
1

Appendix for:

“Efficient correlation matching for fitting

discrete multivariate distributions with

arbitrary marginals and normal-copula

dependence”

User’s guide for Java classes with example

Overview

This document describes a Java implementation of correlation matching algorithms proposed
in [1] for the situation where one wants to use the NORTA method to fit a multivariate dis-
tribution with discrete marginals. The four different algorithms discussed in [1] are imple-
mented in four subclasses of an abstract class named NortaInitDisc. This software makes
use of the SSJ library [2]. An example of how to use it is given at the end of this document.

The NORTA method is an approach for modeling dependence in a finite-dimensional
random vector X = (X1, . . . , Xd) with given univariate marginals via normal copula that
fits the rank or the linear correlation between each pair of coordinates of X. The standard
normal distribution function is applied to each coordinate of a vector Z = (Z1, . . . , Zd) of
correlated standard normals to produce a vector U = (U1, . . . , Ud) of correlated uniforms over
[0, 1]. Then X is obtained by applying the inverse of each marginal distribution function to
each coordinate of U . The fitting requires finding the correlation between the coordinates of
each pair of Z that would yield the correlation between the coordinates of the corresponding
pair of X. The step of finding the correlation matrix of Z, given the correlation matrix of X
and the marginal distributions, constitutes the NORTA initialization step. In [1], we present
a detailed analysis of the NORTA method and root-finding problem when the marginal
distributions are discrete.

With the NORTA method, we have the following representation:

Xl = F−1
l (Φ(Zl)), l = 1, . . . , d,

where Φ is the standard normal distribution function and F−1
l (u) = inf{x : Fl(x) ≥ u} for

0 ≤ u ≤ 1, which is the quantile function of the marginal distribution Fl, l = 1, . . . , d.

For the bivariate case (d = 2), we have a vector X = (X1, X2) and the two marginal dis-
tributions F1 and F2 with means and standard deviations µF1 = E[F1(X1)], µF2 = E[F2(X2)],
σF1 = var(F1(X1))

1/2 and σF2 = var(F2(X2))
1/2, respectively. For this case, NORTA initial-

ization is reduced to the problem of finding the correlation ρZ = Corr(Z1, Z2).

2

In this document, we present a set of Java classes for NORTA initialization in the bivariate
case given the rank correlation and two discrete marginal distributions. We have:

rX(ρ) = Corr(F1(X1), F2(X2)) =
gr(ρ)− µF1µF2

σF1σF2

, (1)

where:

gr(ρ) = E [F1(X1)F2(X2)]

=

∫ ∞

−∞

∫ ∞

−∞
F1{F−1

1 [Φ(x1)]}F2{F−1
2 [Φ(x2)]}φρ(x1, x2)dx1dx2, (2)

where φρ is the bivariate standard normal density. Then, for a given correlation rX , we use
an algorithm of root-finder to find the corresponding correlation ρZ that verifies

fr(ρZ) = gr(ρZ)− rXσF1σF2 − µF1µF2 = 0. (3)

When the marginal distributions are continuous, the root-finding problem is easy to solve
when we use the rank correlation. We have an analytic solution for (2) and the relation in
(1) becomes:

rX(ρ) = (6/π) arcsin(ρ/2).

3

NortaInitDisc

This abstract class defines the algorithms used for NORTA initialization when the marginal
distributions are discrete. Four algorithms are supported for now, and they are defined as
subclasses of the class NortaInitDisc.

For two random variables X1 and X2, and their two marginal distributions F1 and F2,
respectively, we specify the rank correlation rX = Corr(F1(X1), F2(X2)), the parameters of
the marginal distributions and a parameter for truncation tr. For the correlation matching,
we must have finite supports for the two distributions. Then if the support of each marginal
is infinite, we have to upper-bound it at the quantile of order tr. For example, if the
marginals have their support points in [0, +∞), the software will truncate to [0, F−1

l (tr)], for
l = 1, 2. The parameter tr must to be given by the user, depending on the type of the two
distributions. If the marginals have finite supports, one can simply give tr = 1.

