
Rewrite Systems for Symbolic Evaluation of
C-like Preprocessing

Mario Latendresse

Northrop Grumman Information Technology

Science and Technology Advancement Team – FNMOC

U.S. Navy

Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.1/26

Outline

• Introduction to C-like preprocessing
• Statement of the objectives
• Some of the technical issues
• The conditional values
• The symbolic algorithm
• The problem of mixing macro substitution,

evaluation and parsing
• Three rewrite systems
• Future work

Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.2/26

Introduction

Text preprocessing à la cpp is widely used: From C to
Haskell.

Text preprocessing is composed of

• conditional compilation #if ... #endif
• macro definition #define ...

• substitution of macro identifier about anywhere in
the source code

• substitution and evaluation on #if conditionals
• inclusion of files with #include

Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.3/26

Objectives: An Example

#if defined(X)
#define Y 5
#elif Y > 20
#define X 10
#else
#define X 30
#endif
....
#if Y > 4
v = X;
#endif

Questions we want to answer:
• Under which condition is ‘v =
X;’ compiled? If X is defined or
the initial Y > 4.

• What are the possible val-
ues of X for that statement?
And under which conditions
are they obtained? X may have
values ‘10’ (Y>20), ’30’ (4<Y≤20),
’X’ if not given any value, or any initial
value given at compile time.

Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.4/26

General Objectives

The general objectives are:

• Find for every line of source code the condition
(Boolean expression) under which it is compiled
(or reached).

• Find for every line of source code the values of
each preprocessing variable (macro) and under
which conditions they are obtained.

The result is a static representation of all possibilities
independent of any configuration (initial values of
variables).

Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.5/26

Symbolic Evaluation of C-like Preprocessing

We apply symbolic evaluation to the preprocessing
code to answer the objectives.

In general, for symbolic evaluation, the values of
preprocessing variables are unknown.

The variable names are even unknown!!!

To be complete, we have to assume the most general
case:

Any unbound identifier V on if-conditions is assumed to
be a variable name and is assigned the symbolic value
VI .

Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.6/26

Inferring Preprocessing variables: An Example

int main(char **argv[], int argc){
#if defined(E)
#define S "HELLO"
#endif

#if defined(S)
printf(S);

#endif
}

gcc -DE f.c
gcc -DS=’"ALLO"’ f.c
gcc -DS -D’printf(X)=printf("!")’

Any identifier may be a free preprocessing variable.
But we can only infer what the source code tells us.

In this case we can infer that S and E are variables, no

more.
Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.7/26

Substitution and Evaluation

The concrete evaluation of an if-directive condition is
done in three phases:

1. The defined operators are evaluated resulting in
‘0’ or ‘1’.

2. The macro substitution is done with string
operations if any. A list of lexems is obtained.

3. Arithmetic and logical operations are done. At this
point the conditional expression should be a valid
arithmetic/logic expression.

Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.8/26

The special operator defined

#define R(x) 2##x
#define H(x) R(x)
#if H(defined(W)) == 20
/* W is not defined */
#else
/* W is defined */
#endif
The concrete expansion algorithm has a special case:

All defined operators are expanded to ‘0’ or ‘1’; not
the values 0 or 1. The evaluation changes a ‘0’ to 0 and
a ‘1’ to a 1.

This code shows that defined is evaluated, then H is
expanded; not the other way around.

Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.9/26

Handling Dubious Conditionals

#if defined(X)
define M 3 <
define Y 4
#else
define M 3 ==
define Y 0
#endif
#if M Y

x += 2;
#else

++x;
#endif

The condition M Y is not a
syntacticaly valid conditional.
But expansion will always
make it valid.

We should be able to handle
this, since we can infer that, in
all cases, the condition is syn-
tactically valid.

Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.10/26

Symbolic Evaluation on the CFG of
Preprocessing

• The source code directives are parsed and
transformed into a Control Flow Graph (CFG)
where the nodes are blocks of lines.

• The edges are the unevaluated conditions found
on if-directives.

• So no evaluation of the if-conditions is done at that
point. It is not feasible to do so in general.

• All included files are processed once
independently of the control flow.

