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Abstract We develop and evaluate time-series models
of call volume to the emergency medical service of a
major Canadian city. Our objective is to offer simple
and effective models that could be used for realistic
simulation of the system and for forecasting daily and
hourly call volumes. Notable features of the analyzed
time series are: a positive trend, daily, weekly, and
yearly seasonal cycles, special-day effects, and posi-
tive autocorrelation. We estimate models of daily vol-
umes via two approaches: (1) autoregressive models of
data obtained after eliminating trend, seasonality, and
special-day effects; and (2) doubly-seasonal ARIMA
models with special-day effects. We compare the es-
timated models in terms of goodness-of-fit and fore-
casting accuracy. We also consider two possibilities for
the hourly model: (3) a multinomial distribution for the
vector of number of calls in each hour conditional on
the total volume of calls during the day and (4) fitting a
time series to the data at the hourly level. For our data,
(1) and (3) are superior.
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1 Introduction

Most cities in the developed world have organizations
that provide Emergency Medical Service (EMS), con-
sisting of pre-hospital medical care and transport to a
medical facility. Demand for such services is increasing
throughout the developed world, in large part because
of the aging of the population. In the U.S., EMS funding
decreased following conversion of direct federal fund-
ing to block grants to states [11, 37] that have, in many
cases, been used for purposes other than EMS. Tighter
budgets make efficient use of resources increasingly
important. Reliable demand forecasts are crucial input
to resource use planning, and the focus of this paper is
on how to generate such forecasts.

Almost all demand to EMS systems arrives by
phone, through calls to an emergency number (911 in
North America). Calls that arrive to 911 are initially
routed to EMS, fire, or police. Calls routed to EMS
are then evaluated, which involves obtaining an address,
determining the nature and importance of the incident,
and possibly providing instructions to a bystander on
the use of CPR or other first-aid procedures. Dispatch-
ing an ambulance to the call, the next step, is a sepa-
rate function that can occur partly in parallel with call
evaluation. The crew of the dispatched vehicle(s) then
begins traveling toward the scene of the call, where
they assess the situation, provide on-site medical care,
and determine whether transport to a medical facility
is necessary (this is the case roughly 75% of the time).
Once at the medical facility, EMS staff remain with
the patient until they have transferred responsibility for
her or his care to a nurse or physician. The crew may
then need to complete various forms before it becomes
available to take new calls.
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The resource requirements per EMS call are on the
order of a few minutes for call evaluation and dispatch,
and on the order of an hour for an ambulance and
its crew. The latter component is growing in many
locations because of increased waiting times in hospital
emergency rooms [13, 14, 33, 34].

The primary performance measure for an EMS sys-
tem is typically the fraction of calls reached within some
time standard, from the instant the call was made. In
North America, a typical target is to reach 90% of
the most urgent calls within 9 min. Although universal
standards are lacking [28], the response time is typically
considered to begin when call evaluation begins and
end when an ambulance reaches the call address. Sec-
ondary performance measures include waiting times on
the phone before reaching a 911 operator; (for example,
90% in 10 s [29] or 95% in 5 s [12]), average call eval-
uation times, average dispatch times, and average time
spent at hospital.

The main decisions that require medium-term call
volume forecasts (a few days to a few weeks into the
future) are scheduling decisions for call evaluators, dis-
patchers, and, most importantly, ambulances and their
crews. Longer-term call volume forecasts are needed
for strategic planning of system expansion or reorga-
nization. Shorter-term (intra-day) forecasts could be
used to inform decisions about when to call in extra
resources.

Service level standards for EMS systems are imper-
fect proxies for the real goal of such systems, namely
to save lives and prevent suffering (see [15] for a dis-
cussion of models that attempt to quantify such goals
more explicitly). Meeting these service-level standards
is expensive, so it is a problem of substantial economic
and social interest to manage EMS systems efficiently.
Generally speaking, efficiency involves balancing qual-
ity of service against system costs. An important input
to this operational problem is the call volume. Uncer-
tainty in future call volume complicates the process of
determining levels of EMS staffing and equipment. It
is therefore important to correctly model the stochastic
nature of call volumes, and in particular, to make pre-
dictions of future call volumes, including uncertainty
estimates (via prediction intervals).

Operations researchers have been developing plan-
ning models for EMS systems, as well as police and
fire services, since the 1970s. Green and Kolesar [17]
provide a recent perspective on the impact of this work.
Swersey [35] surveys the academic literature on this
topic and [16] provides an EMS-practitioner-oriented
literature survey. EMS planning models include simula-
tion models ([20] and [22] are recent examples), analyt-
ical queueing models (notably the hypercube queueing
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model, see Larson [24, 25]), and optimization models
for location of facilities and units. All of these mod-
els require estimates of demand as input. Typically,
planning models assume that demand follows a Poisson
process—an assumption that is supported by both theo-
retical arguments [e.g., 19] and empirical evidence [e.g.,
18, 39]. However, empirical studies of demand for both
EMS and other services (notably Brown et al. [9]) indi-
cate that the rate of the Poisson arrival process varies
with time and may be random. The work we report
in this paper is aimed at estimating the arrival rate
during day-long or hour-long periods. We elaborate in
Section 3 on how our estimates can be used to support
simulation and analytical studies that assume a Poisson
arrival process.

Goldberg [16] mentions that “the ability to predict
demand is of paramount importance” but that this area
has seen little systematic study. The work that has been
done can be divided in two categories: (1) models of
the spatial distribution of demand, as a function of
demographic variables and (2) models of how demand
evolves over time. In the first category, Kamenetsky
et al. [23] surveyed the literature before 1982 and pre-
sented regression models to predict EMS demand as
a function of population, employment, and two other
demographic variables. Their models successfully ex-
plained most of the variation in demand (R* = 0.92)
among 200 spatial units in southwestern Pennsylvania.
McConnell and Wilson [27] is a more recent article
from this category which focuses on the increasingly im-
portant impact of the age distribution in a community
on EMS demand. We refer the reader to Kamenetsky
et al. [23] and McConnell and Wilson [27] for further
relevant references.

This paper falls in the second category, of modeling
and forecasting EMS demand over time. EMS demand
varies strongly by time of day and day of week, for
example see Zhu et al. [39] and Gunes and Szechtman
[18]. Past related work that attempts to forecast daily
EMS demand includes Mabert [26], who analyzed
emergency call arrivals to the Indianapolis Police
Department. He considered several simple methods
based on de-seasonalized data and found that one
of them outperforms a simple ARIMA model [7].
In a similar vein, Baker and Fitzpatrick [4] used
Winter’s exponential smoothing models to separately
forecast the daily volume of emergency and “routine”
EMS calls and used goal programming to choose the
exponential smoothing parameters.

Recent work on forecasting arrivals to call centers
from a variety of industries is also relevant. For the pre-
diction of daily call volumes to a retailer’s call center,
Andrews and Cunningham [3] incorporate advertising
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effects in an ARIMA model with transfer functions;
their covariates are indicator variables of certain special
days and catalog mailing days. Bianchi et al. [6] use an
ARIMA model for forecasting daily arrivals at a tele-
marketing center, compare against the Holt—Winters
model, and show the benefits of outlier elimination.
Tych et al. [36] forecast hourly arrivals in a retail bank
call center via a relatively complex model with unob-
served components named “dynamic harmonic regres-
sion” and show that it outperforms seasonal ARIMA
models; one unusual feature of their methodology is
that estimation is done in the frequency domain. Brown
et al. [9] develop methods for the prediction of the
arrival rates over short intervals in a day, notably via
linear regression on previous day’s call volume.

