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Abstract

Embedded systems often have strong memory constraints
requiring careful encoding of programs. For example, smart
cards have on the order of 1K of RAM, 16K of non-volatile
memory, and 24K of ROM. A virtual machine can be an
effective approach to obtain compact programs but instruc-
tions are commonly encoded using one byte for the opcode
and multiple bytes for the operands, which can be wasteful.
We use another approach, using canonical Huffman codes
to generate compact custom-sized opcodes and custom-sized
operand fields along with a virtual machine that directly ex-
ecutes the encoded operations. We present techniques that
automatically generate the opcodes and the decoder. In ef-
fect, this automatically creates both an instruction set for a
customized virtual machine and an implementation of that
machine. We demonstrate that, without prior decompres-
sion, fast decoding of these virtual compressed instructions
is feasible. We also discuss the relevant difficulties in gen-
erating C code for such decoders, in particular the problem
of efficient program memory access. Through experiments
we demonstrate the speed of these decoders. Synthetic and
Java benchmarks show an execution slowdown ranging from
—10% to 30%, with an average of 9% for good decoders. For
the Java bytecode, the average overall compression factor is
60%.

1 Introduction

1.1 Motivation

Embedded systems are resource-constrained devices requir-
ing careful attention to memory usage and power consump-
tion. To serve these goals, several researchers are taking the
approach of reducing program size [6, 26, 2, 13, 11, 12].

Recently, IBM has developed CodePack [11, 12] to com-
press programs for the PowerPC processor for the embed-
ded market. Others have developed dual processors that
switch between compressed and uncompressed modes of de-
coding [13, 2].

To tackle such systems in Java, Sun has taken the ap-
proach of defining a small virtual machine, the KVM" [26],

1The KVM uses on the order of 128K, including libraries. The
virtual machine itself is 40K-80K depending on the compiler and the
target platform used.
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Figure 1: Creation of instruction set, its decoder and
interpreter.

and applying restrictions on the language and the libraries.
For smart cards, this comes with major constraints, where
floating-point computation, threads, and garbage collection
have been removed. Tools are also provided to reduce mem-

ory usage, like Java CodeCompacttm[%], which preloads
class files, resolves dynamic links, and generates a complete
executable ROM version. But this approach does not reduce
the size of the bytecode, the target of our work.

Some researchers [9, 22, 8] have shown the virtues of re-
ducing code size, without decompression before execution,
by using bytecode interpreters tailored for one program.
Compression of the bytecode, capable of direct execution
without decompression, would further reduce code size.

Some researchers [9, 4] have stated the possibility of us-
ing Huffman codes to compress programs, usually to con-
clude that they would, at the software level, increase decod-
ing time to an unacceptable level. Unfortunately no clear
evaluation has been done using fast software decoding tech-
niques which this work tries to remedy.

1.2 The context of this work

‘We focus on the context where code decompression cannot
be performed before or during the program’s execution. This
constraint is reasonable for embedded systems where a bulk
decompression of programs, or even parts of programs, be-
fore execution, might exceed the memory available. It is
also reasonable for machines with processors much faster
than memory, a trend that will increase in the future.



Figure 1 presents the general context of our work. The
sample of programs, which could be as small as a single pro-
gram, can be the intermediate form of compiled programs
or the final form emitted by a bytecode compiler. An in-
struction set encoding to compactly represent the sample is
automatically generated. This requires an analysis of the
instruction frequencies, the length of operands, etc. of the
sample. The decoder is generated given a space constraint
parameter, along with the interpreter. The sizes of the de-
coder and interpreter are taken into account to reduce pro-
gram sizes. This approach is transparent for the compiler
writer since the compression of programs can be done from
the same encoding as the sample. The detail techniques
used to automatically generate the instruction set is partly
presented in [15] and fully presented in [16]. In this paper we
focus on the efficient decoding of these virtual instructions
and the automatic generation of decoders.

This context allows two major applications of the work
presented in this paper. The first one is the conception of
virtual machines, such as the KVM, aimed at embedded
systems with memory constraints. This could be done for
any languages. The construction of such machines should
be done based on a careful analysis of program samples.
The second application is the compilation of programs where
code space is a major concern. In that case, a virtual ma-
chine tailored for the program can be used to reduce space.
This is the approach taken in [9, 22, 8]. Further code size
reduction can be obtained with a compression of the virtual
instructions.

Typically, virtual instructions are “byte encoded”: op-
codes are encoded on a byte and operands on some byte
multiple. Clearly this method trades space for speed by
maintaining byte, or even word, alignment and a fixed length
for all opcodes. In this work, we use another approach for a
more compact form.

Henceforth, the following setting is assumed: the op-
codes are variable length canonical Huffman codes [25] gen-
erated using the static frequencies of the opcodes from a
group of programs; and operands are uncompressed but of
a length that is not restricted to a multiple of eight bits.
Thus, opcodes and operands are not byte-aligned.

Clearly, to gain speed, Huffman opcodes should not be
decoded bit by bit; instead, blocks of & bits should be used.
Such an idea has been explored previously [19, 21]. We have
extended the work of Turpin and Moffat [19] to create a
general algorithm capable of generating decoders with vari-
ous sizes and speeds under the control of the designer of the
virtual machine.

In the next section, canonical Huffman codes are pre-
sented along with a compact but slow decoding method.
Section 3 presents the concepts to build much faster but
slightly less compact decoders. Section 4 explains the C
code’s structure for all canonical decoders. Section 5 dis-
cusses the algorithm to construct the tree structure of fast
and compact decoders. Section 6 discusses how decoders
access memory for opcodes and operands. Experimental re-
sults showing that the approach is practical are presented
in section 7.

