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C.P. 6128, Succ. Centre-ville
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Abstract

We study the convergence behavior of a randomized quasi-Monte Carlo (RQMC) method for the sim-
ulation of discrete-time Markov chains, known as array-RQMC. The goal is to estimate the expectation
of a smooth function of the sample path of the chain. The method simulates n copies of the chain in
parallel, using highly uniform point sets randomized independently at each step. The copies are sorted
after each step, according to some multidimensional order, for the purpose of assigning the RQMC points
to the chains. In this paper, we discuss and compare different ways of realizing this sort and assignment,
and report empirical experiments on the convergence rate of the variance as a function of n. In these
experiments, the variance reduction with respect to standard Monte Carlo is substantial and we observe
(approximately) an O(n−2) convergence for the variance. On the other hand, for most standard discrep-
ancies, the mean square discrepancy between the empirical and theoretical distributions of the states at
any given step converges at a slower rate, approximately O(n−3/2) in some examples.

Résumé

Nous étudions la convergence d’une méthode quasi-Monte Carlo randomisée (RQMC), appelée array-

RQMC, pour la simulation de châınes de Markov en temps discret. Le but est d’estimer l’espérance
mathématique d’une variable aléatoire définie comme une fonction de la trajectoire de la châıne. La
méthode simule n copies de la châıne en parallèle, en utilisant des ensembles de points hautement uni-
formes randomisés indépendamment à chaque étape. Les copies sont triées après chaque étape, selon un
ordre multidimensionel choisi, afin de coupler les n points RQMC avec les n châınes. Dans cet article, nous
discutons et comparons différentes façons de réaliser ce tri et cette affectation, et rapportons les résultats
d’expériences numériques sur le taux de convergence de la variance de l’estimateur en fonction de n. Dans
nos expériences, la réduction de variance par rapport à Monte Carlo standard est substantielle et nous
observons (approximativement) un taux de convergence de O(n−2) pour la variance. Par ailleurs, pour
les définitions les plus usuelles de la discrépance, le carré moyen de la discrépance entre la loi théorique
et la loi empirique des états de la châıne à une étape donnée semble converger plus lentement, à un taux
de O(n−3/2) dans nos exemples.

Acknowledgments: This research has been supported by NSERC-Canada grant No. ODGP0110050
and a Canada Research Chair to the first author, and an NSERC scholarship to the third author.
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1 Introduction

Quasi-Monte Carlo (QMC) and randomized QMC (RQMC) methods can be quite effective to estimate an

integral when the integrand is reasonably smooth and has low effective dimension [9, 15, 18]. But when we

simulate a system (modeled as a Markov chain) that evolves over several time steps, and the integrand is a

function of the sample path, the dimension is typically very large, and the effective dimension can also be
large. RQMC is often not very effective in this type of situation.

A different type of QMC and RQMC methodology, whose RQMC version is called array-RQMC, has

been introduced and developed in [7, 8, 12, 13]. This array-RQMC algorithm simulates n copies of the chain

in parallel. It advances all copies by one step at each iteration, using an RQMC point set of cardinality

n to generate the transitions of these chains at the given step, using a clever matching of the RQMC
points to the chains. This matching is done by sorting both the chains and the points according to their

successive coordinates. The idea is to induce negative dependence between the n copies, so that the empirical

distribution of the n states at any given step provides a much more accurate approximation of the true

distribution than if the n copies were simulated independently. Empirical experiments have shown that this
can improve the simulation efficiency for Markov chains simulated over several hundred steps, sometimes by

factors of over 1000. Potential applications include queueing systems, option pricing in finance, reliability

and risk assessment models, image generation in computer graphics, and more [1, 11, 13, 19].

The aim of this paper is to examine and compare alternative ways of matching the RQMC points to the

chains at each step, and report empirical experiments on the convergence rate of the variance and of the
discrepancy between the empirical and theoretical distribution of the states, as a function of n.

The remainder is organized as follows. The Markov chain setting and the estimation problems are defined

in Section 2. In Section 3, we recall the array-RQMC algorithm and discuss possibilities for bounding its

convergence rate. In Section 4, we examine how to map the chains to the RQMC points at each step.

Empirical investigations of the convergence rate are reported in Section 5. A conclusion is given in Section 6.