In this paper, we study models of daily and
hourly EMS call volumes and we demonstrate their
application using historical observations from Calgary,
Alberta. Although we focus on the Calgary data,
we expect the models could be used to model EMS
demand in other cities as well and we will comment on
likely similarities and differences between cities.

We have 50 months (from 2000 to 2004) of data from
the Calgary EMS system. Preliminary analysis reveals
a positive trend, seasonality at the daily, weekly, and
yearly cycle, special-day effects, and autocorrelation.
In view of this, we consider two main approaches: (1)
autoregressive models of the residual error of a model
with trend, seasonality, and special-day effects; and (2)
doubly-seasonal ARIMA models for the residuals of
a model that captures only special-day effects. Within
approach (1), we explore models whose effects are the
day-of-week and month-of-year. We also consider a
model with cross effects (interaction terms) and a more
parsimonious model, also with cross effects, but where

only the statistically significant effects are retained.
The latter turns out to be the best performer in terms
of both goodness-of-fit and forecasting accuracy. All
the models are estimated with the first 36 months of
data and the forecasting error is measured with the
data from the last 14 months. We used the R and SAS
statistical software for the analysis.

The remainder of the paper is organized as follows.
Section 2 provides descriptive and preliminary data
analysis. In Section 3 we present the different models of
daily arrivals and compare them in terms of quality of fit
(in-sample) and forecast accuracy (out-of-sample). In
Section 4, we address the problem of predicting hourly
call volumes. Section 5 offers conclusions.

2 Preliminary data analysis

We have data from January 1, 2000 to March 16, 2004,
containing the time of occurrence of each ambulance
call, the assessed call priority, and the geographical
zone where the call originated. We work with the
number of calls in each hour instead of their times of
occurrence, to facilitate the application of time series
models. We explain in the next section how such hourly
counts can be related to a stochastic model of the times
of individual arrivals. The average number of arrivals is
about 174/day, or about 7/h.

Figure 1 provides a first view of the data; it shows the
daily volume for year 2000. The figure suggests a pos-
itive trend, larger volume in July and December, and
shows some unusually large values, e.g., on January 1,
July 8§, November 11, December 1; and low values, e.g.,
on January 26, September 9. Figure 2 shows monthly
volume over the entire period. This plot reveals a clear
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positive trend; the likely explanation is a combination
of population growth and aging in the city. Figure 3
shows average volume by hour over the weekly cycle.
The plot reveals a clear hour-of-day seasonality: over
a 24-h cycle, higher call volumes are usually observed
between 10 a.m. and 8 p.Mm.; substantially lower volumes
are seen overnight. One also observes day-of-week
effects. Closer inspection reveals, not surprisingly, in-
creased activity during Friday and Saturday evening
and early night. With respect to daily volume, larger
values are observed over Friday and Saturday relative
to the other days of the week. These observations
would have to be taken into account when designing
shift schedules for the ambulance crews.

Figures 4 and 5 give box-plots of the daily volume
for each day of the week and monthly volume for each
month of the year, respectively. Each box plot gives the

Fig. 3 The average hourly
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of the box), and two bars located at a distance of 1.5
times the interquartile range below the first quartile and
above the fourth quartile, respectively. The small cir-
cles denote the individual observations that fall above
or below these two bars. We see again that Friday and
Saturday have more volume than the average. July,
December, and November are the busiest months (in
this order) while April is the most quiet month.

3 Models for daily arrivals

We now consider five different time-series models
for the arrival volumes over successive days. Although
in the end we conclude that one of these models fits
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the Calgary data best, we discuss all of them because
different models from the collection that we present
may be appropriate depending on the city being studied
and the purpose of the analysis. These models are
defined and studied in Sections 3.1 to 3.5. In Section 3.6,
we compare these models in terms of both quality of
fit (in-sample) and forecast accuracy (out-of-sample).
Throughout the paper, ¢ denotes the time index in days
and the number of arrivals on day ¢ is denoted Y,
for t=1,2,...,n, where n =1,537. The models are
fitted to the first 1,096 observations (January 1, 2000
through December 31, 2002), and the remaining 441
observations are used for prediction (January 1, 2003
through March 16, 2004).

There are compelling theoretical reasons to assume
that call arrivals follow a nonhomogeneous Poisson
process (NHPP). The Palm—Khintchine theorem [e.g.,
10] states, approximately, that the superposition of

arrival processes from many small and indepen-
dent “sources” (patients, in an EMS context) is well-
approximated by a Poisson process. The rate of this
process will vary with time (because medical emergen-
cies are more likely to occur at certain times) and the
rate may not be known with certainty (because it may
be influenced by factors other than time).

For purposes of illustration, suppose that arrivals
during hour 4 follow a Poisson process with a random
rate that remains constant during the hour. Conditional
on the number of calls during the hour, call it Zj,
the arrival times of individual calls within the hour are
independently and uniformly distributed between 0 and
1. This is the “order statistic property” for a Poisson
process and it holds regardless of whether the arrival
rate is deterministic or random [see 32, Sections 4.5-
4.6]. Our models in this and the next section quantify
the distribution of the daily arrival counts Y; and the
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hourly counts Z,. One can use the following procedure
to simulate call arrival times on day ¢:

1. Simulate the daily count Y,. As we will see in this
section, this involves simulating the residual from a
standard autoregressive process.

2. Given Y,, generate the vector Z, of hourly counts
on day ¢. As we will see in the next section, this
involves simulating a multinomial random vector.

3. Use the order statistic property to distribute the
simulated number of arrivals in each hour.

If the arrival rate varies too rapidly to be approx-
imated as constant over hour-long periods, then it is
straightforward to modify our models to use shorter
periods, for example half-hours. Thus, if one limits at-
tention to this general and plausible NHPP model, then
each of our models of arrival counts by period yield
corresponding stochastic models of all the arrival times,
which can support analytical and simulation studies.

