
Draft Version: September 1989

Computing Approximate Solutions

to Markov Renewal Programs

with Continuous State Spaces

Pierre L’Ecuyer1

ABSTRACT
Value iteration and policy iteration are two well known computational methods for solving

Markov renewal decision processes. Value iteration converges linearly, while policy iteration
(typically) converges quadratically and is therefore more attractive in principle. However,
when the state space is very large (or continuous), the latter asks for solving at each iteration
a large linear system (or integral equation) and becomes unpractical.

We propose an “approximate policy iteration” method, targeted especially to systems
with continuous or large state spaces, for which the Bellman (expected cost-to-go) function
is relatively smooth (or piecewise smooth). These systems occur quite frequently in practice.
The method is based on an approximation of the Bellman function by a linear combination
of an a priori fixed set of base functions. At each policy iteration, we build a linear system
in terms of the coefficients of these base functions, and solve this system approximately.
We give special attention to a particular case of finite element approximation where the
Bellman function is expressed directly as a convex combination of its values at a finite set
of grid points.

In the first part of the paper, we survey and extend slightly some basic results concern-
ing convergence, approximation, and bounds. All along the paper, we consider both the
discounted and average cost criteria. Our models are infinite horizon and stationary.

1Département d’informatique, Université Laval, Ste-Foy, Québec, Canada, G1K 7P4.

1 Introduction

When solving a Markov Renewal Decision Process (MRDP) with large (sometimes contin-

uous) state or action spaces [17], it is usually necessary to use some sort of discretization

or approximation procedure [1, 2, 8, 11, 12, 13, 16, 18, 19, 22, 34, 35]. The discretized (or

“smaller”) problem can then be solved using either linear programming, policy iteration,

value iteration, or some hybrid combination of these [2, 13, 18, 19, 26, 27, 28, 32, 34].

A natural approach consists in partitioning the state and action spaces into a finite class of

subsets, selecting a representative element in each subset, and defining and approximate but

more tractable model, with finite state and action spaces. This form of approximation has

been proposed and studied theoretically in [1, 2, 11, 12, 35]. Typically, for the approximation

schemes suggested by these authors, the value function in the Dynamic Programming (DP)

functional equation is approximated by a piecewise constant function, constant on each

subset of the partition of the state space. More sophisticated approachs like polynomial or

spline approximation or interpolation, finite element methods, etc., were also suggested in

[8, 13, 22, 34].

Schweitzer and Seidmann [34] considered a MRDP with finite state and action sets and

suggested polynomial approximation of the value function. They proposed three computa-

tional algorithms: linear programming, policy iteration with least squares approximation,

and global least squares fit.

Daniel [8] suggested spline approximation for a deterministic, finite horizon, continuous

control problem. Haurie and L’Ecuyer [13] considered a discounted MRDP model and sug-

gested spline or finite element methods to approximate the value function at each step of the

value iteration algorithm. The approximation method and/or grid may vary from iteration

to iteration. They provide formulas to compute (or estimate) bounds on the optimal value

function and on the value function associated to the optimal policy, taking into account the

approximation error at each iteration and the fact that only a finite number of iterations are

made. This kind of approach can also be used (heuristically) with Schweitzer’s algorithm

[32] for the undiscounted case (see [18, 19] for applications and numerical results). Value

iteration converges geometrically (at a linear rate) [4, 9, 32], but often with a factor of al-

most one, which makes it rather slow in terms of the number of iterations. Policy iteration,

on the other hand, converges typically at a quadratic rate [26, 27], and is thus much more

attractive in principle. One difficulty is that when the state space is continuous, or has

large cardinality, each policy evaluation step asks for solving either an integral equation or

1

a huge linear system, which is too costly or impossible to solve in practice. This is the main

reason why value iteration is often suggested for such cases (see for instance [13, 32]) despite

the fact that it is sometimes very time consuming, especially when each iteration involves a

numerical integration at each evaluation point [13, 18, 19].

In this paper, we consider a MRDP model with general (Borel) state and action spaces,

as introduced in [13, 17]. We describe a finite element computational approach to deal with

continuous or very large state spaces. The general idea is to express the Bellman (expected

cost-to-go) function V as a linear combination of a finite number of (simple) base functions

B1, . . . , BJ :

V (s) =
J∑

j=1

djBj(s). (1)

We replace V by this linear combination (with unknown coefficients dj) into the DP func-

tional equation that corresponds to a fixed policy (equation (38) below).

A direct generalization of the approach proposed in [34] is to integrate this equation

(numerically or symbolically) for a finite number of states, say σ1, . . . , σI . If I = J , we

obtain from the functional equation a linear system in terms of the coefficients d1, . . . , dJ . If

I > J (more evaluation points than unknowns), we can use least squares fitting to determine

the dj’s: again, to minimize the quadratic form, a J-dimensional linear system must be

solved. Schweitzer and Seidmann [34] proposed this approach for the case of finite state and

action spaces, and where S = {σ1, . . . , σI}. The linear system is not easy to solve in general

for large values of J .

A second approach is to use a finite element method [14]. We first define a scalar product

on the space of real-valued functions of the state s. Then, the basic idea is that after replacing

V by (1) in the DP equation (38), we ask the scalar product of this equation by any arbitrary

function of the form (1) to be a valid equation. This yields a system of J equations in J

unknowns. In a special case of this approach, V (s) turns out to be expressed directly as a

convex combination of the values of V at J evaluation points σ1, . . . , σJ :

V (s) =
J∑

j=1

V (σj)Bj(s) (2)

where 0 ≤ Bj(s) ≤ 1, Bj(σi) = δij (the Kronecker’s delta), and
∑

j Bj(s) = 1 for each s.

The σj’s are in fact the nodes of the finite elements. When inserting this V into the DP

equation (38), one obtains a linear system whose matrix is substochastic, and where the

unknowns are V (σ1), . . . , V (σJ). In this case the system can be partially solved using just a

few iterations of an iterative method, starting from the previous value of V . Another useful

2

property of this scheme is that if we change the set of evaluation points σj and functions

Bj after a number of iterations, it is easy to compute the new values of V (σj) from the old

ones, and continue the iterations with them.

Our suggested algorithm with the finite element approach can be viewed as an extension

of the “modified policy iteration” algorithm studied by Puterman and Shin [26] for discounted

Markovian decision process (MDP) models. We start with some policy µ, and iterate over

the following steps: partition (triangulate) the state space into finite elements, with nodes

σ1, . . . , σJ and base functions B1, . . . , BJ , construct the linear system associated with this

set and the policy µ, solve this system approximately for the V (σj)’s, put this solution back

into the DP functional equation, perform a minimization step to obtain a new policy µ,

and repeat. To solve the system approximately, one can just perform a few iterations of an

iterative method, possibly combined with some aggregation steps [4, 5]. The “extension” lies

mostly in the way that we approximate the Bellman function to treat the case of continuous

state spaces. We also consider the undiscounted case.