2 A Markov chain setting

We consider a Markov chain model with state space X ⊆ R
ℓ, whose state evolves according to the stochastic

recursion

X0 = x0, Xj = ϕj(Xj−1,Uj), j ≥ 1,

where U1,U2, . . . are i.i.d. uniform random variables over the unit hypercube (0, 1)d. We want to estimate

µ = E[Y ] where Y =

τ
∑

j=1

cj(Xj)

and τ is a random stopping time with respect to the filtration generated by F{(j,Xj), j ≥ 0}. We also

assume that cj(Xj) = 0 for j > τ .

To estimate µ by ordinary Monte Carlo (MC), we proceed as follows. For each i, i = 0, . . . , n − 1, we
generate a sample path of the chain via

Xi,j = ϕj(Xi,j−1,Ui,j), j = 1, . . . , τi,

where Ui,1, . . . ,Ui,τi
’s are i.i.d. uniform over (0, 1)d and τi is the realization of τ , and we compute Yi =

∑τi

j=1 cj(Xi,j), the realization number i of Y . These sample paths are independent. The MC estimator of µ
is then

µ̂n =
1

n

n−1
∑

i=0

Yi.
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For the classical RQMC method, let s = inf{s′ : P[τd ≤ s′] = 1} (which could be infinite) and put
Vi = (Ui,1,Ui,2, . . . ,Ui,s/d) (which is an infinite sequence if s = ∞). Let Pn = {V0, . . . ,Vn−1} ⊂ (0, 1)s

be an s-dimensional RQMC point set, defined as a point set with the following properties [9, 14, 16]: (a)

each point Vi has the uniform distribution over (0, 1)s, and (b) Pn has low discrepancy in some sense (whose

specific definition is left open). The RQMC estimator of µ is defined as

µ̂rqmc,n =
1

n

n−1
∑

i=0

Yi =
1

n

n−1
∑

i=0

τi
∑

j=1

cj(Xi,j) (1)

as before, where the Xi,j and τi are defined as in the MC estimator. One difficulty here is that the dimension

s of Pn can be very large, sometimes infinite.

3 The Array-RQMC Algorithm

With the array-RQMC method introduced in [12, 13], we simulate n chains in parallel, and use a d-dimensional

RQMC point set Pn at each step to advance all the chains by one step, while inducing global negative

dependence across the chains. The goal is that at each step j, the empirical distribution of the set of states

Sn,j = {X0,j, . . . , Xn−1,j} is a very accurate approximation of the theoretical distribution of Xj . We want
the discrepancy between these two distributions to be as small as possible, for a given measure of discrepancy

that needs to be chosen.

Discrepancies for the uniform distribution over the unit hypercube [0, 1)ℓ have been widely studied and

are known to provide error bounds on the integration error and on the variance. This suggests the following

strategy for defining a discrepancy and analyzing the convergence, under the assumption that Xj has a
continuous distribution. Define a bijection ψj : X → [0, 1)ℓ such that ψj(Xj) has the uniform distribution

over [0, 1)ℓ in the Markov chain model, and define

Dj = Dj(Sn,j) = Dj(X0,j , . . . , Xn−1,j)
def
= D(ψj(X0,j), . . . , ψj(Xn−1,j)),

whereD is a selected measure of discrepancy with respect to the uniform distribution over [0, 1)ℓ. One possible

(conceptual) way of defining ψj is as follows. Given Xj = (X
(1)
j , . . . , X

(ℓ)
j ), let U

(1)
j = F−1

j,1 (X
(1)
j ) where Fj,1

is the (cumulative) distribution function of X
(1)
j , then let U

(2)
j = F−1

j,2 (X
(2)
j | X

(1)
j ) where F−1

j,2 (· | X
(1)
j ) is

the distribution function of X
(2)
j conditional on X

(1)
j , and so on. Then put ψj(Xj) = Uj = (U

(1)
j , . . . , U

(ℓ)
j ).

When the distribution of Xj is not continuous, then this does not define a bijection, but one could still define

ψj by taking U
(1)
j as an arbitrary solution of Fj,1(U

(1)
j ) = X

(1)
j , and so on.