3.1 Model 1: fixed-effect model with independent
residuals

One would expect to see month-of-year and day-of-
week effects in EMS demand in most cities. Our pre-
liminary analysis of the Calgary data indicates a positive
trend and confirms the presence of month-of-year and
day-of-week effects. This suggests the following linear
model as a first approximation:

Yj.k,l = Cl+,3~j+)7k+561+€j.k,l, 1)

where Y, is the number of calls on a day of type j
in month k of year /, the parameters a, ,3 j» Vk» and ay,
are real-valued constants, and the residuals €;;; are
independent and identically distributed (i.i.d.) normal

Fig. 6 The residuals E; for
the simple linear model < -
of Eq.2
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random variables with mean 0. The preliminary analysis
suggests that for Calgary, the yearly effect is approxi-
mately a linear function of /, which allows us to express
the model more conveniently as

12

;
Y,=a+bt+z,3,'ct,f+zyk5z,k+Et, (2)
=1 k=1

where a, b, the §;, and the y; are constants, the indica-
tor C; ;is 1 if observation ¢ is on the jth day of the week
and 0 otherwise, the indicator S, is 1 if observation ¢ is
in the kth month of the year and 0 otherwise. In other
cities, it might be more appropriate to model the yearly
effect as a nonlinear function of . We assume that the
residuals E, are i.i.d. normal with mean 0 and variance
O’]%!O, i.e., a Gaussian white noise process. Given the
presence of the constant parameter a, we impose the
standard identifiability constraints:

7 12
D oBi=) w=0 (3)
j=1 k=1

(Without these constraints, there would be redundant
parameters; for example, adding a constant « to all
the ;’s and subtracting « from a would give the same
model.) We estimated the parameters for the regres-
sion model (2) using least squares and obtained the
residuals displayed in Fig. 6, in which the circled points
are at a distance larger than 36 from zero, where
8]%’0 is the empirical variance of the residuals. There is
a single residual larger than 46, which corresponds
to January 1, 2002, and seven other residuals larger
than 36§ : December 1, 2000; January 1, 2001; May
27, 2001; August 2, 2001; September 8, 2001; June 27,
2002; July 12, 2002. The single residual smaller than
—36g, is on July 30, 2001. January 1 appears to be

@ Springer

500 1000 1096

Time (days)



Health Care Manage Sci

a special day, with a call volume systematically larger
than average. The month of July also has a larger vol-
ume per day than the other months (in the data). One
potential explanation that we decided to consider is the
Calgary Stampede, held every year in July. The Stam-
pede includes one of the largest rodeos in the world
and it is the most important annual festival in Calgary
(http://calgarystampede.com). The dates for this event
are: July 7-16, 2000; July 6-15, 2001; July 5-14, 2002;
and July 4-13, 2003. To account for those two types of
special days, we add two indicator variables H,; and
H,, to our model, where H; is 1 if observation ¢ is on
January 1 and O otherwise, whereas H,, is 1 if obser-
vation ¢ is on one of the 40 Stampede days enumerated
above, and 0 otherwise. This gives the model

12

7
Yi=a+bt+ Zﬂjct,j‘i‘ ZVkSt,k
=1 k=1

+w H +wHip + Ey, 4

in which we now have two additional real-valued para-
meters w; and w,, and the residuals now have variance
og. The timing, nature, and number of such special
events will vary between cities but the same gen-
eral approach can be used if the dates of the special
events are known. We estimate all the parameters of
this linear regression model by standard least-squares,
using the first n = 1, 096 observations. If we denote the
parameter estimates by a, 13, /§ i» Yk, @1 and @,, then the
estimates of Y; and E; are given by

7 12
Yi=a+bt+ Z/éjct.j‘i‘ Z)?kst,k
j=1

k=1
+ o1 H ) + o Hp Q)
and
E =Y -7, (6)

A naive estimator of o would be the empirical
variance

I -
A2= EZ’ 7
E n—s; ! ™

where s = 21 is the number of parameters estimated in
the model. However, this variance estimator is biased
if the residuals are correlated [5], and we will see in a
moment that they are.

We must test the hypothesis that the residuals are
a white-noise process, i.e., normally distributed and
uncorrelated with zero mean and constant variance.
Stationarity and normality of the residuals is plausible,
based on Fig. 6 and on Q-Q (quantile—quantile) plots

not shown here. To test for autocorrelation, we use the
Ljung-Box test statistic, defined by

)

T
.9

—i

!

O=nn+?2) ; -
where 7 is the number of residuals, 7; is the lag-i sample
autocorrelation in the sequence of residuals, and / is the
maximum lag up to which we want to test the autocor-
relations. Under the null hypothesis that the residuals
are uncorrelated and n > s, Q has approximately a chi-
square distribution with / degrees of freedom. Here we
have n = 1,096 and s = 21. We apply the test with / =
30 and obtain Q = 154.8. The corresponding p-value
is smaller than 2.2 x 107'°, so the null hypothesis is
clearly rejected. This strong evidence of the presence
of correlation between the residuals motivates our next
model.

3.2 Model 2: an autoregressive process for the errors of
Model 1

We improve Model 1 by fitting a time-series model to
the residuals E;. Since the E; process appears to be
normal and stationary, it suffices to capture the auto-
correlation structure. We do this with an autoregressive
process of order p (an AR(p) process), defined by

Ei=¢1Eii+ -+ ¢pEp +ay, ®)

where the a, are i.i.d. normal with mean zero and
variance o2. Based on the residuals defined by Eq. 6,
and using standard tools of model identification [7, 38],
we find that p = 3 is adequate (different values of p will
be appropriate for different cities). When estimating
the coefficients ¢; in a model with p > 3, we find that
the coefficients ¢; for / > 3 are non-significant at the
5% level. For example, the p-value of the t-test for ¢,
is about 0.153.

The model obtained by combining Eqs. 4 and 8 with
p = 3 can be written alternatively as

7
¢(B) | Y,—a—bt—» BiCy;

j=1

12
- Z )/kSt,k — W HzA,l - wth,2j| = 4, (9)
k=1

where ¢(B) =1 — ¢, B — ¢, B> — ¢3 B>, B is the back-
shift operator defined by BPE; = E,_,, and ¢, ¢, ¢3
are the autoregressive parameters. We estimate the
parameters (a, b, By, ..., B7, V1, --., V12, ©1, 02, P1, 2, P3)
by (nonlinear) least squares [1, page 67], based on the
observations Y, for t =4, ..., n, where n = 1096.
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Table 1 Parameter estimates for Model 2

Parameter a b wi w)
Intercept Trend/month Jan. 1 Stampede
Estimate 149.3 0.031 60.5 2.7
St. error 33 0.003 11.0 4.5
p-val. of t-test < 0.001 < 0.001 < 0.001 0.544
Parameter Bi B2 B3 Ba Bs Be B
Mon. Tue. Wed. Thu. Fri. Sat. Sun.
Estimate —-42 -5.0 -53 -0.9 8.5 7.6 -0.8
St. error 2.5 2.5 2.5 2.5 2.5 2.5 2.5
p-val. of t-test 0.095 0.046 0.034 0.719 0.001 0.002 0.747
Parameter 71 V2 V3 V4 s Y6 Zi
Jan. Feb. Mar. Apr. May Jun. Jul.
Estimate -5.6 —4.1 -2.5 —4.0 0.5 4.1 13.2
St. error 2.9 2.8 2.8 2.8 2.7 2.8 2.9
p-val. of r-test 0.048 0.152 0.358 0.149 0.849 0.138 < 0.001
Parameter 2] 1) Y10 Y1 Y12
Aug. Sep. Oct. Nov. Dec.
Estimate —-1.3 -0.3 —4.3 0.3 4.1
St. error 2.8 2.8 2.8 2.8 2.8
p-val. of t-test 0.627 0.928 0.121 0.916 0.150
Parameter o1 & & a2
Estimate 0.192 0.108 0.083 250.1
St. error 0.030 0.031 0.030 -

p-val. of r-test < 0.001 < 0.001 0.006

The parameter estimates are given in Table 1, to-
gether with their standard errors and the p-value of a
t-test of the null hypothesis that the given parameter
is zero, for each parameter. We then compute the
residuals a; = <13(B)(Y, — IA/Z) in a similar manner as for
Model 1 and we estimate o2 by

1

n
~2
24,
n—s
=4

where n=1,096 and s =24. This gives 62 = 250.1.
Figure 7 presents visual diagnostics for residual normal-
ity: we see the estimated residual density and a normal
Q-Q plot, i.e., the empirical quantiles of normalized
residuals plotted versus the corresponding quantiles
of the standard normal distribution (with mean 0 and
variance 1). Figure 8 is a diagnostic for (lack of) residual
autocorrelation: it shows the standardized residuals, the
sample autocorrelations up to lag 30, and the p-values
of the Ljung-Box test for each lag. We conclude that the
residuals a, appear to be white noise. Thus, Model 2 is
a much better fit than Model 1.