Aggregation-disaggregation techniques have been proposed for accelerating convergence

in MRDPs. See [4, 5] and the references cited there. Basically, the state space is partitioned

into a finite number of subsets, which form the “states” of the aggregate process. In practice,

defining the partition is usually difficult. Bertsekas and Castañon [5] have introduced an

interesting aggregation approach in which the partition is modified adaptively based on the

progress of the algorithm. These aggregation methods have been proposed for dealing with

large, but finite state and action spaces. In contrast, the methods described in this paper

are targeted primarily towards continuous state spaces. In fact, they can be combined with

aggregation methods.

We now give an outline of the paper. In section 2, we state the two basic MRDP models,

one with a discounted cost criterion, the other with an average cost criterion, and we give

their associated DP functional equations. We also give formulas to compute (or estimate)

bounds on the optimal value function, and on the value function associated with the retained

policy. For the discounted case, we give results for a N -stage locally contracting model that

generalizes the model considered in [13, 17] (which was one-stage locally contracting). We

also provide bounds for the average cost case.

In section 3, we recall the usual value iteration and policy iteration algorithms, with

some comments. In sections 4 we describe a finite element computational approach, using

an approximate policy iteration algorithm. We consider both the discounted and average

3

cost criteria. We focus on the basic practical ideas. We do not perform a formal complex-

ity analysis. Such an analysis is non-trivial and would require introducing other technical

conditions (e.g., for smoothness) on the model. In the conclusion, we comment on further

possible variations and we mention some experience with numerical examples.

4

2 Two MRDP models and their functional equations

Consider the following (stationary) Markov Renewal Decision Process (MRDP) model [13].

The state space S and action space A are Borel spaces. Each state s in S has a nonempty

set of admissible actions A(s). At each of an infinite sequence of stages (events), the decision

maker observes the state s and selects an action a (also called a decision) from A(s). Let

0 = t0 ≤ t1 ≤ · · · ≤ tn ≤ tn+1 ≤ · · · such that tn is the time of occurence of stage n, and let

sn and an be the state and selected action at that stage. A cost c(sn, an) is incurred at stage

n, and the next state sn+1 and time of the next stage tn+1 are determined as

(tn+1, sn+1) = (tn + ζ, s)

where the pair (ζ, s) is generated randomly according to a probability measure Q(· | sn, an)

over [0,∞)×S. A new action an+1 is selected from A(sn+1), and so on. As in [3, 13, 17], we

assume that Γ = {(s, a) | s ∈ S, a ∈ A(s)} is an analytic subset of S × A, that c is a lower

semi-analytic function, and that Q is a Borel measurable stochastic kernel on [0,∞) × S

given S × A. This is less restrictive than the lower semi-continuity assumptions that are

often made, and which do not always hold in practice. But we must consider more general

policies than Borel-measurable.

A policy is a universally measurable function µ : S → A such that µ(s) ∈ A(s) for each

s in S. Let U be the set of all policies. In this paper, we consider only nonrandomized

stationary Markov policies. Associated with any initial state s0 = s, and policy µ, there is a

uniquely defined probability measure Pµ,s on the set of infinite sequences (s0, a0, s1, a1, . . .),

where an = µ(sn) for each n. Let Eµ,s be the corresponding mathematical expectation.

2.1 The discounted model

Here, we assume that the costs are discounted at rate ρ > 0. Hence, a cost of 1 incurred in t

units of time is equivalent to a cost of e−ρt incurred now. For each policy µ and initial state

s0 = s, we introduce, when they exists, the values

Vµ(s) = lim
n→∞

Eµ,s

[
n−1∑
i=0

e−ρtic(si, ai)

]
(3)

and

V∗(s) = inf
µ∈U

Vµ(s). (4)

5

The functions Vµ and V∗ represent respectively the total expected discounted cost associated

with policy µ, and the optimal total expected discounted cost. A policy µ ∈ U is said to be

ε-optimal, for ε > 0, if Vµ(s) ≤ V∗(s) + ε for all s ∈ S.

For any integer n ≥ 1, the expected n-stage discount factor associated with policy µ and

state s is

αn(µ, s) = Eµ,s

[
e−ρtn

]
and satisfies 0 ≤ αn(µ, s) ≤ 1.

Under condition C or LC below, this model admits of analysis via contraction mappings.

CONDITION C (N -stage contracting model): There exists an integer N ≥ 1, and real

numbers α1 < 1, c0 ≤ 0 and c1 ≥ 0 such that for all admissible policies µ,

αN(µ, s) ≤ α1

c0 ≤ c(s, a) ≤ c1.

A policy µ is called N-stage distinguished , for an integer N ≥ 1, if there exists three

constants δ1 < 1, c0 and c1 such that for all s in S :

αN(µ, s) ≤ δ1

c0 ≤ c(s, µ(s)) ≤ c1.

CONDITION LC (N -stage locally contracting model): There exists a N -stage distin-

guished policy µ̃ and two constants K1 and K2 such that

K1 +K2 > 0 (5)

and for every policy µ, all s ∈ S, and every integer n such that N ≤ n < 2N ,

K1 +K2αn(µ, s) ≤ Eµ,s

[
n−1∑
i=0

e−ρtic(si, ai)

]
. (6)

Let IB be the set of all extended real-valued functions V : S → [−∞,∞], endowed with

the supremum norm ‖V ‖ = sups∈S |V (s)|, and IB0 be the Banach space of all bounded

functions in IB. An operator φ mapping a closed subset of IB0 into itself is said to be

contracting with factor α if α < 1 and ‖φ(V2) − φ(V1)‖ ≤ α‖V2 − V1‖ for all V1 and V2 in

that subset.

6

Defined below are three standard dynamic programming operators. For V ∈ IB, s ∈ S

and a ∈ A(s), let (when the integral exists):

H(V)(s, a) = c(s, a) +
∫
[0,∞)×S

V (s′)e−ρζQ(dζ × ds′ | s, a) (7)

T (V)(s) = inf
a∈A(s)

H(V)(s, a). (8)

For every policy µ, let

Tµ(V)(s) = H(V)(s, µ(s)). (9)

Let IB1 be the subset of universally measurable and lower semi-analytic functions in IB0. The

operators H, T and Tµ are well defined on IB1 (the integrals exist), and their image is also

in IB1 (see e.g. [3, 17]). Let

IB∗ =
{
V ∈ IB1 |

Nc0
1− α1

≤ V ≤ Nc1
1− α1

}
(10)

for the N -stage contracting model, and

IB∗ =

{
V ∈ IB1 | K1 + min(0, K2) ≤ V ≤ (2N − 1)c1

1− δ1

}
(11)

for the N -stage locally contracting model. The following properties are proven in [15, 17] for

N = 1. The proofs can be generalized to N > 1 using the same reasoning as in reference [6].