Each algorithm NI1, NI2a, NI2b and NI3 can be used to calculate the corresponding
correlation ρZ = Corr(Z1, Z2), where Z1 and Z2 are standard normal random variables.
These subclasses implement the specific methods for NORTA initialization presented in [1].

Each type of algorithm should be defined as a subclass of NortaInitDisc. Each subclass
must implement the method computeCorr which returns the solution ρZ . When executing
this method, the subclass may call the methods integ and deriv, depending on the type of
algorithm. For example, the subclass NI1 calls only the method integ, since the algorithm
do not use the derivative [1]. Each subclass must also call the method computeParams which
is executed immediately before the beginning of the root-finder algorithm.

When creating a class representing an algorithm, the toString method can be called to
display information about the inputs.

public abstract class NortaInitDisc

Constructor

public NortaInitDisc (double rX,
DiscreteDistributionInt dist1,
DiscreteDistributionInt dist2,
double tr)

Constructor with the target rank correlation rX, the two discrete marginals dist1 and
dist2 and the parameter for the truncation tr. This constructor can be called only by the
constructors of the subclasses.

4 NortaInitDisc

Methods

public abstract double computeCorr();

Computes and returns the correlation ρZ . Every subclass of NortaInitDisc must implement
this method.

public void computeParams ()

Computes the following inputs of each marginal distribution:

- The number of support points m1 and m2 for the two distributions.

- The means and standard deviations of F1(X1) and F2(X2), respectively.

- The vectors p1[i], p2[j], z1[i] = Φ−1(f1[i]) and z2[j] = Φ−1(f2[j]), where f1[i] and f2[j], for
i = 0, . . . ,m1 − 1; j = 0, . . . ,m2 − 1, are the cumulative probability functions, and Φ is the
standard normal distribution function.

Every subclass of NortaInitDisc must call this method.

public double integ (double r)

Computes the function

gr(r) =
m1−2∑
i=0

p1,i+1

m2−2∑
j=0

p2,j+1Φ̄r(z1,i, z2,j), (4)

which involves the bivariate normal integral Φ̄r(x, y) =
∫∞
x

∫∞
y φr(z1, z2)dz1dz2. Method

barF of class BiNormalDonnellyDist (from package probdistmulti of SSJ [2]) is used to
compute Φ̄r(x, y), with m1, m2, and the vectors p1[i], i = 1, . . . ,m1−1; z1[i], i = 0, . . . ,m1−2;
p2[j], j = 1, . . . ,m2 − 1; z2[j], j = 0, . . . ,m2 − 2. The correlation parameter r must be in
[−1, 1]. This method may be called by subclasses of NortaInitDisc.

public double deriv (double r)

Computes the derivative of gr, given by

g′r(r) =
m1−2∑
i=0

p1,i+1

m2−2∑
j=0

p2,j+1φr(z1,i, z2,j), (5)

where φr is the bivariate standard binormal density. The method uses m1, m2, and the
vectors p1[i], i = 1, . . . ,m1 − 1; z1[i], i = 0, . . . ,m1 − 2; p2[j], j = 1, . . . ,m2 − 1; z2[j], j =
0, . . . ,m2 − 2. The correlation parameter r must be in [−1, 1]. This method may be called
by subclasses of NortaInitDisc.