The most significant parameters in Table 1 are a (the
mean), b (the positive trend), w; (the positive January
1 effect), ¢1, ¢, and ¢5 (the positive AR parameters),
y7 (the positive July effect), and Bs and B¢ (the positive
Friday and Saturday effects). Other parameters signifi-
cant at the 10% level are B, to B; (the negative effects
of Monday-Wednesday) and y,; (the negative effect of

(10)

A2
0, =
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January). (Since April has the lowest average in Fig. 5,
one may find it surprising that January has significant
negative coefficient and not April. But the average for
January becomes smaller after removing the January
1 effect. Also, this estimation uses only the first 1,096
days of data, whereas Fig. 5 combines all 1,537 days).
This gives a total of 13 significant parameters. We could
eliminate the other ones; we will do that in Section 3.4.
Observe that w, (the Stampede effect) is not significant;
most of the increased volume during the Stampede
days is captured by the July effect. In fact, the average
volume per day is about 186 during the Stampede days
compared with 180 during the other days of July and
174 on average during the year.

We can also use this model to estimate the variance
of the residuals E; in Model 1. Their sample variance
(7) underestimates o = Var| E,] because they are pos-
itively correlated. If we multiply both sides of Eq. 8 by
E, and take the expectation, we get

of = E[E}] = ¢1y1 + doys + d3ys + 07

= (191 + P22 + P303)0F + 0,

where y; = Cov(E,, E,_;) and p; = Corr(E,, E,_;) for
each i. Replacing all quantities in this last expression
by their estimates and resolving for o, we obtain 67 =
291.8 as an estimate of of. By comparing with the
estimate o2 = 250.1, we see that Model 1 has about

a
17% more variance than Model 2.
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Fig. 7 Diagnostic for
normality of residuals for
Model 2
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3.3 Model 3: adding cross effects

We now extend Model 2 by adding second-order terms
to capture the interaction between the day-of-week and
month-of-year factors. We simply add the term

7 12

DD 8iMe i

j=1 k=1

(11)

to the right side of Eq. 4 and subtract the same term
inside the brackets in Eq. 9, where the indicator vari-

Fig. 8 Diagnostic for (lack
of) residual autocorrelation
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Theoretical Quantiles

able M, ;; is 1 if observation ¢ is on the jth day of
the week and kth month of the year. This introduces the
additional model parameters §, x, which must satisfy the
identifiability constraints 2112:1 8;x =0 for each j and
Z;:] 8k = 0 for each k.

We found that the estimates for the parameters g,
vk, and w; in this model were almost the same as in
Model 2. Table 2 gives the estimated values of the
parameters that differ from those of Model 2, together
with the p-value of a f-test that the given parameter
is zero. The estimated variance of the residuals has

Standardized Residuals

<
for Model 2 «~ 7
o :
]
! T T T T T T
0 200 400 600 800 1000
Time
ACF of Residuals
©
w S
o <
< S ]
1T e
c =7 e I T L L
0 5 10 15 20 25 30
Lag
p values for Ljung—Box statistic
o] o ° ° ° o
% :_ ° o ° ° °
g < |
a © |
L= T ..,
o T T T T T
2 4 6 8 10

@ Springer



Health Care Manage Sci

Table 2 Parameter estimates for Model 3

Mon. Tue. Wed. Thu. Fri. Sat. Sun.
Parameter 51.1 52’1 5311 84,1 55,1 86,1 57,1 Jan.
Est. -0.3 5.0 4.6 —-6.9 4.0 —6.3 —-0.2
St. error 3.9 4.0 4.0 4.2 4.2 4.2 4.2
p-val. of t-test 0.942 0.210 0.256 0.102 0.339 0.137 0.965
Parameter 81,2 822 5372 54,2 852 56,2 5772 Feb.
Est. 5.4 5.6 3.7 -3.6 1.0 2.9 —4.2
St. error 4.2 4.1 4.2 4.2 4.2 4.2 4.2
p-val. of t-test 0.193 0.173 0.382 0.386 0.805 0.486 0.321
Parameter 313 8.3 3.3 843 353 86.3 873 Mar.
Est. 8.1 6.2 -3.7 6.2 0.5 -12.3 —-4.9
St. error 4.1 4.2 4.1 3.9 3.9 4.2 4.2
p-val. of t-test 0.052 0.137 0.364 0.113 0.891 0.003 0.240
Parameter 81,4 82,4 5374 54,4 85_]4 86,4 5774 Apr.
Est. 1.7 -3.7 0.4 4.2 —-3.3 4.1 —3.4
St. error 4.2 4.2 4.2 4.2 4.2 3.9 3.9
p-val. of t-test 0.686 0.369 0.927 0.314 0.434 0.287 0.393
Parameter 315 85 3.5 845 355 86,5 875 May
Est. 5.6 -0.8 -0.5 0.1 —6.6 —1.8 4.0
St. error 3.8 3.9 3.9 4.2 4.2 4.2 4.2
p-val. of t-test 0.143 0.840 0.908 0.986 0.113 0.663 0.345
Parameter 81,6 82,6 53,6 84,6 85,6 86,6 87,6 Jun.
Est. —-2.6 —4.5 —-1.3 11.5 —6.7 3.0 0.7
St. error 4.1 4.1 4.2 3.8 3.9 4.2 4.2
p-val. of t-test 0.525 0.276 0.747 0.003 0.083 0.468 0.875
Parameter 81.7 82,7 83,7 84,7 35,7 86,7 87.7 Jul.
Est. -39 —4.6 1.5 0.2 6.6 1.8 —1.6
St. error 3.9 4.2 4.2 4.2 4.2 3.8 3.9
p-val. of t-test 0.324 0.269 0.728 0.954 0.112 0.649 0.685
Parameter 81’8 82,8 83,8 54,8 85y8 86,8 67,8 Aug.
Est. 6.1 4.7 —1.4 —-0.8 -3.1 0.1 —-5.4
St. error 4.2 3.9 3.9 3.9 4.2 4.2 4.2
p-val. of t-test 0.142 0.227 0.711 0.833 0.452 0.986 0.195
Parameter 819 82,9 33,9 84,9 35,9 86,9 87.9 Sep.
Est. —-1.6 -53 —4.5 —-2.3 2.9 4.9 5.9
St. error 7.1 6.8 6.7 6.7 54 5.8 7.9
p-val. of t-test 0.819 0.441 0.502 0.732 0.594 0.399 0.457
Parameter 81,10 82,10 83,10 84,10 85,10 86,10 87,10 Oct.
Est. 0.9 —-1.5 —-3.7 —6.8 3.2 0.8 71
St. error 4.0 4.0 4.2 4.2 4.2 4.2 3.9
p-val. of t-test 0.822 0.702 0.371 0.105 0.436 0.839 0.073
Parameter 3111 .11 83,11 S4.11 35,11 86,11 37,11 Nov.
Est. —-1.2 0.1 7.8 —2.2 4.5 —54 -3.5
St. error 4.3 3.9 3.9 3.9 4.1 4.1 4.6
p-val. of t-test 0.775 0.982 0.044 0.578 0.280 0.187 0.444
Parameter 81,12 82,12 83,12 84,12 35,12 86,12 87,12 Dec.
Est. -7.3 —1.1 2.7 0.4 —-3.1 8.2 5.7
St. error 4.3 4.3 4.2 4.2 3.9 3.9 4.0
p-val. of t-test 0.092 0.797 0.518 0.924 0.417 0.036 0.154
Parameter & & » o}
Est. 0.213 0.126 0.085 241.5
St. error 0.030 0.031 0.031 -
p-val. of t-test < 0.001 < 0.001 0.006
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Fig. 9 Diagnostic for the
normality of residuals,
Model 3
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been reduced to o2 = 241.5, about 4% less than for
Model 2. The diagnostics for the residuals are in Fig. 9.
The Ljung-Box test does not detect correlation in the
residuals (we have n = 1,096, get Q = 5.394, and the
p-value of the test is 0.944) (Fig. 10).