THEOREM 1. Let V ∈ IB∗. Under assumption C or LC:

(a) Let µ ∈ U . Under LC, suppose also that T kN
µ (K1 +min(0, K2)) ≤ (2N−1)c1/(1−δ1)

for any k ≥ 1. Then,

Tµ(V) = V (12)

if and only if V = Vµ, and

lim
n→∞

‖T n
µ (V)− Vµ‖ = 0. (13)

(b) IB∗ is closed under T n for every n ≥ N ,

T (V) = V (14)

if and only if V = V∗, and

lim
n→∞

‖T n(V)− V∗‖ = 0. (15)

From an approximate solution to the functional equation (14) and the following theorem,

one can obtain bounds on V∗ and on the suboptimality of the retained policy (provided it

satisfies a contraction condition).

7

THEOREM 2. We assume condition C or condition LC. Under condition C, let α1 and N

satisfy that condition, and n0 = N . Under condition LC, let α1 ∈ (0, 1), k0 be the smallest

integer larger than

η =
(2N − 1)c1/(1− δ1)−K1 −min(0, K2)

(K1 +K2)α1

, (16)

and n0 = Nk0. Let V,W ∈ IB∗, δ
− ≥ 0 and δ+ ≥ 0 such that

−δ− ≤ T (V)−W ≤ δ+. (17)

For any real number x, let

φ+(x) = sup
s∈S

max(0,W (s)− V (s) + x),

φ−(x) = sup
s∈S

max(0, V (s)−W (s) + x).

Define

ε+ = n0δ
+ + (n0 − 1)φ+(0),

ε− = n0δ
− + (n0 − 1)φ−(0).

Then,

−ε− − α1

1− α1

φ−(ε−) ≤ V∗ −W ≤ ε+ +
α1

1− α1

φ+(ε+). (18)

Moreover, for any δ0 > δ+, since Tµ(V) ≤ T (V) + δ0 − δ+, there exists a policy µ such that

Tµ(V) ≤ W + δ0, (19)

and if TM
µ is contracting with modulus α < 1 for some integer M ≥ 1, and ε0 is defined as

ε0 = Mδ0 + (M − 1)φ+(0),

then

0 ≤ Vµ − V∗ ≤ ε− +
α1

1− α1

φ−(ε−) + ε0 +
α

1− α
φ+(ε0). (20)

PROOF. The derivation of (18) is done exactly as in the proof of theorem 3.1 (a) in

[13]. The remainder of the proof can also be done along the lines of theorem 3.1 (b) in

[13], except that IB2 is replaced by IB∗, g2 = (2N − 1)c1/(1 − δ1) + δ0 − δ+ + ‖V ‖, V =

(Mg2 + (1 + α)‖V ‖)/(1− α), equations (A.12) and (A.13) are replaced by

Tµ(V)(s) ≥ c(s, µ(s))− ‖V ‖ ∀s ∈ S

8

and

c(s, µ(s)) ≤ (2N − 1)c1/(1− δ1) + δ0 − δ+ + ‖V ‖ = g2

respectively, and after equation (A.13), Tµ, g2 and V1 are respectively replaced by TM
µ , Mg2

and W . To get the last inequality in the proof, we use the fact that TM
µ (V) ≤ W + ε0, which

can be shown by the same argument as in the proof of (A.9) in [13].

In theorem 2, the choice of α1 is left open. Note that η, n0, ε
− and ε+ are O(1/α1).

φ+(ε+) and φ−(ε−) are also O(1/α1) for ε− and ε+ large enough (and do not depend on α1

otherwise). Hence, the right-hand side of (20) is O(1/α1 + 1/(1 − α1)), and therefore, α1

should be kept away from 0 or 1. To keep things simple, taking α1 = 0.5 is not a bad idea in

general. A more sophisticated approach is to minimize the upper bound in (20) with respect

to α1. Obviously, this involves more computation. The best thing to do depends on how

much one is willing to pay to get a (possibly) better bound for the current solution.

One particular case of the above theorem is when T (V) can be used directly for W . In

that case, we have δ− = δ+ = 0. Under condition C with N = 1, assuming that W = T (V),

the bound in (20) becomes

Vµ − V∗ ≤ δ0 +
α1

1− α1

(
φ−(0) + φ+(δ0)

)
. (21)

Note that tighter bounds can also be obtained for that particular case as in Porteus [24].

2.2 The average cost case

We define the average expected cost under policy µ, starting from state s0 = s, by (when

this expression exists):

ψµ(s) = lim sup
n→∞

Eµ,s

[∑n−1
i=0 c(si, ai)

]
Eµ,s

[∑n−1
i=0 t(si, ai)

] . (22)

The optimal average cost is

ψ∗(s) = inf
µ∈U

ψµ(s). (23)

For ε > 0, a policy µ is said to be ε-optimal if ψµ(s) ≤ ψ∗(s) + ε for all s ∈ S.

We now give conditions under which the above expressions are well defined. The condition

C below is equivalent to the one formulated in the previous subsection for the discounted

case, with N = 1. Let

t(s, a) =
∫
[0,∞)

ζQ(dζ × S | s, a).

9

It represents the expected time to the next transition if the current state is s and action a

is chosen. We suppose that t is Borel-measurable in both s and a.

CONDITION C1. There exists constants τ > 0, c0 and c1 such that for every s ∈ S and

a ∈ A(s),

τ ≤ t(s, a),

c0 ≤ c(s, a) ≤ c1.

Condition C1 means that the cost per stage is bounded, and that the expected duration

of a stage is bounded away from zero, uniformly over the state—action pairs. Under con-

dition C1, the process can be uniformized as suggested in [23, 32], by replacing c, t and Q

respectively by:

c̃(s, a) =
τc(s, a)

t(s, a)

t̃(s, a) = τ

Q̃(S̄ | s, a) =
τ

t(s, a)
Q([0,∞)× S̄ | s, a) +

(
1− τ

t(s, a)

)
ϕ(s, S̄)

for any s ∈ S, a ∈ A(s) and S̄ Borel subset of S, where

ϕ(s, S̄) =

{
1 if s ∈ S̄;
0 otherwise.