Suppose that a Koksma-Hlawka-type inequality holds for the discrepancy D together with the corre-

sponding measure of variation V (f) for functions f : [0, 1)ℓ → R [3]. This implies that if µj = E[cj(Xj)]
and

µ̂rqmc,j,n =
1

n

n−1
∑

i=0

cj(Xi,j),

the average cost at step j, then we have E[µ̂rqmc,j,n] = µj and

Var[µ̂rqmc,j,n] ≤ E[D2
j ] V 2(cj ◦ ψ

−1
j ). (2)

We would like to prove, most likely by induction on j, that

E[D2
j ] ≤ κjn

−α+ǫ, (3)

for any ǫ > 0, for some α ≥ 1, where κj does not depend on n and grows only very slowly (or not at all) with j.

From this, assuming that the cj ◦ ψ
−1
j have bounded variation, it would follow that Var[(Y0 + · · ·+ Yn−1)/n]

converges as O(n−α+ǫ). The key issue is then to have an algorithm that preserves the low mean-square
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discrepancy E[D2
j ] from one step to the next. This is the aim of the array-RQMC method, which we now

summarize.

For simplicity, we assume in the remainder of the paper (except in the examples at the end) that Xj is

a random variable uniformly distributed over [0, 1)ℓ, which we denote Xj ∼ U [0, 1)ℓ. This is equivalent to

always taking the image of the state by the transformation ψj and working in the transformed space. Roughly

speaking, at each step of the algorithm, we view E[D2
j ] as an (ℓ + d)-dimensional integral, with respect to

(Xj−1,Uj), and estimate it by RQMC. For this, we select an (ℓ + d)-dimensional low-discrepancy point set

Q̃n = {(w0, ũ0), . . . , (wn−1, ũn−1)},

where wi ∈ [0, 1)ℓ and ũi ∈ [0, 1)d, and we define a randomization of P̃n = {ũ0, . . . , ũn−1} with the following

property. If Pn = (U0, . . . ,Un−1) denotes (a realization of) the randomized version and if Qn is the version

of Q̃n in which P̃n is replaced by its randomized version Pn, then we must have: (a) each Ui is uniformly
distributed over (0, 1)d and (b) Qn has low discrepancy (in a sense to be defined). The algorithm simulates

(in parallel) n copies of the chain; it can be summarized as follows.

Array-RQMC algorithm:

For i = 0, . . . , n− 1, do Xi,0 = x0;
For j = 1, 2, . . . , until j > max0≤i<n τi {

Randomize P̃n afresh (independently of the previous

randomizations) into Pn = {U0,j , . . . ,Un−1,j};

For i = 0, . . . , n− 1, do Xi,j = ϕj(Xi,j−1,Ui,j);
Map the n chains to the n points, and renumber the chains

accordingly, so that Xi,j is “close” to wi for each i

(more on this later);

}

Estimate µ by the same average Ȳn = µ̂rqmc,n as in (1).

This can be replicated m times to estimate the variance and compute a confidence interval on µ. The

following is proved in [13]:

Proposition 1 (a) Ȳn is an unbiased estimator of µ and (b) the empirical variance of the m copies of Ȳn is

an unbiased estimator of Var[Ȳn].

A natural way of proving a bound of the form (3) would be as follows. Assume that D is defined via a

reproducing kernel Hilbert space (RKHS) [2, 3] and that V is the corresponding variation. Suppose that Qn

is defined so that

E[D2
(2)(Qn)] ≤ κ′n−α+ǫ (4)

for any ǫ > 0, where α ≥ 1, κ′ = κ′(ǫ) may depend on ǫ but not on n, and where D(2) is a discrepancy

defined over the (ℓ + d)-dimensional unit hypercube, with corresponding variation V(2). That is, the mean

square integration error of a function g : [0, 1)ℓ+d → R by Qn would be bounded by E[D2
(2)(Qn)] · V 2

(2)(g) if

V 2
(2)(g) is well defined.

Let X0,j−1, . . . , Xn−1,j−1 be the states at step j − 1 sorted by the selected mapping (we suppose that