2 Huffman Encoding of Opcodes

We encode instruction opcodes using canonical Huffman
codes [25]. These are similar to Huffman codes built by the
original bottom up method of the late David Huffman [10],

but the numerical value of the codes of a given length form
a consecutive sequence. Such codes correspond to Huffman
trees where the nodes are pushed on the same side. As it will
be shown later, they have a very compact representation of
the bijection between the codes and the encoded object. The
average length of canonical codes are the same as Huffman
codes. These opcodes are automatically generated from the
frequencies of instructions from a sample of programs.

Since opcodes are canonical Huffman codes, the two
terms will be used interchangeably. Moreover, the term
canonical will often be dropped because we only use canon-
ical Huffman codes.

Let l. be the length of code ¢, v(c) its value, w > I. a
constant, and V¥ (¢) = v(c)2*~'; in other words, V¥ (c) is
the value of ¢ justified in the left part of a w bits variable.
The value w might simply be regarded as the width, in bits,
of the processor registers. This idea of treating codes “left
justified” is directly related to the manner of reading bytes
from memory into a variable prior to decoding the opcodes.

Let C = {c;i} be a set of canonical Huffman codes, Imax
the maximum length of these codes and w a constant where
W > Imax. Define the vector base™[1...Ilmax] as base™[7] is
the smallest value V¥ (c) for all codes ¢ such that . = 4.
Define the vector disp[l...Ilmax] as disp[i] is the number of
codes ¢ such that I < i. Thus, the index of code c of length
lc is:

V¥ (c) — base®[l]

oI + disp[le] (1)

Therefore, C' can be completely represented using space in
O(Imax). Moreover, if its length is known, its index is given
by equation 1.

To show examples of opcodes, and eventually decoders
for them, independently of a specific virtual machine, as-
sume the n probabilities p; of a special case of Zipf’s law:
pi = 1/(iH,), 1 < ¢ < n, where H, is the nth har-
monic number Z;zl(l /7). Such probabilities model the
static frequency of instructions in actual programs. Ta-
ble 2 presents some essential characteristics of the result-
ing Huffman canonical opcodes for n = 200 (the “Zipf-200”
opcodes). The opcode corresponding to the probability p;
is ¢; and its length is I.,. Note that the entropy® of the
Zipf-200 probabilities is 5.9857, and that the average length
of the Zipf-200 opcodes is 6.0267. Thus, the Huffman en-
coding is close to the optimum. For benchmarking, Zipf-20
opcodes are also used. The entropy of Zipf-20 is 3.6471 and
the average length of the corresponding Huffman opcodes is
3.6689.

The vectors base™ and disp for Zipf-200 opcodes are
shown in table 1. Note that the values of disp are sim-
ply the ordinal numbers of the binary number of base found
in table 2.

2.1 Compact and slow decoding

Assume that the beginning of an instruction is left justified
in a variable rd. According to equation 1, the problem of
decoding the opcode c of that instruction can be reduced to
finding its length. That can be done simply by a sequential
search in base. Figure 2 shows a fragment of C code for this
slow but very compact decoder based on this approach. The
compressed code is in the high part of variable rd. Line 2

2The entropy is defined as — Z

length as El<i<" le;pi-

1<i<n pilgpi;, and the average



i = Imax;

while (rd < basew[i]) i—-;

crd = (rd-base_w[i] >> w-i) + disp[il;
rd <<= i;

goto *adr([crd];

A W N

Figure 2: C code for a very compact, but slow, de-
coder for canonical ascending Huffman codes.

1 disp base®

3 1 000-2¥~3

4 2 0010-2%*

5 5 01010-2%~°

6 9 011100-2*~°

7 16 1000110-2%°7

8 33 10101110-2%¥~8

9 65 110011100-2¥~°
10 135 1110111110.2w~10

Table 1: The vectors base_w (aka base") and disp (disp)
for Zipf-200.

does the sequential search. The index of the code is calcu-
lated in crd by line 3 using 1. Line 4 removes the opcode
and line 5 does the actual branching to the virtual instruc-
tion (using gcc’s computed goto). Note that the opcode is
followed by parameters or another opcode, but the search is
such that the bits following the opcode can have any value.

Line 2 is the major bottleneck. This is a very compact
decoder since its code is small and the vectors base_w and
disp only contain Imax elements each. For Zipf-200 on a 32
bit processor, Imax = 10 and w = 32, so the two vectors use
a total of 80 bytes.

3 Fast Decoding

To increase speed the linear search of the length of the op-
code must be avoided. This can be done with a table lookup
using the index formed by the leftmost k bits of rd. The ta-
ble contains branching addresses which either continue de-
coding or emulate the decoded virtual instruction. Three
situations can arise:

1. The opcode is recognized by the k bits.
2. The opcode is not recognized but its length is known.

3. The opcode is not recognized and its length is unknown.

Case 1 is the ideal situation which occurs for all codes ¢
with I, < k; a direct jump to the emulation of the instruction
can be done. In case 2 the length of the opcode can be used
to compute its index by equation 1. Case 3 is the worst
situation; the next bits must be used to continue decoding
using the same technique. Therefore, the decoder has a tree
structure where each interior node is case 3, simply called
type 3 nodes. In case 1 and 2 we have leaf nodes, simply
called type 1 and 2 nodes. Note that each type 3 node
requires a vector of addresses of its own. Type 2 nodes may
share the same vector.