For each policy µ and initial state s, let P̃µ,s and Ẽµ,s be the probability measure and cor-

responding mathematical expectation associated with policy µ for the uniformized process.

The effect of the uniformization is to force a transition every τ units of time, yielding a

discrete-time process equivalent to the original one. In fact, ψµ(s) can be rewritten as

ψµ(s) = lim sup
n→∞

1

nτ
Ẽµ,s

[
n−1∑
i=0

c̃(si, ai)

]
. (24)

Most of the tools developped for discrete-time average cost dynamic programming models

(see [4], chap. 7) can then be adapted to the model studied here. The dynamic programming

operators can be defined as in [4] for the uniformized model, and then rewritten in terms of

the original model, yielding the operators defined below.

Let s̃ ∈ S be some (arbitrary) fixed reference state. Let IB1 be the subspace of universally

measurable and lower semi-analytic functions V in IB0 such that V (s̃) = 0. We define the

10

following dynamic programming operators: for V ∈ IB1, s ∈ S, and a ∈ A(s), let

B(V)(s, a) = c̃(s, a) +
∫

S
V (s′)Q̃(ds′ | s, a)− V (s)

=
τ

t(s, a)

(
c(s, a)− V (s) +

∫
S
V (s′)Q([0,∞)× ds′ | s, a)

)
(25)

J(V)(s) = inf
a∈A(s)

B(V)(s, a) (26)

T (V)(s) = V (s) + J(V)(s)− J(V)(s̃). (27)

For every policy µ, let

Jµ(V)(s) = B(V)(s, µ(s)) (28)

Tµ(V)(s) = V (s) + Jµ(V)(s)− Jµ(V)(s̃). (29)

Note that T (V) and Tµ(V) are also elements of IB1, while B(V), J(V) and Jµ(V) are uni-

versally measurable and lower semi-analytic elements of IB0. For V ∈ IB1, V = 0 means

V (s) = 0 for all s ∈ S.

The relative value iteration (or successive approximation) algorithm for the average cost

case consists in choosing an initial V0 ∈ IB1, and defining recursively Vn = T (Vn−1). In

the following condition C2, we assume that this algorithm converges to a fixed point of the

operator T .

CONDITION C2. For any V0 ∈ IB1, if Vn = T (Vn−1) for n = 1, 2, . . ., then limn→∞ ‖Vn −
V∗‖ = 0 for some V∗ ∈ IB1 solution of the functional equation:

T (V) = V, (30)

and limn→∞ J(Vn)(s̃) = J(V∗)(s̃).

This condition might seem difficult to verify, but as indicated by the following lemma,

this should not be a burden for most practical applications. In most cases, indeed, we know

intuitively that the optimal average cost should be independent of the initial state, and all

computations in practice are done on “finite state” computers.

LEMMA 3. Suppose that the state and action spaces are finite. Then,

(a) The following are equivalent: (1) C2 holds; (2) ψ∗(s) is independent of s; (3) T (V) = V

for some V ∈ IB1.

(b) If all states communicate (are “weakly connected” in the sense of [23]), i.e. if for each

pair s, s′ in S, there is a policy µ and an integer n > 0 such that Pµ,s[sn = s′] > 0, then C2

holds.

11

PROOF. See Schweitzer [33] and Platzman [23].

In the general case, condition C2 also implies that the optimal average cost is independent

of the initial state. This is stated in the following theorem. On the other hand, there might

be policies having different average costs for different initial states (even for finite state and

action spaces).

THEOREM 4. Under condition C1 above, if there exists a bounded function V∗ ∈ IB1

such that T (V∗) = V∗, then J(V∗) is constant and the optimal average cost is given by

g∗ = J(V∗)(s)/τ , independently of s or the initial state. Also, any policy µ∗ for which

Tµ∗(V∗) = V∗ is optimal.

PROOF. From the definition of T , T (V∗) = V∗ is equivalent to J(V∗)(s) = J(V∗)(s̃) for

all s ∈ S, which is equivalent to

inf
a∈A(s)

(
c̃(s, a)− V∗(s) +

∫
S
V∗(s

′)Q̃(ds′ | s, a)− τg∗

)
= 0, (31)

where g∗ = J(V∗)(s̃)/τ . Equation (31) corresponds to equation (3) in [30], and the remainder

of the proof goes like the proof of theorem 2 in [30].

THEOREM 5. Under conditions C1 and C2, let V ∈ IB1 and g, δ−, δ+ in IR such that

δ− ≤ J(V)(s) ≤ δ+ (32)

for all s ∈ S. Then,

δ− ≤ g∗/τ ≤ δ+. (33)

Furthermore, if µ is also a policy such that

Jµ(V)(s) ≤ δ+ (34)

for all s ∈ S, then

δ− ≤ g∗/τ ≤ ψµ(s)/τ ≤ δ+ (35)

for all s ∈ S, and µ is (δ+ − δ−)/τ -optimal.

PROOF. Let V0 = V and for n = 1, 2, . . ., let Vn = T (Vn−1) = T n(V0), γn =

infs∈S J(Vn)(s) and γ̄n = sups∈S J(Vn)(s). Let ε > 0, s ∈ S and a ∈ A(s) such that

B(Vn)(s, a) ≤ J(Vn)(s) + ε.

12

Then, we have

J(Vn)(s) ≥ B(Vn)(s, a)− ε

= c̃(s, a) +
∫

S
Vn(s′)Q̃(ds′ | s, a)− Vn(s)− ε

= c̃(s, a) +
∫

S
(Vn−1(s

′) + J(Vn−1)(s
′)) Q̃(ds′ | s, a)

−J(Vn−1)(s̃)− Vn(s)− ε.

On the other hand,

Vn(s) = T (Vn−1)(s)

≤ Vn−1(s) +B(Vn−1)(s, a)− J(Vn−1)(s̃)

= c̃(s, a) +
∫

S
Vn−1(s

′)Q̃(ds′ | s, a)− J(Vn−1)(s̃).

Combining these two inequalities, we obtain

J(Vn)(s) ≥
∫

S
J(Vn−1)(s

′)Q̃(ds′ | s, a)− ε.

Since this holds for any s ∈ S and ε > 0, we obtain

γn = inf
s∈S

J(Vn)(s) ≥ inf
s∈S

J(Vn−1)(s) = γn−1.

By a similar argument, we can also show that γ̄n ≤ γ̄n−1. From condition C2 and theorem

4, we know that for all s ∈ S,

lim
n→∞

J(Vn)(s) = lim
n→∞

J(Vn)(s̃) = J(V∗)(s̃) = g∗/τ.