• Loops may occur in the CFG as some files may
recursively include themselves.

Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.11/26

Symbolic Evaluation of C-like Preprocessing

7. Procedure V (n, cc) {
8. add cc to condition list of node n;
9. test node n for possible infinite iteration;
10. Case node n

11. block of code: nothing to do;
12. define: add definition to top table of S;
13. if: Let c be its expanded/simplified condition
...
28. Procedure Merge(T , E, S, c) {
29. For-each variable x in T or E

30. Bind x with c ? vt ⋄ vf into the top table of S

31. where vt is v(x, T : S),
32. vf is v(x,E : S)
33. }

Line 13 is the main focus of the paper.Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.12/26

Conditional Values to the Rescue

A conditional value is denoted c ? e1 ⋄ e2, and means
that if c is true, e1 is the resulting value, otherwise it is
e2.

There are two classes of conditional values (c-values):

1. One class to bind preprocessing variables (macro)
to a set of basic values under some conditions.
These are unparsed and unevaluated c-values. TC

2. The other for parsing, substitution and evaluation
of if-conditionals. These are parsed and evaluated
c-values. TC↑

Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.13/26

Unparsed and Unevaluated Conditional Values TC

An unparsed and unevaluated conditional value
(c-value) is in general a tree where the leaves are
sequences of lexems and interior nodes are Boolean
expressions.

In general, a preprocessing variable is bound to a
c-value during symbolic evaluation.

Examples:

1. (Y = 2) ? ‘3’ ⋄ ‘4’

2. d̂ef(OFILE) ? ‘fprintf’ ⋄ ‘printf’

3. (Y = 2) ? (X = 3 ? ‘4’ ⋄ ‘5’) ⋄ ‘6’

Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.14/26

The Unparsed c-value Terms TC and the Concrete
(preprocessing) Terms TP

The unparsed c-value terms:
TC := e e ∈ TP

| xI xI ∈ FPVar
| c ? e1 ⋄ e2 c ∈ TB, e1, e2 ∈ TC

FPVar := Free Preprocessing Variables

Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.15/26

The Unparsed c-value Terms TC and the Concrete
(preprocessing) Terms TP

The unparsed c-value terms:
TC := e e ∈ TP

| xI xI ∈ FPVar
| c ? e1 ⋄ e2 c ∈ TB, e1, e2 ∈ TC

FPVar := Free Preprocessing Variables

The concrete terms:
TP := ⊤

| ⊥

| t1 . . . tn n > 0, ti ∈ VTok
VTok := Valid Tokens

Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.15/26

The Parsed and Evaluated c-value Terms TC↑

TC↑ := e e ∈ TB

| Z̄(e) e ∈ TC↑

| c ? e1 ⋄ e2 c ∈ TB, e1, e2 ∈ TC↑

These are never bound to preprocessing variables, but
are the result of expansion, parsing and evaluation of
if-conditionals.
Z̄(0) → false

Z̄(n) → true, n 6= 0

Z̄(r) → error, rnot a number

Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.16/26

The terms TX after macro expansion

TX := e e ∈ TC

| e1 e2 e1, e2 ∈ TX

A TX term is essentially a sequence of TC

Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.17/26

Example, Symbolic Evaluation

#if L == "french" || L == "spanish"
#define X iso_accents
#elif L = "english"
#define X ascii
#endif
....
set_input_function(X)

The general value of X is composed of several basic
values, and these depend on L.

This can be expressed as

(L = "french" ∨ L = "spanish") ? ‘iso_accents’ ⋄

(L = "english" ? ‘ascii’ ⋄ XI)
Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.18/26

The final Boolean terms TB

TB := b b ∈ BVal
| def(xI) xI ∈ FPVar
| ¬e e ∈ TB

| e1 o e2 e1, e2 ∈ TB, o ∈ {∧,∨}

| Z̄(e) e ∈ TE

| r r ∈ Err
def : CVal → BVal
Z̄ : ECst → BVal ∪ Err
CVAL := {⊤,⊥, t1 . . . tn}

ECst := Constants
Err := Errors

Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.19/26

Why Rewrite Systems?

• This formalism works well to express the type of
transformations to apply.