The slightly better fit of this model compared with
Model 2 is obtained at the expense of a much larger
number of parameters and several of these parameters
do not appear to be significant. The next step is to
remove them.

Fig. 10 Diagnostic for the
correlation between

50

Theoretical Quantiles

3.4 Model 4: considering only the significant
parameters

This model is a stripped-down version of Model 3, in
which we keep only the parameters that are significant
at the 10% level (i.e., for which the p-value of the ¢-test
in Table 1 or 2 is less than 0.10). In Table 2, eight para-
meters §;; and three parameters ¢; are significant at the
90% level. There are ten other significant parameters
in Table 1, for a total of 20. With the identifiability
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Table 3 Parameter estimates for Model 4

Parameter

Estimate

St. error
p-val. of t-test
Parameter

Estimate

St. error
p-val. of t-test
Parameter

Estimate

St. error
p-val. of r-test
Parameter

Estimate

St. error
p-val. of r-test
Parameter
Estimate

St. error
p-val. of t-test

a
Intercept
149.6
1.9

< 0.001
Bi
Mon.
—4.3
1.5
0.004

Vi

Jan.
—-5.7
2.9
0.050
313
Mon.
Mar.
7.9

4.2
0.060
o
0.212
0.030

< 0.001

b
Trend/month
0.032
0.003

< 0.001
B2

Tue.
—5.3
1.4

< 0.001
Y7

Jul.
12.4
2.7

< 0.001
36,3
Sat.
Mar.
—11.1
43
0.010
033
0.132
0.031

< 0.001

Jan. 1
57.8
10.7

< 0.001

Wed.
—6.2
1.4

< 0.001

34,6
Thu.
Jun.
12.0
3.9
0.002
3
0.094
0.031
0.002

Fri.
7.8
1.4
< 0.001

356
Fri.
Jun.
7.1
3.9
0.069

a

241.6

Be

Sat.

7.9

1.5

< 0.001

87,10
Sun.
Oct.
8.3
3.8
0.029

83,11 31,12
Wed. Mon.
Nov. Dec.
8.5 -7.8
4.0 4.5
0.034 0.083

86,12
Sat.
Dec.
8.2
4.1
0.046

constraints, there remain s = 15 independent parame-
ters out of those 20. The same strategy of including only
the significant parameters from Model 3 could be used
in other cities, but the set of significant parameters will
vary between cities, of course.

Fig. 11 Diagnostic for the
normality of residuals,

Model 4
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We reestimate the model with those parameters only
(all other parameters are set at zero) and obtain the
values given in Table 3. All these parameters are signif-
icant. The most significant interaction parameters §;x
are for Saturday in March (negative interaction) and
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Fig. 12 Diagnostic for the
correlation between residuals,

Standardized Residuals
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Thursday in June (positive interaction). Other mildly
significant interactions, at the 10% level, are (by order
of significance) Saturday in December, Wednesday in
November, Monday in March, Sunday in October, Fri-
day in June, and Monday in December.

The estimated variance of the residualsis o2 = 241.9.
The diagnostics for the residuals are in Figs. 11 and 12.
The Ljung-Box test does not detect correlation in the
residuals (we have n = 1,096, get Q = 11.581, and the
p-value of the test is 0.48).

3.5 Model 5: a doubly-seasonal ARIMA process

We now consider a different model: an ARIMA model
with two seasonal cycles. We decompose our time series
as

Y =N +w H+wHp,, (12)

where {V;} is modeled as a doubly-seasonal ARIMA
process and the other components capture the special
days (January 1 and Stampede days). Given the season-
ality patterns across the weekly and yearly cycle implied
by the analysis in Section 2, we propose an ARIMA
model with two seasonal cycles: a weekly cycle, with
period s; = 7, and an approximate annual cycle, with
period s, = 365. This choice of periodicities means that
the conditional mean of N, is regressed on N,_34s; for
example, January 1, 2004 is regressed on January 1,
2003. In other words, after eliminating February 29

(which we did), this regression “aligns” the same dates
across years.

The general form of a doubly-seasonal ARIMA
model with periods s; and s, is [7, 8, 38]:

¢ (B)d,, (B)d,,(B*)VIVIVEN,
= 0(B)O;,(B*")0,(B)a,, (13)

where V¢ = (1 — B%)4, ¢, @y, @y,, 0, Oy, and O, are
polynomial functions of order p, pi, p2, q, q1, and qa,
respectively, and {a,} is a Gaussian white noise process.
This model is referred to as an ARIMA(p,d, q) x
(p1,di, q1)s, X (P2, da, q2)s, Process.

We follow a standard model-building protocol to
identify the model (choice of the polynomial orders and
exponents d, dy, and d,), estimate the parameters (w,
@,, and the polynomial coefficients), and perform diag-
nostic checks [7, 38]. ARIMA models with more than
one seasonal cycle are difficult to estimate in general,
because the multiple seasonalities complicate Eq. 13
with several operators, due to the multiplicative nature
of the expressions involved. A concrete selection cri-
terion must be adopted for model selection. Here, we
used Akaike’s information criterion (AIC), discussed
in Section 3.6. We keep the model with minimum AIC,
subject to non-rejection of the null hypothesis that
model residuals are a white-noise process [7]. Based on
this criterion, we identify the following model for N;:

(1 —¢7B7 — ¢p1aB"™ — $os B®)(1 — 365 B*®)(1 — B)N,
= (1 — 6, B)a,. (14)
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Table 4 Parameter estimates, Model 5

Parameter wi w)

Jan. 1 Stampede
Estimate 43.8 16.6
St. error 12.0 3.8
p-val. of r-test < 0.001 < 0.001
Parameter b7 b14
Estimate 0.064 0.103
St. error 0.03 0.03

p-val. of t-test 0.038 0.001

8 365 01 o?
0.082 0.128 0.905 251.7
0.03 0.04 0.01 -
0.007 0.001 < 0.0001

The parameters are estimated jointly via least squares
based on Egs. 12 and 14, i.e., we find the parameter val-
ues that minimize the sum of squares of the estimated
residuals. The estimates are given in Table 4, together
with their p-values. Note that Model 5 has considerably
fewer parameters than the other models. It is also inter-
esting to observe that for this model, the parameter w,
(Stampede days effect) is highly significant, in contrast
with Models 2 to 4. The explanation is that there is no
“July effect” term in the model.