000-100010
101011

1T T1 T1

Tree D1, S(D:) = 563, T(D:1) = 15.93

kr =8
000-11001101
a b
T1 T2

Tree D2, S(D2) = 1084, T(D2) = 13.8

Figure 3: Two decoder trees D; and D; for zipf-200,
generated using the parameters s, = 4, s = 30, s3 =
25, to =4, to =10, t3 = 7. We have k. =4, kg = 3 and
ke = 2.

We will also use type 0 nodes. These do a linear search
as in Figure 2. They are like type 3 nodes where the length
is unknown but they don’t consume much space since no
additional vector of addresses is used. If several type 0 nodes
exist they will share the same code, so that only the first one
consumes space. We denote by v the type of node v.

In general, interior nodes will not use the same number
of k bits to do a table lookup. This makes it useful to use an
algorithm to find the optimum number of bits for each type
3 node. For a node v of type 3, we define k, as the number
of bits used to do the table lookup. In particular, k£, denotes
the number of bits used by the root r of a decoder.

Each node requires some time to execute. The time spent
in a node of type ¢ is denoted ¢;. Note that t; = 0 because
no further decoding is needed for type 1 nodes and to is
the time of one loop iteration of line 2 in Figure 2. These
timing values do not have to correspond to any real unit
of time, but simply be relative to a known base value. It
could be approximated by the required average number of
host processor cycles.

To evaluate the space taken by the decoder, four con-
stants are used: so is the number of bytes used by the ma-
chine code for Figure 2; s, is the number of bytes of an
address (e.g. 4); sz is the number of bytes used by the ma-
chine code implementing a type 2 node and ss is for a type
3 node.

Figure 3 presents two decoder trees D; and D, for Zipf-
200. They have been generated by the algorithm of section
5 using the specified parameters. In table 2 each opcode
is shown along with the final node of decoding by the two
decoders and corresponding relative time. The average time
for Dy is 19.75 and for D, it is 16.8; but D2 uses almost
twice the space of D;.



Tree D>
Time

v v

1000 a 7 a 7

2 0010 a 7 a 7

3 0011 a 7 a 7

4 0100 a 7 a 7
15 100010 a 7 a 7
16 1000110 b 17 a 7
17 1000111 b 17 a 7
31 1010101 b 17 a 7
32 1010110 e 14 a 7
33 10101110 e 14 a 7
34 10101111 e 14 a 7
35 10110000 b 17 a 7
62 11001011 b 17 a 7
63 11001100 d 14 a 7
64 11001101 d 14 a 7
65 110011100 |d 14 b 17
66 110011101 d 14 b 17
68 110011111 d 14 b 17
69 110100000 | b 17 b 17
124 111010111 b 17 b 17
125 111011000 c 14 b 17
126 111011001 [ 14 b 17
135 1110111110 | ¢ 14 b 17
136 1110111111 | ¢ 14 b 17
137 1111000000 | b 17 b 17
138 1111000001 | b 17 b 17
199 1111111110 | b 17 b 17
200 1111111111 | b 17 b 17

Table 2: Zipf-200 and timing for two decoders.

4 The Decoder C Code

Before discussing the structure of canonical decoders, it is
useful to perceive them through their generated C code.

Figure 4 shows the general structure of the C code for
canonical decoders. Decoding begins at label L_decode.
There is a label L_i for each case where more than one op-
code of length 7 is not directly recognized by a node of type
3 but where all of them are known to have such a length.
These are type 2 nodes. There is a label Lp_prefiz for each
node of type 3, where prefiz corresponds to the prefix of all
codes for that node. For each virtual instruction mne the
label Imne is the entry point of its implementation.

Line 1 is a block of code that loads, if necessary, some
additional bytes in the variable rd. The number of bytes
loaded may vary from cycle to cycle and the exact C code to
do so depend on the form of memory access that is discussed
in Section 6. The incoming bits are justified in the high part
of rd and nb_rd is adjusted to contain the number of bits in
it. Note that it always loads a multiple of eight bits, that
is the program counter points to a byte in memory, but rd
does not necessarily contain a multiple of eight bits. Figure
5 presents an obvious portable implementation for line 1,
in the case w = 32, but that cannot be used in practice
since it is very inefficient. Section 6 presents better portable
techniques.

Line 2 is the root of a decoder where the first lookup is
done; line 3 does a jump to a type 2 or 3 node, or to the
emulation of a virtual instruction. Note that w—k, is a con-
stant. Similarly, at line 5, the term base(C*?); + disp(C*?);
is a constant: base(C*?); is the ith value of base® /2% ¢
but where base® is defined using only the codes C*?, that

L_decode:
1 {Transfer bytes from program to rd
such that it has at least Imax bits,
and increase nb_rd accordingly. }
2 crd = rd > w—Fk;
3 goto *adr_[crd]l;
L4 : /* opcodes of length i (type 2) */
4 crd = rd > w—1;
5 goto *adr_inst[crd - base(C*?); + disp(C*?):1;
Lp_prefiz: /* sub-decoder (type 3) */
6 crd = rd > w—lprefiv — Kprefizs
7 goto *adr_preﬁ:c[crd—v(preﬁa:)?kweﬁic];
Imne:/* C code for mne (type 1) */
8 { If mne has parameters, transport them in p;}
/* eliminate opcode and parameters */
9 rd <<= lopcode+lparm;
10 nb.rd -= lopcode"’lpa.rm;
11 { C code to emulate mne }
12 goto L_decode;

