexical analyzer. Software Practice and Experience,
27(1):25-32, Jan. 1997.

[4] W. R. Bischofberger. Sniff: A pragmatic approach to
a C++ programming environment. In Proc. USENIX
C++ Conference, pages 67-82, 1992.

[5] A.Coxand C. Clarke. A comparative evaluation of tech-
niques for syntactic level source code analysis, 7th Asia-
Pacific Software Engineering Conference, pages 282—
289, Singapore, December 2000.

[6] A. Cox and C. Clarke. Syntactic approximation using
iterative lexical analysis. In International Workshop
on Program Comprehension (IWPC), Portland, Oregon,
May 2003.

[7] D.Dubé and M. Feeley. Efficiently building a parse tree
from a regular expression. Acta Informatica, 37(2):121—
144, 2000.

[8] L. J. Dyadkin. Multibox parsers. ACM SIGSOFT Soft-
ware Engineering Notes, 19(3):23-25, 1994.

[9] V.-M. Glushkov. The abstract theory of automata. Rus-
sian Mathematical Surveys, 16:1-53, 1961.

[10] S. M. Kearns. Extending regular expressions with con-
text operators and parse extraction. Software - Practice
and Experience, 21(8):787-804, August 1991.

[11] S. M. Kearns. TLex. Software - Practice and Ezxperi-
ence, 21(8):805-821, August 1991.

[12] R. Koppler. A systematic approach to fuzzy parsing.
Software - Practice and Experience, 26(6):637-649, June
1997.

[13] D. A.Ladd and J. C. Ramming. A*: A language for im-
plementing language processors. IEEE Transactions on
Software Engineering, 21(11):894-901, Nov. 1995.

[14] M. Latendresse. The RegReg package,
version 1.1, and online documentation.
http://www.metnet.navy.mil/~latendre/.

[15] M. Latendresse. Fast symbolic evaluation of C/C++
preprocessing using conditional values. In Proceedings
of the Seventh European Conference on Software Main-
tenance and Reengineering (CSMR’03), pages 170-179,
March 2003.

[16] V. Laurikari. NFAs with tagged transitions, their con-
version to deterministic automata and application to
regular expressions. In Proceedings of the 7th Interna-
tional Symposium on String Processing and Information
Retrieval, pages 181-187. IEEE, Sept. 2000.

[17] V. Laurikari. Efficient submatch addressing for regu-
lar expressions. Master’s thesis, Helsinki University of
Technology, 2001.

[18] L. Moonen. Generating robust parsers using island
grammars. In Proceedings of the 8th Working Confer-
ence on Reverse Engineering (WCRE 2001), pages 13—
22. IEEE Computer Society Press, 2001.

[19] L. Moonen. Lightweight impact analysis using island
grammars. In Proceedings of the 10th International
Workshop on Program Comprehension (IWPC 2002).
IEEE Computer Society Press, June 2002.

[20] M. Pinzger, M. Fischer, H. Gall, and M. Jazayeri. Re-
vealer: A lexical pattern matcher for architecture recov-
ery. In Proc. of Working Conference on Reverse Engi-
neering (WCRE), pages 170-178, 2002.

[21] K. Thompson. Regular expression search algorithm.
Communications of the ACM, 11(6):419-422, 1968.

[22] M. van den Brand, A. Sellink, and C. Verhoef. Cur-
rent parsing techniques in software renovation consid-
ered harmful. In Proc. Sizth International Workshop on
Program Comprehension, pages 108—117, 1998.

[23] M. van den Brand, A. van Deursen, J. Heering, H. A.
de Jong, M. de Jonge, T. Kuipers, P. Klint, L. Moo-
nen, P. A. Olivier, J. Scheerder, J. J. Vinju, E. Visser,
and J. Visser. The ASF+SDF meta-environment: A
component-based language development environment.
In Computational Complezity, pages 365-370, 2001.

[24] E. Verhoeven. COBOL island grammars in SDF. Mas-
ter’s thesis, Informatics Institute, University of Amster-
dam, 2000.