5

NI1

Extends the class NortaInitDisc and implements the algorithm NI1. It uses an algorithm
based on Brent method for root-finding, which combines root-bracketing, bisection and in-
verse quadratic interpolation. It calls the method integ to compute the function gr given in
(4). The search should be done in the interval [−1, 0] if rX ∈ [−1, 0], or [0, 1] if rX ∈ [0, 1].
At each iteration, the algorithm halves the interval length and uses an accuracy ε to find the
root ρZ of equation (3).

public class NI1 extends NortaInitDisc

Constructor

public NI1 (double rX,
DiscreteDistributionInt dist1,
DiscreteDistributionInt dist2,
double tr,
double tolerance)

Constructor with the target rank correlation rX, the two discrete marginals dist1 and dist2,
the parameter for truncation tr (see the constructor of class NortaInitDisc) and the specific
parameter ε = tolerance defined above for the algorithm NI1.

Methods

public double computeCorr ()

Computes and returns the correlation ρZ using the algorithm NI1.

6

NI2a

Extends the class NortaInitDisc and implements the algorithm NI2a. It uses the derivative,
so it calls the method deriv to compute the function g′r given in (5). The double integration
in (2) is simplified and only a simple integration is used. The algorithm uses numerical
integration with Simpson’s rules over subintervals given by the finite sequence ρk = ρ0 +2kh,
for k = 0, 1, ...,m, where h is a fixed step size and m is such that 1−2h < ρm < 1. The initial
point is chosen as ρ0 = 2 sin(πrX/6). The integration is done between ρ0 and ρm = ±(1− δ),
or between ρ0 and 0, depending on the sign of rX and on whether the root is to the left, or
to the right of ρ0. So depending on the case, the worst-case integration distance will be set
to d = |1− δ − ρ0| or d = |ρ0|. Then, the step size is readjusted to h∗ = d/(2m), where d is
the maximum number of steps (iterations) calculated based on the pre-defined step size h, so
m = dd/(2h)e. The algorithm stops at iteration k if the root is in a subinterval [ρk−1, ρk], and
a quadratic interpolation is used to compute the solution. For this, the method interpol

of class Misc (from package util of SSJ [2]) is used.

public class NI2a extends NortaInitDisc

Constructor

public NI2a(double rX,
DiscreteDistributionInt dist1,
DiscreteDistributionInt dist2,
double tr,
double h,
double delta)

Constructor with the target rank correlation rX, the two discrete marginals dist1 and dist2,
the paramater for the truncation tr (see the constructor of class NortaInitDisc), and the
specific parameters h and δ = delta for the algorithm NI2a, as described above.

Methods

public double computeCorr ()

Computes and returns the correlation ρZ using the algorithm NI2a.

7

NI2b

Extends the class NortaInitDisc and implements the algorithm NI2b. It is a variant of
NI2a. It uses the derivative, so it calls the method deriv to compute the function g′r given
in (5) and uses numerical integration with Simpson’s rules as well. But the integration grid
is either in the interval [0, 1−δ] or [−1+δ, 0], depending on the sign of rX . Here the number
of subintervals of integration is fixed to m and the algorithm stops at iteration k if the root
is in subinterval [ρk−1, ρk], and a quadratic interpolation is used to compute the solution.
For this, the method interpol of class Misc (from package util of SSJ [2]) is used.

public class NI2b extends NortaInitDisc

Constructor

public NI2b(double rX,
DiscreteDistributionInt dist1,
DiscreteDistributionInt dist2,
double tr,
int m,
double delta)

Constructor with the target rank correlation rX, the two discrete marginals dist1 and dist2,
the parameter for the truncation tr (see the constructor of class NortaInitDisc), and the
specific parameters m and δ = delta for the algorithm NI2b, as described above.

Methods

public double computeCorr ()

Computes and returns the correlation ρZ using the algorithm NI2b.

8

NI3

Extends the class NortaInitDisc and implements the algorithm NI3. It uses the function gr

and its derivative g′r, so it calls the methods integ and deriv, given in (4) and (5) and uses
an adapted version of the Newton-Raphson algorithm. At any iteration, if the solution falls
outside the search interval, the algorithm uses bisection and halves the interval length to
guarantee convergence. The initial solution is taken as ρ0 = 2 sin(πrX/6), and then at each
iteration k, fr(ρk) and f

′
r(ρk) are calculated and a solution is computed by the recurrence

formula:

ρk+1 = ρk −
fr(ρk)

f ′
r(ρk)

.