Figure 4: General C code of canonical decoders.
#define BYTE(i) (unsigned int)prgm[pc+il

rd = (BYTE(O) << 24 | BYTE(1) << 16

| BYTE(2)<< 8 | BYTE(3)) >> nb_rd;
pc += (w-nb_rd) >> 3;
nb_rd += (w-nb_rd) & ~7;

Figure 5: A simple technique for line 1 of Figure 4.

is all codes treated by type 2 nodes. Using this subset of
C might very well decrease the length of vector adr_inst.
To be more precise, all addresses of virtual instructions in
adr_ are not duplicated in adr_inst. They also do not ap-
pear in any vectors adr_prefiz for type 3 nodes. The vector
disp(C'?) is the corresponding vector of base(C*?). Line 5
necessarily jumps to a virtual instruction. In line 6, the term
W — lprefic — Kprefiz 1S @ constant, l,,.5, being the length of
the prefix and kpycf; the number of bits decoded by this
node. So the shifting rd >> w — lprefiz — kprefiz leaves in
crd not only the kg, bits to decode but also the previous
lprefiz bits. Line 7 applies the proper adjustment using the

term v(pre fix)?kl’reﬁm, which is the extra value left in rd
before this node. This avoids shifting some bits out of rd
until the end of decoding®.

At line 8, decoding is complete and this is the emulation
of the virtual instruction mne. If mne has some parameters,
they are obtained here. This may use up all bits in rd or just
part of them; it may also access memory. In most cases, bits
should transit through rd. In any case, what lines 9 and 10
say, which could be done differently in some implementation,
is that rd should contain the following bits and nb_rd should
be maintained accordingly.

Finally, line 12 returns to the beginning of the decoding
cycle. This depends on the form of memory access as pre-
sented in section 6. It could return to a specific point in line
1 where it loads a specific number of bytes according to the

3This limits opcode lengths to no more than w — 7 bits.



number of bits consumed by mne.

5 Generating Decoder Structures

This section presents the fundamental concepts to generate
an optimal canonical decoder given a set of opcodes, their
dynamic frequencies, and parameters that characterize the
host processor. It is based on a space and dynamic time
evaluation defined as followed.

The space, in bytes, taken by a node of the decoder is
defined by

S0+ 28¢lmax if 7 =0

0 ifr=1
S(V) = S2 ifr=2 (2)
2k gy +s3  fr=3

Parameters so, s2, s3, and s, characterize the host processor
as explained in Section 3.

Type 1 nodes do not use space in the decoder since they
are part of the interpreter code. Type 2 nodes only consume
the space of the C code since the vector of addresses adr
is assumed completely available in the virtual machine. For
type 3 nodes, the term 2kv g, is the space taken by the vector
of addresses of that node. That vector contains the code
pointers to the virtual instruction implementations. The
space taken by a complete decoder D is E(D) =} _, s(v)

To evaluate the time taken by the decoder we use a vector
of probabilities P = {p.}, where p. is the probability that
opcode c is decoded while executing the program. These
are not the static frequencies used to generate the opcodes,
but dynamic ones. Therefore the algorithm for finding an
optimum decoder is based on the dynamic frequencies of
opcodes whereas their values were constructed based on the
static frequencies. This makes the algorithm to con-
struct instruction decoders different than decoders
used to decode static data. A notable difference from
the work of [19]. Moreover, decoders generated by this al-
gorithm are in most cases faster than the ones considered
in [19], since they avoid single bit decoding as much as pos-
sible. If enough space is given to construct them, all inte-
rior nodes of the decoders use several bits for table lookup,
whereas in [19] single bit operations are always used after
the first, and only, table lookup.

Let P. be the path from the root to ¢ in a decoder D.
The average time taken by decoder D for the opcodes C
given the probabilities P is:

T(C,D,P)=) pc Y tz (3)

ceC  vEP,

We now describe several sets to define precisely the structure
of decoders.

Let C be a set of opcodes and £ > 1 an integer. The
set of opcodes in C recognized without ambiguity by their
first k bits is noted R*. The set of opcodes in C — R¥ for
which their length is known by their first k bits is noted L*
and the set of different lengths of L* is noted L*'. The set
C — R* — L* is noted P* and the set of distinct prefixes of
k bits of P* is noted P*”.

A canonical tree decoder is recursively defined as either a
tuple (k, p, Rk,Pk,Lk,Pkp,Lkl,S), k > 0, where the seven
first values form a type 3 node and S are a (possibly empty)
set of canonical tree sub-decoders. The value k is the number

Input: Opcodes C = {¢;} (canonical Huffman codes);
Probabilities P = {p.} of decoding opcodes;
An upper bound B of the decoder size;
The parameters s; of the host processor.