Therefore,

lim
n→∞

γn = lim
n→∞

γ̄n = g∗/τ.

Since {γn} is increasing and {γ̄n} is decreasing, we obtain

δ− ≤ γ0 ≤ g∗/τ ≤ γ̄0 ≤ δ+.

For the second part of the proof, suppose µ is a policy such that

Jµ(V)(s) ≤ δ+.

Define the operator Hµ by

Hµ(V)(s) = V (s) + Jµ(V)(s) = c̃(s, µ(s)) +
∫

S
V (s′)Q̃(ds′ | s, µ(s)). (36)

13

Then, for all s ∈ S,

Hµ(V)(s) = V (s) + Jµ(V)(s) ≤ V (s) + δ+

H2
µ(V)(s) ≤ Hµ(V)(s) + δ+ ≤ V (s) + 2δ+

...

Hn
µ (V)(s) ≤ V (s) + nδ+

...

and therefore

τψµ(s) = lim
n→∞

Hn
µ (V)(s)

n
≤ lim

n→∞

(
δ+ +

V (s)

n

)
= δ+.

The fact that g∗ ≤ ψµ(s) is obvious and this yields (35). From (35), we also have ψµ(s)−g∗ ≤
(δ+ − δ−)/τ , and this completes the proof.

In the next section, we describe a general approach for solving the functional equations

(14) and (30).

14

3 Value iteration and policy iteration

Value iteration and policy iteration are two general methods for solving dynamic programs

like those described in the previous section. They operate as follows.

Value iteration.

Select initial V0 in IB1;

For n := 1 to n̄ do

Vn := T (Vn−1); (37)

Retain µ̄ such that Tµ̄(Vn̄) = T (Vn̄);

End.

Policy iteration.

Select initial policy µ0;

For n := 1 to n̄ do

Policy evaluation: find V such that

Tµn−1(V) = V ; (38)

Policy update: find µn such that
Tµn(V) = T (V); (39)

Retain µn̄;

End.

In both cases, the value of n̄ may be chosen in advance or depend on some stopping

criterion. The operators T and Tµ are defined in (8–9) for the discounted case, and in (27,

29) for the average cost case.

Value iteration converges to V∗ for all the models studied in the previous section, under

conditions C or LC for the discounted case (taking V0 ∈ IB∗), or under C1 and C2 for

the average cost case. But for policy iteration, there might be intermediate policies µ (not

optimal), reached at some iteration, for which Vµ is infinite for some states (under LC), or

for which the average cost depends on the initial state (under C1 and C2). In the latter

case, for the average cost model, µ is periodic or multichain, and there is no V for which

15

Tµ(V) = V . However, there exists adaptations of the policy iteration algorithm that can

work for that case (see e.g. [10]).

Obviously, for continuous (or very large) state spaces, these algorithms cannot be applied

exactly in general. Some form of approximation must be used. Since solving (38) is usually

too difficult when the state space is very large, the use of value iteration has been advocated

for that case [13, 32]. For continuous state spaces, Haurie and L’Ecuyer [13] (see also [16, 18])

compute (37) at a finite number of points in the state space (using numerical integration),

and use these values to approximate Vn over the whole state space. This approximation is

used in the next iteration and the process is repeated. This approach is very time consuming.

It is also well known that value iteration converges linearly (sometimes very slowly),

while policy iteration (when it works) is equivalent to applying Newton’s method to the

equation T (V) − V = 0 (see [26, 27]). When V is not too far from V∗, it typically has

quadratic convergence. For that reason, trying to adapt policy iteration for the case of large

state spaces has been a subject of interest in the recent years. One adaptation is the so-

called “modified policy iteration” method [20, 26], where at each iteration, (38) is solved

only approximately by applying only a few iterations of the value iteration method with a

fixed policy µn−1, starting from the previous V . In the next section, we examine this idea,

combined with a finite element approximation of the value function, in the general setting

of section 2.

16

4 A finite element approach

We now introduce an approximate policy iteration algorithm, with finite element approxi-

mation of the value function. Generally speaking, we assume that the value function can

be approximated reasonably well by a linear combination of a small set of (already known)

functions. Typically, these functions will be local , in the sense that their support will be a

(small) subregion of S (with some exceptions e.g. for the case of unbounded state spaces).

For more details on the finite element method in general and specific presentation of various

finite element schemes, see e.g. [14].

4.1 Approximation of IB1 by a finite dimensional space

Let Φ = {B1, . . . , BJ} ⊂ IB1 be a finite set of linearly independent functions, and let IBΦ
1

be the subspace of IB1 spanned by the Bj’s, i.e. IBΦ
1 is the set of functions V that can be

expressed as

V (s) =
J∑

j=1

djBj(s) (40)

for some real constants d1, . . . , dJ . Let ψ be a measure on S, such that ψ(S) =
∫
S ψ(ds) is

finite and strictly positive. For each policy µ and each pair (V,W) in IB1 × IB1, we define

the scalar product

〈V,W 〉µ =
∫

S
(Tµ(V)− V)(s)W (s)ψ(ds). (41)

Note that Tµ(V) = V ψ(·)-almost everywhere in S is equivalent to 〈V,W 〉µ = 0 for all W in

IB1. Instead of solving Tµ(V) = V , we will examine the latter. Solving it is quite difficult

in general and what we will do instead is to solve an approximate version of the problem:

find V in IBΦ
1 such that 〈V,W 〉µ = 0 for all W in IBΦ

1 , or equivalently, such that 〈V,Bj〉µ = 0

for j = 1, . . . , J . This gives rise to J equations with J unknowns (the unknowns are the

coefficients defining V).