ψj is the identity). We have Xi,j = ϕj(Xi,j−1, Ui,j). Define X̃i,j = ϕj(wi, Ui,j) for all i and let D̃j =
D(X̃0,j, . . . , X̃n−1,j) be the discrepancy of this set of states. By the RKHS property, D̃j is the integration

error for some worst-case function ξj of bounded variation V (ξj) <∞ by the point set {X̃0,j, . . . , X̃n−1,j}. But

this D̃j is also the integration error of the function gj = ξj ◦ϕj by Qn, which implies that E[D̃2
j ] = O(n−α+ǫ)

if V(2)(gj) <∞. Then we would need to show that E[D2
j ] also converges at this rate, which could presumably

be done by bounding E[D̃2
j −D2

j ] under an induction assumption of the form E[D2
j−1] ≤ κj−1n

−α+ǫ for some

constant κj−1 <∞. Induction on j would complete the proof. The problem is to find appropriate definitions

of D and D(2) such that the details can be filled up.
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We tried this with ℓ = d = 1, α = 2, and both D and D(2) defined as the L2-star discrepancy, motivated
by the fact that it has a very simple expression in one dimension, and its mean square converges is O(n−2+ǫ)

for good point sets. It is instructive to point out why this choice does not work. In this case, we have

D2(x0, . . . , xn−1) =
1

12n2
+

1

n

n−1
∑

i=0

(wi − xi)
2

where wi = (i+ 1/2)/n and 0 ≤ x0 ≤ x1 ≤ · · · ≤ xn−1, and [2]:

ξj(x) = −
1

n

n−1
∑

i=0

[

µ(X̃i,j) +B2((x− X̃i,j) mod 1) +B1(x)B1(X̃i,j)
]

,

for some (unimportant) function µ, and where B1 and B2 are the Bernoulli polynomials defined by B1(x) =

x− 1/2 and B2(x) = x2 − x+ 1/6. We also have

dξj(x)

dx
= −x+

1

n

n−1
∑

i=0

I[X̃i,j < x]

where I denotes the indicator function. This derivative is square integrable over (0, 1), so V (ξj) < ∞.
However, gj = ξj ◦ ϕj is a two-dimensional function and its variation V(2)(gj) can be finite only if its mixed

derivative with respect to the two coordinates is square integrable. But it is not, because the indicators in

the above expression are discontinuous in x, and the mixed derivative of gj involves the second derivative of

ξj . Therefore, gj does not have finite variation.

In our numerical experiments, the mean square L2-star discrepancy never converged at a rate near O(n−2)
even for the smoothest functions ϕj that we could try, except for the trivial cases where ϕj(Xj−1,Uj) depends

only on Xj−1 or only on Uj . The rates observed empirically were closer to O(n−3/2). On the other hand, in

many examples, we observed a convergence rate of O(n−2) for the variance.

4 Mapping the chains to the points

Recall that both the chain’s states and the points are assumed to be in [0, 1)ℓ. At each step, we want to select
a one-to-one mapping that assigns each state to a representative point that is close to it. If the corresponding

states Xi,j and points wi were identical, then µ̂rqmc,j,n would be exactly the same as a QMC estimator of µj

based on the point set Sn,j = {w0, . . . ,wn−1} ⊂ [0, 1)ℓ.

We consider the following way of mapping the chains to the points, called a multivariate sort [6, 1]. Select

some positive integers n1, . . . , nν such that ν ≥ ℓ and n1 · · ·nν = n. Sort the states (i.e., the chains) by
their first coordinate, in n1 packets of size n/n1. This means that any state in a given packet will have its

first coordinate smaller or equal to the first coordinate of any other state in the next packet. Then sort each

packet by the second coordinate, in n2 packets of size n/n1n2, and so on. When we reach coordinate ℓ, we

sort each packet in nℓ packets of size n/n1 · · ·nℓ by the last coordinate. If ν > ℓ, then at the next step we

sort each packet into nℓ+1 packets according to the first coordinate, and so on. As a special case of this, one
can take nj = 2 for all j, with n equal to a power of 2. This corresponds to splitting each packet of states in

two with respect to the next coordinate, and doing this for each coordinate in a round-robin fashion.

If ℓ is deemed too large, we can map the state space to a lower-dimensional space as follows. Define a

sorting function v : X → [0, 1)c, for c < ℓ, and apply the multivariate sort to the transformed points v(Xi,j),

in c dimensions. The function v should be selected so that two states mapped to nearby values in [0, 1)c

should be approximately equivalent in terms of the probability distribution of future costs when we are in

these two states. In [13], it was assumed that such a mapping was always used, with c = 1, so v uniquely

determined the sort, whence the appellation “sorting function.”
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Figure 1: A mapping with n1 = n = 16 in two dimensions
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Figure 2: A mapping with n1 = n1/2 = 4 in two dimensions
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Figures 1 and 2 illustrate the mappings obtained for two choices of n1, for an example with ℓ = 2 and

n = 16. The black dots represent the states of the chains, and the white dots represent the first 16 points of

the two-dimensional Sobol’ sequence. The lines indicate the mapping between the two sets of points.