3.6 Model comparison: Goodness of fit and forecast
performance

In this section, we compare the five models in terms
of their quality of fit and forecasting performance. The
results are in Table 5.

With respect to quality of fit, we report the standard
error of model residuals, 6,, the number s of parameters
estimated, and Akaike’s information criterion (AIC,
see Akaike [2] and Wei [38, page 153]). The AIC has
the advantage of taking into account both the mean-
square error of the residuals and the number of esti-
mated parameters in the model. It is designed to be
an approximately unbiased estimator of the Kullback—
Leibler distance (or cross-entropy or relative entropy)

Table 5 Comparison of models for daily arrivals

between the true model and fitted model. It is defined
by

AIC(s) = nIn(62) + 2s, (15)
where n is the number of observations, s is the number
of estimated parameters in the model, and 62 is the
maximum likelihood estimator of the variance of resid-
uals, which is approximately the same as the sample
variance (10) under the assumption that the residuals
are i.i.d. normal [30]. Bias-reduced variants known as
the AICC are discussed, e.g., in [8, pages 301-304].
A model with minimal AIC is a good compromise
between parsimony and small (empirical) variance of
the residuals.

The models of Sections 3.1-3.5 were fitted to the
first 1,096 days of data. We then used the estimated
models to forecast for the remaining 441 days (t =
1,097, ...,1,537), at forecast lag ranging from 1 day
ahead to 21 days ahead. The lag-¢ forecast error at day
t is defined as

e(l) =Y — f/z(ﬁ),

where f’, (£) is the forecast of Y, , based on the informa-
tion available on day ¢. Forecasts for doubly-seasonal
ARIMA processes obey fairly complicated recursive
formulas; see, for example, Brockwell and Davis

Model 1 Model 2 Model 3 Model 4 Model 5
62 291.8 250.1 241.5 241.6 251.7
St. error of fit 6, 17.08 15.81 15.54 15.55 15.87
s 21 24 90 15 7
Degrees of freedom 1075 1072 1006 1081 1088
AIC(s) 6099 6194 6045 6068
RMSE(1) 17.82 15.38 15.31 13.91 15.68
MRAE(1) (in %) 7.58 6.14 6.14 5.72 6.91
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Fig. 13 Forecast RMSE(s) Q1
for Models 1-5, for forecast
lagst=1,..., 21
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[8, pages 175-182], but forecasting software facilitates
their computation.

Commonly used forecast-accuracy metrics are the
Root Mean Square Error (RMSE) and the Mean Rel-
ative Absolute Error (MRAE) at various forecast lags,
defined in our case as

1538—¢

RMSE(¢) = 2
SE(0) yYo I > e and
t=1097
1538—¢
1 le: ()]
MRAE(f) = —— .
( ) 442 - K Z Yt+[

t=1097

for lag ¢. The MRAE standardizes each forecasting
error term by the corresponding process value Y, to
reflect the idea that larger numbers usually require less
absolute accuracy; it must be used with caution because
it may be inflated substantially by a few moderate
absolute errors that correspond to very small values
|Yivel-

Table 5 summarizes the model evaluation. The upper
part of the table collects information on the fit with
the data used for the estimation (the first 36 months).
It recalls the estimated variance of the residuals, 62,
then its square root &, called the standard error of fit,
the number s of independent estimated parameters, the
number n — s of degrees of freedom, and the AIC(s)
criterion (for Model 1, 62 is replaced by 62, defined at
the end of Section 3.2). According to the AIC criterion,
Model 4 is the winner, followed by Model 5 and then
Model 2. It must be underlined, however, that Model
5 was selected by minimizing the AIC over a class of
ARIMA models, so the AIC measure is biased to its
advantage.

T T T T T T T T T T T T T T 1
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Horizon

The second part of the table gives the RMSE and
MRAE for the forecasts of lag 1. The RMSE for lags 1
to 21 are displayed in Fig. 13. For small lags, Model 4
is clearly the best model in terms of forecast accuracy,
followed by Models 2 and 3. For lags s > 13 (approx-
imately), RMSE(s) is about the same for all models
except Model 5, whose forecasts are much noisier. En-
couragingly, the AIC measure at the estimation stage
has successfully identified the best model.

In interpreting the standard error of fit and the
RMSE, it is helpful to recall from our preliminary data
analysis that the average number of calls per day was
about 174. If calls were generated by a stationary Pois-
son process with a rate of 174/day, then the standard
deviation of the number of calls per day would be
V174 = 13.2. The Model 4 RMSE with a lag of 1 comes
close to this value. This suggests that, given knowledge
of call volumes up to a certain point in time, the Poisson
arrival rate for the next 24 h is almost deterministic. The
RMSE for longer lags is higher, suggesting that when
modeling arrivals more than one day into the future,
one should view them as being generated by a Poisson
process with a random arrival rate. The discussion at
the beginning of this Section outlines how one can
quantify the distribution for the arrival rate.

4 Modeling hourly arrivals

Now that we have a good model of day-by-day call
volumes, we turn to the modeling of hour-by-hour call
volumes. We will denote the number of calls during
hour A by Z,, where h=1,...,24nand n = 1,537. We
investigate two modeling and forecasting approaches.
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Both build on a model for the daily call volume Y; and
add to that model a component that divides the daily
volume across the 24 h of the day. Our first approach is
via the conditional distribution of the vector of number
of calls in each hour, given the total daily call volume.
The second approach fits a time-series model directly
to the data at the hourly level.

4.1 Model 6: modeling the conditional distribution

Here we use Model 4 for the daily arrival volumes,
then assume that on day ¢, the conditional distribution
of the vector Z; = (Zoag—1y+1, - --» Zoas), given Y,, is
independent of what happens on days other than ¢. A
simple candidate for this conditional distribution is a
multinomial distribution with parameters (N, py, ...,
Pp24), where N = Y,. Each p; represents the probability
that a randomly selected call arriving during the day
arrives in hour i. The vector (pi,..., pa4) is called
the daily profile. Use of the multinomial distribution
implies that the hours of occurrence of different calls
on day ¢ are independent, conditional on Y,.

Figure 3 suggests that different days of the week
should have different daily profiles; for instance, Fri-
days and Saturdays have a very different profile than
the other days. Based on a more detailed analysis of
our data, we regrouped the days of the week into four
daily profile categories: (1) Monday-Wednesday, (2)
Thursday and Sunday, (3) Friday, and (4) Saturday.
Each category ¢ has a different daily profile vector
(Pets -+ Pena) for category ¢, for ¢ =1,2,3,4. The
probability p.; is estimated as the fraction of calls in
category c that occur in hour i, i.e.,

Z?=1 ZZ4([—1)+iPt,c
p7 ,
Yot Yonet Zoag—1)+n Pre

fori=1,2,...,24, where the indicator variable P, is
1 if day ¢ is in category ¢ and O otherwise. A positive
aspect of this model is that the model for Y, remains
exactly the same as before. We could also use other
distributions than the multinomial for the conditional
distribution of Z,;.