4.2 Building a linear system

If we replace V by the expression (40) in the equation 〈V,Bi〉µ = 0, we obtain the equation

bµ(i) +
J∑

j=1

mµ(i, j)dj = 0, (42)

17

where for the discounted case, we have:

bµ(i) =
∫

S
c(s, µ(s))Bi(s)ψ(ds)

and

mµ(i, j) =
∫

S

(
−Bj(s) +

∫
[0,∞)×S

Bj(s
′)e−ρζQ(dζ × ds′ | s, µ(s))

)
Bi(s)ψ(ds),

while for the average cost case:

bµ(i) =
∫

S
(c̃(s, µ(s))− c̃(s̃, µ(s̃)))Bi(s)ψ(ds)

and

mµ(i, j) =
∫

S

(
−Bj(s) +

∫
S
Bj(s

′)Q̃(ds′ | s, µ(s))

−
∫

S
Bj(s

′)Q̃(ds′ | s̃, µ(s̃))
)
Bi(s)ψ(ds)

=
∫

S

(
τ

t(s, µ(s))

(
−Bj(s) +

∫
S
Bj(s

′)Q([0,∞)× ds′ | s, µ(s))
)

− τ

t(s̃, µ(s̃))

∫
S
Bj(s

′)Q([0,∞)× ds′ | s̃, µ(s̃))

)
Bi(s)ψ(ds)

(assuming that these quantities exist and are finite). For a fixed µ, let b and d be the column

vectors b = (bµ(1), . . . , bµ(J))′ and d = (d1, . . . , dJ)′, and let M be the J × J matrix whose

element (i, j) is mµ(i, j). Note that b and M depend on µ. The solution of Tµ(V) = V will

be approximated by V defined in (40), where d is a solution of

b+Md = 0. (43)

4.3 Approximate policy iteration

In general, policies must also be approximated: it is usually not possible to find µ such that

Tµ(V) = T (V) exactly . As we did for the state space, we can define a finite dimensional

subspace of the policy space U , and consider only the policies that belong to that subspace.

Giving more details on how to do that would require further specification of the structure

of the action space A. Note that A is not necessarily a subset of IR. In some cases, it can

even be a functional space. (The action a can be for instance a continuous time control to

be applied until the next transition, which can be viewed as a stopping time.) Since this is

18

rather problem-dependent, we will content ourselves with the following approach. For any

V in IB1 and ε > 0, define

∆ε(V) = {µ ∈ U | Tµ(V)(s) ≤ T (V)(s) + ε for all s ∈ S} . (44)

This is the set of policies for which for each state s, the decision µ(s) brings us no more

than ε away from the infimum in the definition of T (V). At every “policy update” step of

the policy iteration algorithm (equation (39)), we will in fact seek a new policy in ∆ε(V),

for some value of ε. Often, in practice, we will first find a policy µ (by “approximate”

optimization) and then estimate the smallest ε for which µ ∈ ∆ε(V).

Under this setting, the (approximate) policy iteration algorithm now becomes:

Algorithm 1. (General form)

Select ε > 0, initial policy µ, and initial V in IB1;

If average cost, select s̃ ∈ S;

Loop

Select Φ = {B1, . . . , BJ} ⊂ IB1 and the measure ψ on S;

Compute b and M ;

Solve approximately: b+Md = 0 for d;

Define V ∈ IBΦ
1 by equation (40);

Select ε1 and find new µ in ∆ε1(V);

If desired, perform a stopping test:

If discounted case, use e.g. (18) and (20) to compute or estimate

bounds on V∗ and Vµ: Vµ − V∗ ≤ ε̄;

If average cost, use (35) to compute or estimate bounds

on g∗ and ψµ: τδ− ≤ g∗ ≤ ψµ(s) ≤ τδ+; ε̄ = (δ+ − δ−)/τ ;

If ε̄ ≤ ε, or other stopping criteria satisfied, stop;

Endloop

End.

Obviously, as it stands, this algorithm is not completely defined. For instance, the

stopping criteria, the way of choosing ε, ε1, J , Φ and ψ, the integration method used to

compute b and M , the techniques used to solve the linear system (perhaps approximately),

to find a new µ (perform the minimization) and to compute (or estimate) ε̄, are all left

open. These are usually problem dependent. In practice, they may vary from iteration

to iteration. Often, the stopping test can be costly and should not be performed at each

19

iteration. Sometimes, ε̄ has to be estimated heuristically, for instance as in [13]: Recompute

T (V) and Tµ(V) at a large number of new points, compute the approximation error at these

points, and take the largest and smallest to estimate δ+, δ−, φ+(x), φ−(x) and ε1. The

function W in theorem 2 can be taken for instance as T (V), or as the next value of V .

In practice, instead of storing the retained policy, one can store only the vector d. An

appropriate decision for a given state s can be recovered as needed using (40) in (8) or (26).

The selected decision must be one for which the minimum is attained in (8) or (26) (or, if

approximations are used, one for which we get close to the infimum).

4.4 A useful special case

One particular choice for the measure ψ is to select a finite number of points σ1, . . . , σI in

S, a set of positive weights ϕ1, . . . , ϕI , and for each S̄ subset of S, define

ψ(S̄) =
∑

{i|σi∈S̄}
ϕi.

In this case, the scalar product becomes

〈V,W 〉µ =
I∑

i=1

(Tµ(V)− V)(σi)W (σi)ϕi

and the outer integrals in the definitions of bµ(s) and mµ(s, j) are replaced by sums. Typi-

cally, when using a finite element approach, the σi’s will be the element nodes. We will have

I = J and each ϕi equal to 1. Suppose moreover that Bj : S → [0, 1] for each j, Bj(σi) = δij

(the Kronecker delta), and
∑J

j=1Bj(s) = 1 for all s in S (most usual finite element schemes

have these properties [14]).

As we will see below, one interesting point of this special case is that usually, the eigenval-

ues of M are such that the system (43) can be solved (approximately) by standard iterative

methods, like e.g. Jacobi or Gauss-Siedel iteration [25]. Let M̄ = M + I, where I denotes

the identity matrix, and note that (43) is equivalent to d = b+ M̄d. One iterative method,

called pre-Jacobi, is simply defined by applying iteratively the affectation

d := b+ M̄d, (45)

starting with some initial vector d. Moreover, even if we change σ and Φ between two

iterations, it is easy to compute the value of d corresponding to the new σ (and the same

V) from the previous one and to continue iterating with it. More specifically, suppose that

20

σ = (σ1, . . . , σI)
′ is changed to σ̃ = (σ̃1, . . . , σ̃K)′. Then, the new d is d̃ = (d̃1, . . . , d̃K)′,

where d̃i = V (σ̃i) =
∑J

j=1 djBj(σ̃i). Note that if Φ is changed, this expression is independent

of the new Φ.

Under these assumptions, for the discounted case, we obtain:

bµ(i) =
J∑

k=1

c(σk, µ(σk))Bi(σk) = c(σi, µ(σi)),

mµ(i, j) =
J∑

k=1

(
−Bj(σk) +

∫
[0,∞)×S

Bj(s
′)e−ρζQ(dζ × ds′ | σk, µ(σk))

)
Bi(σk)

= −δij +
∫
[0,∞)×S

Bj(s
′)e−ρζQ(dζ × ds′ | σi, µ(σi))

≥ −δij

and

1 +
J∑

j=1

mµ(i, j) =
∫
[0,∞)×S

 J∑
j=1

Bj(s
′)

 e−ρζQ(dζ × ds′ | σi, µ(σi))

=
∫
[0,∞)×S

e−ρζQ(dζ × ds′ | σi, µ(σi))

≤ 1.