Output: A decoder structure (k,p, R*, P* L*, P*” Lkl,S)

Let (e,b,t, L, D) = Search(({\, C)), B, t3,00,())
If e Then The decoder D has time ¢ and space b
Else The space B is insufficient to decode C

Function Search(Cs,b,t,tmg, L)
Cs ={(p,C): Cr; lmax = max{l(c;) — lp|c; € C}
kmax = min(lmax, [1gb/54])
Rpin ¢ (false, 0,0,(),()); tmin ¢ tmg
For k from kmax to 1 Do
Begin
t'=t+ts[[, cpppetta][], conpe
Y =b—2ts, + |LF — L|sy + [P*|ss
If t' < tmin and b’ > 0 Then
L'=LULF
IfCr=()and P* =0
Then tmin < t'; S = (k,p, R¥, P*, L*, P¥" [ L¥ ()
Rpin « (true, ', t', L', (9))
Else Cs' = add(P*,Cr)
(e,b",t", L', D) = Search(Cs ,b,t', tmin, L)
If e Then tpy;, < t”;
S = (k,p,R*, P*,I*, P*" \L¥' D, | pir))
Ruin < (true,b",t", L', S : D\prr )

End
Ifb' < 0ort > tmin Then return Ry,
Else return (false, , -, _,-)
End Search

Figure 6: Algorithm to find optimum decoders.

of bits forming the lookup index, and p is the prefix of that
type 3 node. All other components have been previoule
defined. Note that all type 2 nodes are dispersed in the L

components. The structure only represents explicitly type 3
nodes, since type 1 and 2 nodes can be derived from these.

A complete decoder implementation in C can be gener-
ated from such a structure. The interpreter, including ex-
traction of parameters, is also automatically generated given
the implementation of the virtual instructions in the form of
C macro-instructions. The full details can be found in [16].

The structure of an optimum compact decoder can be
done by a branch and bound search as presented in Fig-
ure 6. The main input is the set of opcodes C and the
dynamic probabilities p. of decoding opcodes. The param-
eter B restrict the space usage of the decoder. The decoder
structure found is the optimum in the sense that no other
faster decoder exists, according to T'(C, D, P), with space
no more than B.

The whole algorithm starts by calling Search with an
empty binary prefix A and the entire set of opcodes C, to
return the decoder D, if indeed one is found. The general
idea of Search is to start with an optimistic large k for the
index lookup of the type 3 node. This has a tendency to



quickly drop the best minimum time tmg found so far by
the search. Once a complete structure is reached, the new
minimum time is kept in ¢,;, with the result in R,;,. This
lower bound allows the algorithm to prune the search for a
better decoder since it recursively calls Search only if the
current time ¢’ is less than t.,;,. The variable C's is a double
ended queue, where add enqueue all the unidentified opcodes
P* to the not yet treated opcodes C,. Other parts of the
function precisely apply the time function T and the space
function E by adjusting t and b into ¢’ and b'. This algorithm
has been used to generate all decoders of the experiments
of this paper. It is practically fast enough to be included as
part of the back-end compiler.

6 Accessing the Program in Memory

From the decoder tree structure as described in Section 5,
C code can be generated having the general structure of
Figure 4. But one important part of the C code was left
unspecified, namely line 1, which loads bytes from memory
into rd.

Getting opcodes and operands from memory can be time
consuming since bit manipulations are necessary to concate-
nate them to the bits of rd. We have explored three different
techniques to access memory. The first one, form-a, is ob-
vious, but shows major slowdowns on many benchmarks.
The other two, form-b and form-c, show competitive speed;
form-c being often faster than form-b but using more space.
Our algorithm to generate decoders provides the option of
using one of these three forms. Benchmarks in section 7
show their relative merits. For all forms, enough bits are
loaded in rd to allow the decoding of at least one opcode
without the need for the sub-decoders to access memory.

6.1 Simple form (Form-a).

This version uses the number of bits in rd to load the mini-
mum number of bytes necessary to maintain between w — 7
and w bits in rd at line 2. This can simply be done using a
case analysis based on the value of nb_rd, reading from mem-
ory the required bytes, shifting them to the left, and merging
them to rd. The number of bytes to read is | (w —nb._rd)/8]
and the number of bits to shift is (w — nb_rd) mod 8.

This technique, as in the following form-b, loads in rd as
many bytes as possible. The advantage is a reduced number
of merging operations requiring shift and logical operations.
It also allows a simpler, and faster, access to operands since
they are most often hauled in before decoding the opcode.
The other advantage is reduced interpreter size, since the
implementation of most virtual instructions do not access
memory for operands. The disadvantage is a slow operation
at every cycle to verify and load the correct number of bytes.

6.2 Several-roots form (Form-b)

In this form, as in the previous form-a, there are between
w — 7 and w bits in rd at the beginning of the decoding.
But instead of one entry point with complex verification of
the number of bytes to load, there are several entry points
to the root of the decoder each one loading either z or x + 1
bytes. The decision between case ¢ and  + 1 can be done
faster than the general case.

This is possible to do, since each virtual instruction
knows the number of bits to extract from rd, it thus knows

approximately the number of bytes to load after its em-
ulation. Indeed, suppose that a virtual instruction uses
b < w—7 bits, including its opcode. At the entry of its imple-
mentation there are between w and w—7 bits in rd, therefore
there are, after its emulation, between w —b and w —b—7
bits remaining in rd. So, there are between [(b—1)/8] and
1+ [(b—1)/8] bytes to load in rd. If b is a constant, which
is quite a common case in practice, it is possible to jump
to the proper root r, without any test. In the case where
b > w — 7, the virtual instruction itself has to load bytes
from memory, thus also knows, after its emulation, the ex-
act number of bytes to load. Note that no dynamic test is
done to verify between the two cases, if b is a constant. It
is hardcoded in the implementation of the interpreter.

The advantage of this method is a slightly bigger inter-
preter to implement the roots, and a more complex imple-
mentation. But this second point is easily overcome with an
automatic generation of decoders and interpreters as done
in this work.