In Figure 1, we see the case where n1 = n, which means that we sort according to the first coordinate

only. Here, the leftmost state is mapped to the leftmost point, the second leftmost state is mapped to the
second leftmost point, and so on.

Figure 2 shows the mapping with n1 = n1/2 = 4, for the same points. Here, we first sort both the points

and the states in four packets according to the first coordinate. The numbers from 1 to 4 indicate the packet

number in which each pair ended up in this first sort. Within each packet, the states are mapped to the

points according to the second coordinate.

In the more general (and realistic) case where the state space is not [0, 1]ℓ but R
ℓ (or a subset) and the

ψj cannot be computed explicitly, then a reasonable heuristic is to simply sort the states in the real space in

exactly the same way as in the unit hypercube. This is what we will do in our examples.
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5 Empirical investigations of the convergence rate

We now show how the mean square L2-star discrepancy E[D2
j ] and the variance behave as functions of j and

n, for small examples. All mean square discrepancies and variances were estimates from 100 independent

replications of the array-RQMC estimator.

Example 1 Consider a Markov chain defined over the real line by

Y1 = Z1, Yj = ρYj−1 + (1 − ρ)Zj for j ≥ 2,

where 0 < ρ < 1 (a constant) and Z1, Z2, . . . are i.i.d. N(0, 1) (standard normal). Then, Yj ∼ N(0, 1) and

Xj = Φ(Yj) ∼ U(0, 1), where Φ is the standard normal (cumulative) distribution function. That is, we

transform the state so that it has the uniform distribution at each step j, to be able to compute explicitly the
mean square discrepancy E[D2

j ] and see how it evolves with j and n. The Markov chain can also be defined

directly in terms of a stochastic recurrence for Xj, namely X1 = U1 and

Xj = ϕj(Xj−1, Uj) = Φ(ρΦ−1(Xj−1) + (1 − ρ)Φ−1(Uj)) for j ≥ 2,

where U1, U2, . . . are i.i.d. U(0, 1). In this example, we will examine E[D2
j ] as a function of j and of n, and

also the variance of cj(Xj) = Xj (that is, the variance of the average cost at step j for this simple cost

function) as a function of n, for j = 20 and j = 100 steps.

The RQMC point set used at each stage was the first n points of the two-dimensional Sobol’ sequence,

where the second coordinate of the points was randomized by a (random) left matrix scramble followed by a
random digital shift [17]. The simulations were done using SSJ [10].

Figure 3 shows our estimate of E[D2
j ] as a function of j, with n = 4096 points, for ρ = 1/11, 1/2, and

10/11. The mean square discrepancy turns out to be quite stable even when we simulate this chain over a

large number of steps. This is very encouraging.

In Figure 4, we see our estimate of log2 E[D2
j ] as a function of log2 n, for selected values of ρ and j. In

all cases, E[D2
j ] seems to converge approximately as O(n−3/2) as a function of n. It is also practically

independent of j, at least in these examples.

In these experiments, we also computed other types of discrepancies and the results were similar. The

results were also similar when we tried other types of RQMC point sets, such as a randomly shifted lattice
rule with a baker’s transformation [4]. In this case, a specialized discrepancy for this particular type of

RQMC point set, defined in [4] was much smaller than the discrepancy shown here (by a constant factor),

but had the same convergence rate.

Figure 5 shows our estimate of log2 Var[µ̂rqmc,j,n] as a function of log2 n. Here, we observe a convergence

rate of approximately O(n−2), which is faster than for the mean square discrepancy. Here, the n chains were

simulated for j steps, the cost was then averaged over the n chains (at step j) to get one realization of the
estimator µ̂rqmc,j,n. This was repeated m = 100 times, and the variance shown is the empirical variance of

those m observations. The variance reduction factor, defined as the Monte Carlo variance divided by the

array-RQMC variance when the two estimators are based on an average for n chains, is very roughly 600n

when ρ = 0.1 and j = 100 (although there is significant fluctuation around this value when we change n and
especially the RQMC point set that is used). The variance is also practically independent of j.