One way of testing the goodness-of-fit of this model
is as follows. Under the multinomial assumption, condi-
tional on Y, and if day ¢ is in category c, the chi-square
statistic

ﬁc,i = (16)

24

0, = Z (Zaaa—1y4i = Yipe)
T Ytpc,i

i=1

should have approximately the chi-square distribution
with 23 degrees of freedom if Y;p.; is large enough
(e.g., larger than 5) for all i [31]. So we could compute
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these Q,’s for all days and compare their empirical
distribution to the chi-square distribution. But it turns
out that Y, p.; is often rather small (less than 5) for the
night hours. For this reason, before applying the test
we regrouped four early morning hours, from 3:00 A.m.
to 7:00 A.M., in a single period. All other hours count
for one period each. This gives m = 21 periods and the
expected number of calls in each period is at least five
under the multinomial model. The probability that a
call is in period i on a day of category c is then

De.i fori=1,2,3,
Pei=17 Pea+Pes+Pestpes fori=4, (17)
Pe.i3 fori=5,...,21.

Let Z,; be the number of calls in period i of day .
We have ) ", Z.;=Y,. For a day of category c, con-
ditional on Y,, our multinomial (null) hypothesis now
states that Z, = (Z,, Isoens Z,,m) has the multinomial
distribution with parameters (Y;, pc1, ..., Pen)- TO €s-
timate the parameters p.;, we use the consistent esti-
mators ﬁc,,- obtained simply by summing the p.;’s of
category 4 appropriately and using the correct hour-
to-period correspondence as in Eq. 17. Then, for large
enough n, the Pearson test statistic

Onrs = i (Zui = Yibei?

z (18)
i=1 Y:Pei

should have approximately the chi-square distribution
with m — 1 = 20 degrees of freedom under the multino-
mial model.

We computed the 1537 values of Q,,_;, for our data,
and compared their empirical distribution (distribution
A) to the chi-square distribution (distribution C) via a
Q-Q plot. Having found a bit of discrepancy in the right
tail, we thought that perhaps the chi-square distribution
is not a good enough approximation of the exact distri-
bution of Q,,_, under the multinomial model, so we
also generated (by simulation) a times series of 1,537
successive realizations of Y, under Model 4, then a
sample of vectors Z, conditional on Y, under the multi-
nomial distribution hypothesis, and computed the cor-
responding values of Q,,—,, for t =1, ...,1,537. The
empirical distribution of this sample is called distribu-
tion B. Figure 14 shows a Q-Q plot of distribution A
against distribution B. The fit is excellent except in the
right tail. The observations in the right tail correspond
to days where the observed daily profile differed signif-
icantly from the usual daily profile for that type of day.
This could be due to unusual (perhaps unpredictable)
events that happened on those days. This has occurred
on Sunday October 29, 2000, Monday March 19, 2001,
Friday April 13, 2001, Monday September 30, 2001,
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Fig. 14 Q-Q plot of the 3 -
empirical distribution A
against the empirical
distribution B of a sample of
Qum—1.¢ generated from f
Model 6 under the
multinomial assumption
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Sunday October 28, 2001, Saturday October 28, 2002,
Saturday May 21, 2003, and on January 1 of each year.
For January 1, the different profile could be predicted
because it happens every year. We conclude that even
though the fit is not perfect in the right tail, it is gen-
erally good enough to justify the use of the multino-
mial model in practice, in particular for purposes of
forecasting.

We now turn to forecasting hourly volumes with this
model. If /4 is the ith hour of day ¢, a forecast of Zj
made ¢ days before day ¢ (at the end of day r—¢,
so £ =1 means at the beginning of day ¢) is simply
De. ,-)A/,, ¢(£), where )A/,,g (¢) is the forecast of Y, as defined
in Section 3.6 and c is the category for day t.

To forecast Z; on the day that hour 4 occurs, we
could use ﬁc,if’tq(l), but we should be able to do
better by taking into account the information we have
in addition to the call volume of the previous days,
i.e., the call volume on day ¢, up to hour 4 — 1. For
example, suppose that at 11:00 A.M. we want call volume
forecasts for each of the next 13 h. We assume we
already know the number of calls during the first 11 h
of the day. If W, ; is that number, then a naive idea
would be to estimate the remaining call volume on day
tas f/,,l(l) — W,.11 and then use

p\c,i(?tfl(l) - Wi
Dein+ -+ Peoa

(19)

as a forecast for the ith hour, for i > 11. This is a bad
idea because a larger W, , results in a smaller forecast
for the rest of the day, suggesting a negative correlation

20 30 40 50

Generated

between the volumes over the different hours of the
day. In reality, the correlation is typically positive.

Let W, = Zoag—1y+1 + -+ + Zoaq—1y+: be the num-
ber of calls during the first i hours of day ¢. Under
our model, Y, = f/t,l(l) is a sufficient statistic for the
information from previous days. Using Bayes’ formula,
the conditional distribution of Y; given Y, and W,iis

P[Yt =y f/u W= w]

_P[Wi=wYi=)] P[Yf=y|1?,] o0
P[W,,,:wm]

for all integers 0 < w < y. The distribution of W,;
conditional on Y, =y is binomial with parameters
(¥, Pe.:i), where pei; = ZQ,:I Dec.e- Even though Y, can
only take integer values, Model 4 approximates its
distribution conditional on Y, by a normal with mean Y,
and variance o3 = Var[¢~'(B)(a,)]. This could be used
to write down a specific expression for the probabilities
in Eq. 20 and computing them numerically. For Y, the
probability of any integer value y can be approximated
by integrating the normal density over the interval [y —
1/2, y+ 1/2]. Note that conditional on W,; and Y,
the vector (Z, 41, ..., Z;24) has a multinomial distribu-
tion with parameters (Y, — Wi, peit1/(1 — peii)s -,
pc,24/(1 - pc,lzi))-

For forecasting, we may only need the conditional
expectation E[Y | Y, W, il instead of the entire distri-
bution (20). If we assume that the pair (Y,, W,;) has
approximately a bivariate normal distribution, which is
close to the truth under our model when p, ;. is not to
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close to 0 or 1 and Y, has a large enough expectation,
then we have [21, page 93]:

v - Cov[Y,, W,;|Y,
E[Y, | Y, W, =w]= Yt+[’—t’|~t]
Var[W,; | Y/]
X(w_E[Wzﬂf/t]). (21)

But E[W,; | Y] = pe1.Yi, CovlY,, Wi | Y/l = perio?,
and

Var[W,; | Y,]1 = Ey,[Var[W,; | Y, Y]]
+Vary, [E[W,; | V., Y]
= Yiperi(l = peri) + Plyi0s-
Combining this with Eq. 21, we obtain
w _pc,lzif/t
(1= pe 1) Yi/02+ Pe i

We will see the results of applying this formula later in
this section.