Hence, M̄ is a substochastic matrix. In practice, in most cases, it also has a spectral radius

ρ(M̄) < 1, in which case (45) converges geometrically. But there might be policies µ for

which M̄ has a spectral radius of one. These (rare) cases correspond to policies µ for which

the total expected discounted cost for the discretized model becomes infinite. Such policies

are never optimal (at least for the discretized model) and if they are encountered, it is most

likely to be at the early iterations.

For the average cost case, we obtain in a similar fashion:

bµ(i) = c̃(σi, µ(σi))− c̃(s̃, µ(s̃)),

mµ(i, j) = −δij +
∫

S
Bj(s

′)Q̃(ds′ | σi, µ(σi))−
∫

S
Bj(s

′)Q̃(ds′ | s̃, µ(s̃)).

We will now suppose that the state s̃ is one of the σi’s. Without loss of generality, say s̃ = σ1.

Define

m̃µ(i, j) =
∫

S
Bj(s

′)Q̃(ds′ | σi, µ(σi)).

21

Let M̃ be the J × J stochastic matrix formed by these elements, and let m̃′ be its first row.

Then the iteration (45) can be rewritten as

g̃ := m̃′d; (46)

d := b+ M̃d− 1′g̃ (47)

where 1 is a vector of ones. The scheme (46, 47) is in fact a relative value iteration scheme

applied to the finite state discrete time Markov chain defined by the transition matrix M̃

and cost vector b. Its convergence is geometric, with a rate determined by the subdominant

(second largest in norm) eigenvalue of M̃ (see [21]), so long as this subdominant eigenvalue

is inside the unit circle. Since M̃ is stochastic, its largest eigenvalue is always 1. When the

norm of the subdominant one is also 1, this indicates that the Markov chain corresponding

to M̃ is multichain or periodic. Periodicity can be eliminated by taking a slightly smaller

value of τ . Multichain matrices can still be encountered (rarely) during the iterations, and

we will mention below some heuristic ways to cope with that.

For any V in IB1, σ in SI and ε > 0, define

∆ε(V, σ) = {µ ∈ U | Tµ(V)(σi) ≤ T (V)(σi) + ε for i = 1, . . . , I} . (48)

This is the set of policies for which for each “selected” state σi, the decision µ(σi) brings us

no more than ε away from the infimum in the definition of T (V).

Under this setting, algorithm 1 for the special case can be rewritten:

Algorithm 1. (Special case)

Select ε > 0, initial policy µ, and initial V in IB1;

If average cost, select s̃ ∈ S;

Loop (outer loop):

Select J , σ = (σ1, . . . , σJ)′ ∈ SJ and Φ = {B1, . . . , BJ} ⊂ IB1 such that

σ1 = s̃, Bj : S → [0, 1], Bj(σi) = δij and
∑J

j=1Bj(s) = 1 for all s ∈ S;

Compute b, M̄ and d := (V (σ1), . . . , V (σJ))′;

Inner loop: select k and repeat k times: d := M̄d+ b;

Define V ∈ BΦ
1 by equation (40);

Select ε1 and find new µ in ∆ε1(V, σ);

If desired, perform a stopping test: (same as for the general case);

Endloop

End.

22

For k = 1, this algorithm becomes the value iteration (or successive approximation)

algorithm, as described in [13]. For k = ∞, we get policy iteration. Like for the general

version, many things are left open. A good choice of k is problem dependent. It could

be chosen adaptively, based on the previous iterations. Intuitively, the more costly it is to

compute b and M̄ , the larger the value of k should be. But the inner loop should also stop

when progress gets too slow, i.e. when d is not changing significantly enough anymore, or if

d does not appear to converge geometrically.

One may wonder why we are coming back to a linearly convergent iterative algorithm

to (partially) solve the linear system, in the policy evaluation step, while our primary mo-

tivation to adopt the policy iteration algorithm was its quadratic convergence rate! The

problem is that for large state spaces, solving the linear system is difficult. However, the

gain with respect to straightforward value iteration can still be impressive due to the fact

that performing one iteration of the inner loop (45) is usually much less costly than per-

forming the iteration (37). In algorithm 1 above, the numerical integrations to compute M̄

are performed only once every outer loop. In value iteration, since the “minimizing” policy

usually changes every iteration (at least for continuous action spaces), together with V , the

integrals must be recomputed. This often accounts for most of the computational costs.

The choice of σ determines a grid over the state space S and the σi’s are the nodes

of the finite elements [14]. Intuitively, a coarser grid should be chosen at the early stages

of the algorithm and the grid should be refined only when progress is stalling. Multigrid

techniques [7] can also be used: it is often worthwhile to get back to a coarser grid to make

“corrections” when progress becomes too slow with a fine grid. Note that the inner loop

can be supplemented with aggregation steps, using e.g. the adaptive aggregation method

proposed in [4, 5]. Various other techniques for the iterative solution of linear systems can

also be used, e.g. overrelaxation, reordering, etc. [25].

Many good choices for σ and Φ are usually available and details on this are covered by a

voluminous finite element literature. Aboundant software also exists, some of which aimed

at automatic grid construction. However, this software has been designed primarily to solve

partial differential equations. Usually, in that context, the scalar product is not defined as

in section 4.2, but is typically bilinear, symmetric, and possesses some other nice properties

[14]. The matrix of the resulting linear system is usually symmetric and sparse. Here, M

is not symmetric in general. Its sparsity depends not only on the “locality” of the base

functions Bj, but also on the stochastic kernel Q. Row i of M will be sparse if the set of

states reachable in one transition from state σi intersects the support of just a few of the

Bj’s.

23

Normally, the bounds on V∗ should get closer at each iteration of the outer loop, but this

is not guaranteed. For the discounted case, from theorems 1 and 2, it follows that for k = 1,

if the error of approximation of T (V) by W and the difference between W and the next

V go to 0 with the iteration number, then ‖V − V∗‖ converges to 0. For version C of the

model, if the sequence of values of ε1 also goes to 0, then for any ε > 0, an ε-optimal policy is

obtained after a finite number of iterations (see also [13, theorem 3.3]). For the average cost

case, for k = 1, the algorithm becomes relative value iteration, whose convergence follows

from condition C2 (assuming that the discretization error goes to 0). In general, one way

to “insure” convergence is to adopt the following rule: whenever the distance between the

bounds on V∗ (in terms of norm) or on g∗ is not diminishing at a given iteration, with respect

to the best value obtained before, take k = 1 for the next iteration. Of course, this is only

one way of doing it. In practice, it is also sometimes possible to detect these infinite cost

or multichain policies for which (45) might not converge. An alternative heuristic in this

case is to modify them slightly so that ρ(M̄) < 1 (discounted case) or to make M̃ unichain

(undiscounted case). Since any optimal policy should have the latter property, this could

usually be done without impairing the algorithm.