6.3 Conditional form (Form-c)

In this form, there is a verification of the number of bits in rd
at the root of the decoder. Memory is accessed, at the root,
if and only if nb_rd is under Imax, the longest opcode. This
ensures that the decoder does not have to access memory
while decoding an opcode. If it is under lmax, as many as
possible bytes from memory are merged to rd. For example,
if Imax = 14, w = 32, and nb_rd= 6, three bytes are loaded
and merged to rd. In a way, access to memory is delayed as
much as possible.

The advantage of this method is a reduced number of
merging operations to rd. This shows up in the experimental
results.

The disadvantage is that we can no longer suppose, at
the entry of the implementation of a virtual instruction, that
there are between w — 7 and w bits in rd. If the virtual
instruction uses more than Imax bits, it is necessary to verify
if there are enough bits in rd to access the operands. This
case occurs less frequently in form-b since there are w — 7
bits in rd after decoding the opcode (assuming the implicit
lmax < w — 7). Furthermore, the code of the interpreter
is larger since more virtual instructions as to implement its
own access to memory.

7 Experimental Results

For the experimental results in a realistic setting we use a
Java virtual machine applied on ten benchmarks [1] and the
entire JDK 1.0.2 library. We use a set of synthetic bench-
marks to demonstrate the worst scenarios. We also suc-
cinctly report the results of our approach applied to the
Scheme language.

For all experiments two processors are used: a Pentium |l
running Linux and a Sparc Ultra-1 running SunOS 5.6 with
respectively 32KB and 1MB level 1 cache. All C programs
were compiled using gcc version 2.8.1 for SunOS and ver-
sion 2.91.66 for Linux with the same optimizing parameter,
namely -03.

7.1 Java benchmarks

To demonstrate our approach in a realistic setting we use
the Harissa's implementation [20] of the Java Virtual Ma-
chine (JVM): most virtual instructions’ implementation are



Benchmark Absolute Time Relative Time Compression| Size of
Uncompressed Compressed Factor of |JVM code
Pentium SPARC Pentium SPARC JVM Code | in bytes
Cr,=7 Ck,=10|Ck,=7 Ck,=10
NumericSort 2.75 3.99| 1.11 1.05 1.21 1.03 56.4% 773
StringSort 7.68 10.35| 1.08 1.02 1.20 1.03 56.5% 1541
BitfieldOps 5.11 6.21| 1.42 1.32 1.43 1.27 65.8% 833
FPemulation 3.82 5.29| 1.25 1.17 1.31 1.15 67.0% 3724
Fourier 1.83 2.24| 1.30 1.24 1.44 1.24 64.7% 640
Assignment 1.49 2.42| 1.02 0.97 1.22 1.02 60.1% 1634
IDEAencryption 5.40 6.46| 1.44 1.33 1.38 1.09 64.2% 1800
Huffman 2.50 3.98| 1.11 1.09 1.23 1.09 60.7% 1395
NeuralNet 27.8  46.64| 1.03 0.99 1.13 1.03 51.6% 7467
LUdecomposition 3.29 4.60| 1.09 1.03 1.16 0.98 59.2% 1602
Average 1.18 1.12 1.27 1.09 58.8%

Table 3: Relative speed and compression factors of Java benchmarks with modified Harissa JVM.

Pentium SPARC
M M- M3 M1 M. M3
0.38 0.45 0.81 2.13 2.56 5.08
MP;, MP, MP3 MP; MP, MP3
0.40 0.49 0.85 2.32 2.83 3.76

Table 4: Absolute time, in seconds, to execute uncompressed programs, based on Zipf-20.

| Decoder Machine; Machine, Machines |

Pentium

a b c a b c a b c

kr =4,Ls,Le 181 1.76 152|219 164 148 | 1.38 1.07 0.96

kr =5, Lg 1.60 1.71 1.47 | 213 1.64 155|132 0.99 0.96

kr=6 1.60 1.58 1.34 | 208 149 142|131 095 0.90
SPARC

a b c a b c a b c

kr=4,Ls,Leg 2.77 161 152 |2.04 160 1.39|1.09 0.99 0.97

kr =5, Lg 277 151 143|250 142 1.35|1.02 0.91 0.88

kr = 239 1.63 121|212 1.23 1.18 | 0.93 0.81 0.78

| Decoder MachineP; MachineP, MachineP; |

Pentium

a b c a b c a b c

kr =4,Ls,L¢ 180 1.62 1.47 | 157 155 1.38 |1.37 1.22 1.18

k- =5, Lg 1.67 1.62 1.44 | 157 153 140|134 120 1.14

kr =6 1.70 1.45 130|146 141 126|125 1.10 1.14
SPARC

a b c a b c a b c

kr =4,Ls,Le 2.06 1.59 155 | 1.91 151 1.44 | 1.70 141 1.35

k- =5, Lg 220 142 137|176 137 134|154 130 1.25

kr =6 1.90 129 1.16 | 160 1.27 1.16 | 146 1.19 1.14

Table 5: Relative time to execute
memory access forms, and on two processors.

compressed programs, based on Zipf-20,

for six virtual machines, three



unchanged but branching instructions must be modified to
branch on non-byte boundaries. Harissa implementation
uses a C switch statement to decode bytecoded instruc-
tions. All cases of this switch are transformed into C macro-
instructions and are used by the canonical decoder to imple-
ment each instruction in the JVM machine for compressed
code. The switch is removed and replaced by a decoder
automatically generated from our tool.