E[Y, | f/t, Wt,i=w]=f7t+ . (22)

4.2 Model 7: an extension of Model 4 with an
hour-of-day effect

We write this model as
Zy=p; Y+ W,

if & is the ith hour of day ¢ and c is the category for
day ¢, where the process Y, obeys one of the previous
day-to-day models and the process W, is AR(q) for
some q.

If Y, obeys Model 4, for instance, then the variance
o2} of the residuals in that model would have to be

Fig. 15 Diagnostic for
residual normality, hourly

Estimated density (kernel)

reduced, to account for the additional variance coming
from the W)’s. This gives the following:

24
Zp = Ppei [f’z + Ez] + ZOézDh,z + Wi, (23)

I=1
where Dj; =1 if h is the /-th hour of the day and 0
otherwise, and { E;} and {W),} are AR processes.

An important distinction between Models 6 and 7 is
the following. With Model 6, there is positive correla-
tion between the arrivals counts in different hours of
the same day, regardless of the distance between those
hours, and the only correlation between the hours of
two successive days is due to the autocorrelations in
the process E,. With Model 7, on the other hand, the
correlation between hours on the same day decreases
with the distance between them and there is also an
additional correlation between hours on two successive
days but that are close in time (e.g., Friday evening and
Saturday morning hours).

When we estimate the model, we add the two
constraints Y * oy =0 and Ziﬁzapl) 41 Wi =0, for
t=1,..,n, and we force { E;} to be an AR(3) process
as in models for days. We estimated the process {W},}.
The largest (observed) lag for which the autoregressive
parameter was significant at the 5% level is lag 44,
but few autoregressive parameters for lags larger than
25 were significant at the 1% level. For this reason,
we decided to retain an AR(25) model for W) and
an AR(3) model for E;. We reestimated the model
in Eq. 23 with these constraints. This is our Model 7.
With it, we obtained a standard error of fit of 3.6. The
residuals diagnostic is shown on Fig. 15.
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4.3 Comparison of Models 6 and 7

We compare the forecasting performance of Models 6
and 7 by measuring the root mean square error (RMSE)
at different lags in the 441 days for t = 1,097, ..., 1,537.
For h =24(t — 1) 4+ 1, ..., 24¢, we define the lag-r error
at hour 4 by ey (r) = Zpyr — Zh(r), where Zh(r) is the
forecast of Zj,,, based on the selected model. We
consider two cases:

(1) For the forecasts of the 24 coming hours of day ¢
when we are at the beginning of day 7 and have Y,
as a forecast of Y; from Model 4, we measure the
error by

1536

_ 2 .
RMSE() = | o ZZIXO;G a1 (1)

(2) For the forecasts of the hoursi = 12, ..., 24 of day
t after having observed the first 11 hours, using
the formula (22) to update the forecast of Y; for
Model 6, we measure the error by

1537

_ 2
RMSE(r) = 1l 1:12097 -1y 411 (1)

Table 6 gives a representative subset of the results.
Overall, Model 6 outperforms Model 7 for both Cases
(1) and (2); its RMSE is never larger and it is often
clearly smaller. For a very short horizon of 1 h, it is not
surprising that the two models perform about the same,
because they both catch the relatively strong correla-
tion between two successive hours. For longer horizons,
they also perform about the same, presumably because
the true correlation is not very strong in that case. But
for the values of r in between (horizons of a few hours),
Model 6 clearly performs better. For example, if we
are at 11:00 a.M. (we have observed W, ;) and want
to predict the volume of calls between 4:00 and 5:00
p.M. on the same day (6 h ahead), the RMSE is 3.7

Table 6 RMSE:s by origin and horizon for the two hourly models

for Model 7 compared to 2.3 for Model 6. We also see
the benefit of using information about the call volume
during the early hours of the day when forecasting for
the latter part of the day. For example, using Model 6 at
11:00 .M. to forecast the call volume between 4:00 and
5:00 p.m., the RMSE is 3.5 if we ignore the call volume
from midnight to 11:00 a.m. but it drops to 2.3 if we
incorporate this information.

5 Conclusion

We have considered a variety of time series models for
estimating and forecasting daily and hourly EMS call
volumes. EMS demand is influenced by when people
work, commute, sleep, and celebrate, and our models
attempt to capture these influences at least in part via
yearly, weekly, and daily seasonal cycles, as well as
special treatment of New Year’s day and the Stampede,
the most important festival in the city we studied.

We used three basic approaches for daily call vol-
umes: standard regression ignoring dependencies, re-
gression models with correlated residuals, and a third
approach (doubly-seasonal ARIMA) that takes into ac-
count a specific cross-effect dependency structure at the
start and captures the correlations between residuals as
well. The usual interpretation of these models is that
the first deterministic part captures the seasonal and
non-seasonal components, and the second stochastic
part (errors) captures the effect of omitted or non-
observable effects such as serial correlation. We find
that a model from the second category, that includes a
selected subset of significant day-of-week main effects,
month-of-year main effects, and interaction terms, per-
forms best when forecasting 1 or 2 days into the fu-
ture. The advantage of this model over the standard
regression model decreases as the length of the forecast
horizon increases, and disappears at around 2 weeks.

Horizon r Model 6 Model 7
Case (1): 12 (11:00-12:00 a.m.) 3.1 35
Forecasts of Zy—1)+r t0 Zo4s, 14 (1:00-2:00 p.m.) 3.1 3.9
attime h =24 — 1) 17 (4:00-5:00 p.m.) 3.5 3.9
23 (10:00-11:00 p.Mm.) 3.1 32
24 (11:00-12:00 p.Mm.) 32 33
Case (2): 1 (11:00-12:00 a.m.) 3.1 3.1
Forecasts of Zo4(—1)+114r t0 Zoas, 3 (1:00-2:00 p.m.) 2.9 3.5
attime h =24(t — 1) + 11 6 (4:00-5:00 p.m.) 23 3.7
12 (10:00-11:00 p.m.) 31 32
13 (11:00-12:00 p.m.) 3.1 3.1
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The doubly-seasonal ARIMA model performed poorly
when forecasting more than a week into the future.

For hourly call volumes, we used two approaches:
one built around the conditional distribution of hourly
volumes, conditional on the daily volume, and another
that fits a time-series model to the hourly data. Both
approaches can be combined with any of the daily
call volume models that we investigated, and we illus-
trated its use with the best-performing daily call volume
model. We also showed how one could compute intra-
day forecast updates, which could be useful for real-
time staffing decisions. We found that the conditional
distribution approach generally worked better. We
demonstrated that updating hourly forecasts using call
volume from the early part of the day can improve fore-
cast accuracy considerably, at least for certain hours of
the day.

The models we present are simple and practical,
and could be used for routine forecasting for an EMS
system, as well as in simulation models of such sys-
tems. Our models that combine regression and ARMA
processes showed an improvement over pure seasonal
ARIMA. We also demonstrated the importance of
modeling the effects of special days, day-of-week, and
month-of-year.

Although we expect that the general approach de-
scribed in this paper should be applicable in other cities,
it is important to investigate whether this is the case.
In future research, it would be interesting and useful
to develop models that forecast the spatial distribution
of demand, not only based on time but also on demo-
graphic variables.
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