• They are language independent and represent a
simple formulation of algorithms.

• They are easier to use than a sequential algorithm
to prove termination and confluence (if any!).

Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.20/26

The General Transformation of an if-condition

TX

Rd
exp
−→ TX

Re−→ TC↑
PE
−→ TC↑

Z̄
−→ TC↑

Rf

−→ TB

Rd: applied to the defined operators.

exp: the expansion of macros (aka substitution).

Re: transform into one c-value with no variables, or a
list of tokens and free vars with no c-values.

Z̄: wrap everything into an evaluation function to true

or false.

PE: parsing, evaluation of arithmetic operators.

Rf : simplification and transformation into a Boolean

Expression. Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.21/26

Rewrite System Rd for Operator defined

During symbolic evaluation, the defined operators,
used on if-conditions, are translated to d̂efs and
variables to their c-values.

Then they are rewritten according to the following
system.

Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.22/26

Rewrite System Rd for Operator defined

Rd =
{

d̂ef(c ? e1 ⋄ e2) → c ? d̂ef(e1) ⋄ d̂ef(e2)

This rule traverses the tree to its leaves.

Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.22/26

Rewrite System Rd for Operator defined

Rd =





d̂ef(c ? e1 ⋄ e2) → c ? d̂ef(e1) ⋄ d̂ef(e2)

d̂ef(⊥) → ‘0’
d̂ef(⊤) → ‘1’

d̂ef(t1 . . . tn) → ‘1’

The next three rules process the concrete values of
preprocessing.

Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.22/26

Rewrite System Rd for Operator defined

Rd =





d̂ef(c ? e1 ⋄ e2) → c ? d̂ef(e1) ⋄ d̂ef(e2)

d̂ef(⊥) → ‘0’
d̂ef(⊤) → ‘1’

d̂ef(t1 . . . tn) → ‘1’
d̂ef(xI) → def(xI) ? ‘1’ ⋄ ‘0’

Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.22/26

Rewrite System Rd for Operator defined

Rd =





d̂ef(c ? e1 ⋄ e2) → c ? d̂ef(e1) ⋄ d̂ef(e2)

d̂ef(⊥) → ‘0’
d̂ef(⊤) → ‘1’

d̂ef(t1 . . . tn) → ‘1’
d̂ef(xI) → def(xI) ? ‘1’ ⋄ ‘0’

The last rule is necessary to handle text processing of
‘1’ and ‘0’.

Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.22/26

Rewrite System Rd for Operator defined

Rd =





d̂ef(c ? e1 ⋄ e2) → c ? d̂ef(e1) ⋄ d̂ef(e2)

d̂ef(⊥) → ‘0’
d̂ef(⊤) → ‘1’

d̂ef(t1 . . . tn) → ‘1’
d̂ef(xI) → def(xI) ? ‘1’ ⋄ ‘0’

Example:
#define R(x) 2##x
#define H(x) R(x)
#if H(defined(W)) == 20

Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.22/26

Rewrite System Rd for Operator defined

Rd =





d̂ef(c ? e1 ⋄ e2) → c ? d̂ef(e1) ⋄ d̂ef(e2)

d̂ef(⊥) → ‘0’
d̂ef(⊤) → ‘1’

d̂ef(t1 . . . tn) → ‘1’
d̂ef(xI) → def(xI) ? ‘1’ ⋄ ‘0’

#define R(x) 2##x
#define H(x) R(x)

#if H(d̂ef(WI)) == 20

Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.22/26

Rewrite System Rd for Operator defined

Rd =





d̂ef(c ? e1 ⋄ e2) → c ? d̂ef(e1) ⋄ d̂ef(e2)

d̂ef(⊥) → ‘0’
d̂ef(⊤) → ‘1’

d̂ef(t1 . . . tn) → ‘1’
d̂ef(xI) → def(xI) ? ‘1’ ⋄ ‘0’

#define R(x) 2##x
#define H(x) R(x)