Table 3 presents the timing results and the compres-
sion factors of bytecodes for the BYTEmark Java bench-
marks [1]. These are moderate size benchmarks suited to
evaluate speed of JVM implementations. The compression
factor is the length of compressed code divided by the un-
compressed code (bytecode). It takes into account the com-
pression of opcodes, the compact operands, and the use of
macro-instructions.

The opcodes are Huffman encoded using frequencies of
instructions in over four hundred classes of classes.zip
from JDK 1.0.2. So, these opcodes accomodate a large num-
ber of JVM classes. The shortest opcode has three bits and
the longest opcodes have twelve bits. Forty of the exist-
ing instructions were duplicated but with shorter parameter
fields resulting in a 241 instruction JVM machine. This ex-
tension was done automatically by our tool to generate vir-
tual instruction sets from a sample of programs [15, 16]. The
sole choices of macro-instructions and parameter lengths
were done to better compress the classes and not for speed.
All class files for the BYTEmark benchmarks, including
all libraries in classes.zip, are compressed based on the
new Huffman opcodes, the new formats, and the macro-
instructions. For classes.zip, a 60.9% compression factor
is obtained and an overall average of 58.8% for the bench-
marks.

We use memory access form-c with two decoders having
the following structures: 1) k. = 7, five nodes of type 2,
namely Lg_12, and three nodes of type 3, all directly below
the root; 2) k. = 10, two nodes of type 2, namely Lio—11,
and one node of type 3.

The SPARC processor shows the best average slowdown
of 9.3% for k. = 10. One advantage of the SPARC is a
larger number of registers available compared to the Pen-
tium. The overall speed is sensitive to register availability,
since the interpreter frequently accesses the variables rd, pc,
and nb_rd. These must be kept in registers to have good
performance. The Pentium code reveals that not enough
registers are available to do that.

The worst speed results are the Fourier and Bitfieldops
benchmarks. It is due to the frequent execution of instruc-
tions having long opcodes and small granularities. Some of
them are floating-point virtual instructions, not statically
frequent in classes.zip. They also does not access ob-
ject fields as frequently as the other benchmarks. Since the
getfield and putfield have a moderate granularity, they
increase execution time compared to decoding.

On the other hand Assignment, StringSort, NeuralNet,
NumericSort, and LUdecomposition show a small slowdown.

The overall results show the practicality of the approach
where even half the benchmarks have a 40% reduction in
size with a negligible slowdown.

7.2 Synthetic benchmarks

The Java benchmarks demonstrate the applicability of the
approach in a realistic setting. On the other hand, for three
important aspects, we think that synthetic benchmarks can

answer some questions without the complexity of the JVM
instruction set. First, the JVM implementation is fairly
complex and raises the question of hidden overhead by the
emulation of the virtual instructions. Second, the statistical
distribution of instructions in the benchmarks and the JDK
libraries might be skewed favorably towards our approach.
Finally, the extraction of parameters has an impact on the
speed of interpretation, so that the distribution of operand
lengths is an important factor to calibrate. Therefore, we
also present synthetic benchmark timings, where the fre-
quency of instructions, their granularity, and their operand
lengths are precisely specified.

For the synthetic benchmarks, we use six virtual ma-
chines of different granularity. These different granularities
allow better measurement of decoding overhead. They all
have twenty instructions, without parameter for the first
three machines, but for the last three machines, six instruc-
tions have a parameter of length 2, 2, 3, 4, 5 and 7 bits. The
opcodes are encoded using zipf-20 probabilities.

In the first machine, all twenty virtual instructions add
one to one of twenty counters (c;); in the second machine
each instruction does two additional dummy integer opera-
tions; in the third one, each instruction does two additional
memory accesses to simulate a dummy stack. Clearly, the
granularity of the instructions are fairly small in machine
1 and it increases slowly upto machine 3. Machines 4 to 6
have parameters and do the same work as machines 1 to 3
respectively, but six instructions have parameters and add
them to their own counter ¢;. For all machines, the first in-
struction stops the execution when counter ¢; exceeds 4-105.
‘We use the same program for the six machines: it is a se-
quence of the twenty instructions, from instruction 1 to 20,
performing a loop of 4-10° iterations; that is the last instruc-
tion does a jump to the first instruction. These programs
are compressed using the opcodes generated by the zipf-20
probabilities. Three decoders are applied on all six machines
executed on two host processors.

Another interpreter was used to decode the uncom-
pressed form of the same programs. In these cases the pro-
grams are bytecoded, using one byte for an opcode and, if
applicable, two bytes for an operand. The decoding is done
by performing a computed branch to the virtual instruction
using the value of the opcode as an index on a vector of
adresses. The virtual instruction loads its operands, does
the emulation and jumps to the beginning of the decoding
cycle.

Table 4 presents the absolute time in seconds of the ex-
ecution of the uncompressed programs. Table 5 presents
the timing results of executing the compressed programs,
relative to the uncompressed ones. First, we can see that
the memory access form is important. If only form-a were
used, the results would be disappointing. Even in the case
of k, = 6, which completely decodes all opcodes in one step,
the slowdown is at least 60% for all machines on all proces-
sors. The two other forms are clearly superior. Form-c is
very often faster on Pentium and SPARC for the machines
without parameters; but on some cases it is not. We con-
clude that the two forms are close enough in performance
to keep them both available for the designer of the virtual
machine. And since form-b generates more compact inter-
preters there is an informed compromise to make.