The algorithm stops at iteration k if |ρk−1− ρk| ≤ ε. The function fr is the one given in (3).

public class NI3 extends NortaInitDisc

Constructor

public NI3 (double rX,
DiscreteDistributionInt dist1,
DiscreteDistributionInt dist2,
double tr,
double tolerance)

Constructor with the target rank correlation rX, the two discrete marginals dist1 and dist2,
the parameter for the truncation tr (see the constructor of class NortaInitDisc), and the
specific parameter ε = tolerance for the algorithm NI3, as defined above.

Methods

public double computeCorr ()

Computes and returns the correlation ρZ using algorithm NI3.

NI3 9

Example

In this example, we consider two random variables X1 and X2 with negative binomial
marginals, denoted by NegBin(s, p). In our example, the parameters (s, p) for X1 and X2,
respectively, are: s1 = 15.68, p1 = 0.3861, s2 = 60.21 and p2 = 0.6211. We want to calculate
the correlation ρZ for a target rank correlation rX = 0.43. Since the negative binomial has
an unbounded support, we set the upper bound points of each support at the quantile of
order tr = 1 − 10−6, so that the number of support points ml = F−1

l (1 − 10−6) + 1, for
l = 1, 2.

The Java program uses the class DiscreteDistributionInt of package probdist from
SSJ, to specify the two discrete marginal distributions. Each of the four subclasses NI1,

NI2a, NI2b and NI3 are called for each algorithm to compute the correlation ρZ , so we can
compare the results.

Listing 1: Example with correlated negative binomial distributions.

import umontreal.iro.lecuyer.probdist.*;

public class ExampleNortaInitDisc
{

public static void main (String[] args) {
final double rX = 0.43; // Target rank correlation rX
final double tr = 1.0 - 1.0e-6; // Quantile upper limit

// Define the two marginal distributions
DiscreteDistributionInt dist1 = new NegativeBinomialDist(15.68, 0.3861);
DiscreteDistributionInt dist2 = new NegativeBinomialDist(60.21, 0.6211);

NI1 ni1Obj = new NI1(rX, dist1, dist2, tr, 1.0e-4);
System.out.println("Result with method NI1: rho_Z = "

+ ni1Obj.computeCorr());
NI2a ni2aObj = new NI2a(rX, dist1, dist2, tr, 0.005, 1.0e-4);
System.out.println("Result with method NI2b: rho_Z = "

+ ni2aObj.computeCorr());
NI2b ni2bObj = new NI2b(rX, dist1, dist2, tr, 5, 1.0e-4);
System.out.println("Result with method NI2a: rho_Z = "

+ ni2bObj.computeCorr());
NI3 ni3Obj = new NI3(rX, dist1, dist2, tr, 1.0e-4);
System.out.println("Result with method NI3: rho_Z = "

+ ni3Obj.computeCorr());
}

}

10 REFERENCES

Listing 2: Results of the program ExampleNortaInitDisc.java

Result with method NI1: rho_Z = 0.44691
Result with method NI2b: rho_Z = 0.44685
Result with method NI2a: rho_Z = 0.44683
Result with method NI3: rho_Z = 0.44691

References

[1] A. N. Avramidis, N. Channouf, and P. L’Ecuyer. Efficient correlation matching for
fitting discrete multivariate distributions with arbitrary marginals and normal-copula
dependence. Submitted, 2006.

[2] P. L’Ecuyer. SSJ: A Java Library for Stochastic Simulation, 2004. Software user’s guide,
Disponible http://www.iro.umontreal.ca/~lecuyer.

http://www.iro.umontreal.ca/~lecuyer

	NortaInitDisc
	NI1
	NI2a
	NI2b
	NI3