#if H(def(WI) ?‘1’ ⋄ ‘0’) == 20

Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.22/26

Rewrite System Rd for Operator defined

Rd =





d̂ef(c ? e1 ⋄ e2) → c ? d̂ef(e1) ⋄ d̂ef(e2)

d̂ef(⊥) → ‘0’
d̂ef(⊤) → ‘1’

d̂ef(t1 . . . tn) → ‘1’
d̂ef(xI) → def(xI) ? ‘1’ ⋄ ‘0’

#if 2(def(WI) ?‘1’ ⋄ ‘0’) == 20

Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.22/26

Rewrite System Rd for Operator defined

Rd =





d̂ef(c ? e1 ⋄ e2) → c ? d̂ef(e1) ⋄ d̂ef(e2)

d̂ef(⊥) → ‘0’
d̂ef(⊤) → ‘1’

d̂ef(t1 . . . tn) → ‘1’
d̂ef(xI) → def(xI) ? ‘1’ ⋄ ‘0’

#if def(WI) ?‘21’ ⋄ ‘20’ == 20

Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.22/26

Rewrite System Rd for Operator defined

Rd =





d̂ef(c ? e1 ⋄ e2) → c ? d̂ef(e1) ⋄ d̂ef(e2)

d̂ef(⊥) → ‘0’
d̂ef(⊤) → ‘1’

d̂ef(t1 . . . tn) → ‘1’
d̂ef(xI) → def(xI) ? ‘1’ ⋄ ‘0’

#if def(WI) ?‘21==20’ ⋄ ‘20==20’

Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.22/26

Rewrite System Rd for Operator defined

Rd =





d̂ef(c ? e1 ⋄ e2) → c ? d̂ef(e1) ⋄ d̂ef(e2)

d̂ef(⊥) → ‘0’
d̂ef(⊤) → ‘1’

d̂ef(t1 . . . tn) → ‘1’
d̂ef(xI) → def(xI) ? ‘1’ ⋄ ‘0’

#if def(WI) ? false ⋄ true

Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.22/26

Rewrite System Rd for Operator defined

Rd =





d̂ef(c ? e1 ⋄ e2) → c ? d̂ef(e1) ⋄ d̂ef(e2)

d̂ef(⊥) → ‘0’
d̂ef(⊤) → ‘1’

d̂ef(t1 . . . tn) → ‘1’
d̂ef(xI) → def(xI) ? ‘1’ ⋄ ‘0’

#if ¬def(WI)

Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.22/26

The System Re is applied over TX before parsing
and evaluation

Re =





(c ? e1 ⋄ e2) t → c ? (e1 t) ⋄ (e2 t)

where t ∈ VTok ∪ FPVar
t (c ? e1 ⋄ e2) → c ? (t e1) ⋄ (t e2)

where t ∈ VTok ∪ FPVar
(c1 ? e1 ⋄ e2)(c2 ? e3 ⋄ e4) → c1 ? (c2 ? (e1 e3) ⋄ (e1 e4))

(c2 ? (e2 e3) ⋄ (e2 e4))

Note: two adjacent VTOK or FPVar terms remains the
same.

Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.23/26

The System Re is applied over TX before parsing
and evaluation

Re =





(c ? e1 ⋄ e2) t → c ? (e1 t) ⋄ (e2 t)

where t ∈ VTok ∪ FPVar
t (c ? e1 ⋄ e2) → c ? (t e1) ⋄ (t e2)

where t ∈ VTok ∪ FPVar
(c1 ? e1 ⋄ e2)(c2 ? e3 ⋄ e4) → c1 ? (c2 ? (e1 e3) ⋄ (e1 e4))

(c2 ? (e2 e3) ⋄ (e2 e4))

Note: two adjacent VTOK or FPVar terms remains the
same.
Example:

Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.23/26

The System Re is applied over TX before parsing
and evaluation

Re =





(c ? e1 ⋄ e2) t → c ? (e1 t) ⋄ (e2 t)

where t ∈ VTok ∪ FPVar
t (c ? e1 ⋄ e2) → c ? (t e1) ⋄ (t e2)

where t ∈ VTok ∪ FPVar
(c1 ? e1 ⋄ e2)(c2 ? e3 ⋄ e4) → c1 ? (c2 ? (e1 e3) ⋄ (e1 e4))

(c2 ? (e2 e3) ⋄ (e2 e4))