As expected, the best results are obtained for machine
3, since the instruction granularities hide some overhead of
decoding. In particular, on Pentium and SPARC there is
an acceleration for the parameterless instructions. This is



due to the reduction in memory accesses and extraction of
operands. With k., = 6, decoding is done in one step, and
most often the next opcode is in rd, which is, in these bench-
marks, a processor register.

In conclusion, from this experiment, we can conclude
that even with virtual instructions doing almost no work,
as in machine 1, the decoding itself is around a 25% over-
head (as in form-c used with a k. = 6 decoder). This is
an extreme artificial setting to openly show the worst sce-
nario. On the other hand, if we have instructions with no
parameter and enough granularity, a speed up can be ob-
served. This experiment also shows that the form of access
is important, since the obvious form-a is clearly slower and
should not be used in practice. The form-b and form-c pro-
vide a compromise between speed and space, where form-c
is faster but taking up more space.

7.3 Scheme language

Further experimental results for the Scheme language have
been reported in [15]. These results also show that decoding
of compressed virtual instructions is not a substantial over-
head for well tailored Scheme systems. It also shows that
our general technique creates an encoding clearly more com-
pact, by a factor of two in some cases, than a hand crafted
virtual instruction set for Scheme.

7.4 Summary of the experiments

In conclusion, for Java, the average compression factor is
around 60% for 400 classes of the JDK 1.0.2 and the ten
benchmarks with a slowdown of less than 1% for every 1%
decrease in size. For half the benchmarks, the slowdown is
hardly noticeable with a decrease in size of 40%. This shows
the high practicality of the approach. The synthetic bench-
marks shows the general expectation of graceful degradation
of speed with decreasing decoder size. The Scheme results
demonstrate that although the method of compression is
very general, it can achieve as good results as a well con-
ceived design of a bytecoded virtual machine tended solely
for the compactness of one language.

8 Related Work

Decoding of Huffman encoded instructions has also been
studied at the hardware level by several researchers [14, 17,
3]. They usually decompress between the memory and the
instruction cache. They do not use fast decoding methods
applicable at the software level.

Ernst et al. [8] compress native code, using macro-
instructions and fixing parameters, by generating a tailored
VM from the intermediate form emitted by a C compiler. It
is similar to Proebsting’s [22] work. Their technique is com-
petitive with gzip on native code. But it is not reported if
the compression obtained is due to the use of the VM or the
compression of the virtual program. Moreover, no timing of
the execution of compressed programs is reported.

Cooper and MclIntosh [6] reduce program size by replac-
ing particular repetitive sequences of instructions with a
branch. The code saving is on average 5%. Cooper et al. [7]
searches, using a genetic algorithm technique, a combination
of compilation techniques to reduce code size. These works
differ from ours since they are done on native code and no
Huffman encoding and argument compacting are applied.

Pugh [23] applies several techniques to compress Java
class files. This work differs from ours since decompression
must be performed before execution. The work of Rayside
et al. [24] also applies to class files, but these techniques does
not apply to the bytecode itself.

Hoogerbrugge et al. [9] uses a similar strategy of the
Thumb and MIPS16 processors [27, 13] to compress some
parts of the program. But instead of applying compression
on the binary executable, they automatically generate a tai-
lored virtual machine for the intermediate form of the C
program. When the intermediate form is translated into a
virtual program, frequent sequences of virtual instructions
are replaced by one opcode. This particular technique gives
a 30% reduction in size compare to the virtual program. Our
work is complementary by further reducing the size of the
virtual programs using compressed virtual instructions.

Lucco [18] applies compression to x86 native code using
a dictionary technique to keep track of repeated short se-
quences of instructions. At least one decompression must
be performed before the execution of a basic block, requir-
ing a buffer space to keep the decompressed copy. Our work
differs as we apply it to the context of virtual machines and
directly decode compressed instructions.

Raeder et al. [5] compresses bytecode by replacing repet-
itive sequences of JVM instructions by macro-instructions
but without further compression.

The compression of bytecodes for virtual machines was
addressed by Wilner for the SDL language on Burroughs
B1700 [28]. It uses Huffman codes but all decoding was
done at the microcode level, bit by bit. This is much too
slow at the software level.

To our knowledge, no previous work has been published
analyzing fast Huffman decoders, at the software level, of
compressed virtual instructions.

9 Summary

This work has shown that decoding canonical Huffman en-
coded opcodes, at the software level, in the context of virtual
instructions, can be done efficiently. The speed of decoding
increases as the size of the decoder. A general structure
of compact decoders has been shown effective, permitting a
gradual compromise between speed of decoding and space
constraint.

An algorithm to automatically generate such decoders
becomes indispensable if the instruction set is automati-
cally constructed. We have shown an efficient algorithm
to construct compact optimum decoders given a memory
constraint.

Huffman decoding is not the only major difficulty for
quickly interpreting compressed virtual instructions. The
access to memory is also very important. Two techniques
were shown to achieve good results.

The efficiency of the decoders have been demonstrated on
simple synthetic benchmarks, on the Scheme language, and
on Java benchmarks showing an average slowdown ranging
from 9% to 27% depending on the processor and the size
of the decoder used with an average reduction in size of
40%. Actually, for half the benchmarks there is no notice-
able slowdown with a reduction in size of 40%. This has been
applied to more than 400 classes of the JDK 1.0.2 library.
This shows the practicality of the approach.

To our knowledge, no previous work has studied direct
interpretation, at the software level, of compressed virtual



instructions, where opcodes are Huffman encoded.
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