Example 2 In this example, let 0 < t1 < t2 < · · · < ts = T be fixed numbers (observation times), r and σ

be positive constants, S0 = s0 (a constant), and

Sj = Sj−1 exp[(r − σ2/2)(tj − tj−1) + σ(tj − tj−1)
1/2Φ−1(Uj)] (5)

where Uj ∼ U [0, 1), for j = 1, . . . , s. Define

S̄j =
1

j

j
∑

i=1

Si.
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Figure 3: Estimate of E[D2
j ] as a function of j for Example 1.
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Figure 4: Estimate of log2 E[D2
j ] as a function of log2 n for Example 1.
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Figure 5: Estimate of log2 Var[µ̂rqmc,j,n] as a function of log2 n, for Example 1.
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We want to estimate
µ = E

[

max
(

0, S̄s −K
)]

.

This estimation problem occurs in pricing an Asian call option for a single asset whose price evolves as a

geometric Brownian motion [5, 14]. Note that µ is then multiplied by a constant discount factor, which we

ignore here.

To put this model in our framework, we define a Markov chain with state Xj = (Sj , S̄j) at step j, and

whose transitions obey (Sj , S̄j) = ϕj(Sj−1, S̄j−1, Uj) where ϕj is defined via (5) and S̄j = [(j−1)S̄j−1+Sj ]/j.

The function cj is zero for j < s and we have cs(Ss, S̄s) = max
(

0, S̄s −K
)

. Here, τ = s, a constant. We

have a two-dimensional state space, and we use a two-dimensional sort at each step: we first sort the states

in n1 packets of size n/n1 based on S(tj), then we sort the packets based on S̄j.

In contrast with the previous example, we have no explicit mapping ψj available to transform the state

into a uniform point over the unit square, so we cannot compute the discrepancy Dj explicitly. However, we

can estimate the variance and examine its convergence speed as a function of n. Our RQMC point set at

each step is still the first n points of a Sobol’ sequence, this time in three dimensions, with coordinates 2 and

3 randomized by a left matrix scramble followed by a random digital shift.

For a numerical example, we take S(0) = 100, K = 90, T = 240/365, t1 = T − (s − 1)/365, tj − tj−1 =

1/365, r = ln 1.09, σ = 0.2, and s = 10 and 60.

Figures 6 and 7 show the variance as a function of n, again in a log-log scale, for different choices of n1

as a function of n, for s = 10 and s = 60, respectively. The best results are with n1 ≈ n1/2, for which the

variance seems to converge approximately as O(n−2). For n1 ≈ n1/3 and n1 ≈ n2/3, the variance is larger
(by a factor of about 10 for s = 60, n ≈ 218, and n1 ≈ n1/3, for example). The results are even worse if we

take n1 = 1 or n1 = n, which corresponds to sorting the states by one of their two coordinates, and is the

strategy that was used for this same example in [13]. For s = 60 and n ≈ 218, for example, the variance with

the best two-dimensional sort adopted here is about 400 times smaller than with a sort based on the second

coordinate only. We also observe that sorting only (or more) on the first coordinate gives better results than
sorting only (or more) on the second coordinate.

Figures 8 shows a similar plot, but with the coordinates of the state reversed. This means that we sort

first in n1 packets with respect to S̄j, and then sort the packets with respect to Sj . The results are similar.

Figure 6: Estimate of log2 Var[µ̂rqmc,n] as a function of log2 n, for Example 2 with s = 10. The dotted line
shows log2 Var[µ̂n], for comparison.
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Figure 7: Estimate of log2 Var[µ̂rqmc,n] as a function of log2 n, for Example 2 with s = 60. The dotted line
shows log2 Var[µ̂n], for comparison.
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Figure 8: Estimate of log2 Var[µ̂rqmc,n] as a function of log2 n, for Example 2 with s = 10, when the state is
taken as (S̄j , S(tj)).
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Interestingly, it is empirically better to take n1 larger than n/n1 rather than the opposite, regardless of how

we order the coordinates of the state.

6 Conclusion

The array-RQMC algorithm is a promising methodology for reducing the variance in the simulation of Markov
chains. So far, we have only scratched the surface for its convergence analysis. We believe that plenty of

interesting results are just waiting to be established in this direction, in particular for multidimensional state

spaces, for various choices of discrepancy measures for the set of states of the chains and corresponding

smoothness assumptions on the cost functions. More empirical experimentation is also needed, with large

examples, alternative sorting strategies, and various classes of applications.
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