Note: two adjacent VTOK or FPVar terms remains the
same.
Example:

((Y = 1) ? ‘2’ ⋄ ‘3’)(== 1+)((X = 4) ? ‘5’ ⋄ ‘6’)

Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.23/26

The System Re is applied over TX before parsing
and evaluation

Re =





(c ? e1 ⋄ e2) t → c ? (e1 t) ⋄ (e2 t)

where t ∈ VTok ∪ FPVar
t (c ? e1 ⋄ e2) → c ? (t e1) ⋄ (t e2)

where t ∈ VTok ∪ FPVar
(c1 ? e1 ⋄ e2)(c2 ? e3 ⋄ e4) → c1 ? (c2 ? (e1 e3) ⋄ (e1 e4))

(c2 ? (e2 e3) ⋄ (e2 e4))

Note: two adjacent VTOK or FPVar terms remains the
same.
Example:

((Y = 1) ? ‘2 == 1 +’ ⋄ ‘3 == 1 +’)((X = 4) ? ‘5’ ⋄ ‘6’)

Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.23/26

The System Re is applied over TX before parsing
and evaluation

Re =





(c ? e1 ⋄ e2) t → c ? (e1 t) ⋄ (e2 t)

where t ∈ VTok ∪ FPVar
t (c ? e1 ⋄ e2) → c ? (t e1) ⋄ (t e2)

where t ∈ VTok ∪ FPVar
(c1 ? e1 ⋄ e2)(c2 ? e3 ⋄ e4) → c1 ? (c2 ? (e1 e3) ⋄ (e1 e4))

(c2 ? (e2 e3) ⋄ (e2 e4))

Note: two adjacent VTOK or FPVar terms remains the
same.
Example:

(Y = 1) ? (X = 4 ? ‘2 == 1 + 5’ ⋄ ‘2 == 1 + 6’) ⋄
(X = 4 ? ‘3 == 1 + 5’ ⋄ ‘3 == 1 + 6’)

Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.23/26

The System Rf is applied over TC↑ after evaluation

Rf =





true ? e1 ⋄ e2 → e1

false ? e1 ⋄ e2 → e2

c ? true ⋄ false → c

c ? false ⋄ true → ¬c

. . .
Z̄(r) → r

where r ∈ Err
Z̄(e1 o e2) → Z̄(e1) o Z̄(e2)

where o ∈ {∧,∨}

Z̄(c ? e1 ⋄ e2) → c ? Z̄(e1) ⋄ Z̄(e2)

c ? e1 ⋄ e2 → c ∧ e1 ∨ ¬c ∧ e2

where e1, e2 ∈ TB
Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.24/26

Future Work

• Implement the approach in a open IDE, for
example emacs, or xemacs.

• Design a language to let the user specify the
possible variable values. It could be simple: list of
values. Or complex: conditional values, regular
expression, etc.

Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.25/26

The End

Thank You

Questions, comments?

Rewrite Systems for Symbolic Evaluation of C-like Preprocessing – p.26/26

	Outline
	Introduction
	Objectives: An Example
	General Objectives
	Symbolic Evaluation of C-like Preprocessing
	Inferring Preprocessing variables: An Example
	Substitution and Evaluation
	The special operator 	exttt {defined}
	Handling Dubious Conditionals
	Symbolic Evaluation on the CFG of Preprocessing
	Symbolic Evaluation of C-like Preprocessing
	Conditional Values to the Rescue
	Unparsed and Unevaluated Conditional Values $TB {C}$
	The Unparsed c-value Terms $TB {C}$ and the Concrete (preprocessing)
Terms $TB {P}$
	The Parsed and Evaluated c-value Terms $TB {CC }$
	The terms $TB {X}$ after macro expansion
	Example, Symbolic Evaluation
	The final Boolean terms $TB {B}$
	Why Rewrite Systems?
	The General Transformation of an if-condition
	Rewrite System $RD $ for Operator 	exttt {defined}
	The System $RE $ is applied over $TB {X}$ before parsing and evaluation
	The System $RF $ is applied over $TB {CC }$ after evaluation
	Future Work
	The End