For the average cost case, the (two step) scheme (46, 47) is usually preferable to the

direct application of (45), because M̃ is usually sparser than M̄ . In the algorithm, we have

assumed that s̃ = σ1, but of course, this is not necessary. Things are easier, though, if s̃ is

one of the σi’s, since g̃ can then be computed using the corresponding row of M̃ .

4.5 An alternative regression approach

For a finite state and action space model, Schweitzer and Seidmann [34] have proposed a

regression approach for polynomial approximation of the value function. A direct general-

ization of their approach leads to the following. We select a vector of states σ = (σ1, . . . , σI),

for I ≥ J , and write the expressions Tµ(V)(σi)− V (σi), for i = 1, . . . , I. If we replace V by

the expression (40) in these expressions and integrate, we obtain I affine forms in terms of

d1, · · · , dJ . In matrix form, this can be written as say b +Md (where b and M are not the

same as in the previous subsections).

If I = J , (38) could be replaced by the linear system b + Md = 0. If I > J , the latter

system would have more equations than unknowns. Rather, we can minimize a (possibly

weighted) sum of squares:

(Md+ b)′W (Md+ b) (49)

24

where W = diag(w1, . . . , wI) is a diagonal matrix with positive diagonal elements. A trivial

choice is W = I (the identity matrix), which gives equal weights to all points. The sum of

squares (49) is minimized when

M ′Wb+M ′WMd = 0. (50)

Note that the matrix M ′WM is symmetric. In the previous subsections, the matrices M

and M̄ were not symmetric in general. If I = J and M−1 exists, (50) reduces to b+Md = 0.

In [34], S is assumed to be finite and S = {σ1, . . . , σI}. In that case, a sufficient condition

for M ′WM to be invertible is that B1, . . . , BJ are linearly independent [34, lemma 1]. In our

case, this result does not hold in general, but a sufficient condition is that M has full rank.

Indeed, M ′WM not invertible means that there exists a vector y 6= 0 such thatM ′WMy = 0.

Hence, y′M ′WMy = 0 and since W is diagonal with only positive elements on the diagonal,

My = 0, which means that M is not of full rank. Even when M ′WM is not invertible, a

solution of (50) (that minimizes (49)) can be computed, but the solution is not unique.

Note that this regression approach should be viewed as an heuristic. There is no guarantee

of convergence to the optimal solution, even when S = {σ1, . . . , σI}. Sometimes, the solution

may even deteriorate from one iteration to the next. Deciding what to do when ε̄ is not

getting small enough is essentially a matter of art. A problem can also occur in the average

cost case if a multichain policy is encountered at some iteration. One possible (heuristic)

remedy in that case is to modify the policy slightly to make it unichain (it is not always

trivial, though, to recognize that a policy is multichain).

Other variants of this approach are also proposed by Schweitzer and Seidmann [34] for fi-

nite state and decision spaces: linear programming (LP) and global least-squares fit (GLSF).

LP might work well for relatively small state and decision spaces. GLSF is similar to the

approach that we have described in this section, and it also offers a guaranteed improvement

at each iteration. However, it requires much more work per iteration. The basic idea is that

after solving (50) for a, one performs a linear search along the direction that links this d and

the previous d, to minimize (49) where M and b depend on µ, µ is the policy for which the

minimum is attained in the definition of T (V), and V is defined by (40). Note that V , µ, M

and b vary during the linear search.

25

5 Conclusion

We have described a finite element approach to solve MRDP models with continuous or very

large state spaces. It can deal with most reasonably smooth value functions, even if we don’t

have an a priori idea of their shapes, provided that the state space is bounded and has few

(continuous) dimensions. One can also deal with certain non continuous or non differentiable

value functions by a proper placement of the element boundaries. For high dimensional state

spaces, that kind of approach can also be used if the value function can be approximated

reasonably well by a linear combination of a small set of (a priori known) base functions, or

if only a rough approximation is sufficient. Note that the dimension of the state space can

sometimes be reduced using special techniques. For instance, Saad and Turgeon [31] used

principal component analysis to define a linear mapping from S to a smaller dimensional

state space S̃, and defined the value function V only on S̃.

Defining the scalar product as we have done in equation (41) is only one way of doing it.

There are certainly other interesting ways, leading to different linear systems, that should

be explored.

In some numerical experiments, speedups by factors of between 10 and 20 were achieved

by using the modified policy iteration algorithm as suggested here, compared to the more

näıve value iteration approach described in [13] with an optimization step at each iteration

(using similar grids and finite elements in both cases). See [18, 19] for more details. The

example in [19] concerns the scheduling of a robot servicing a set of machines on a line. It

arises in the context of a textile mill, where the machines are identical winding heads. The

state space in that case is comprised of a finite number of closed intervals on the real line.

On each interval, the (optimal) value function is continuous, but not differentiable. In [19], it

was approximated by a piecewise linear function. The example in [18] deals with the dynamic

optimization of checkpointing times for database systems. In one numerical illustration, the

state space is the union of a finite segment of the real line, with a rectangle in the plane.

That rectangle was partitioned into subrectangles, and a bilinear approximating function

was used on each subrectangle.

26

Acknowledgements

Part of this work was done while the author was enjoying the hospitality of the group “Méta-

2” at INRIA, Rocquencourt, France. Another part was done while visiting the Operations

Research Department at Stanford University. It has been supported by NSERC-Canada

grant # A5463 and FCAR-Québec grant # EQ2831. The author wish to thank J. P. Quadrat

and M. Goursat for valuable suggestions, and M. Mayrand for his contribution to the ideas

of section 4.4.

References

[1] Bellman, R., Kalaba, R. and Kotkin, B. “Polynomial Approximation — A New Com-

putational Technique in Dynamic Programming”, Math. of Computation, 17, 8 (1963),

155–161.

[2] Bertsekas, D. P. “Convergence of Discretization Procedures in Dynamic Programming”,

IEEE Trans. on Automatic Control , AC-20 (1975), 415–419.

[3] Bertsekas, D. P. and Shreve, S. E. Stochastic Optimal Control: The Discrete Time Case.

Academic Press, New-York, 1978.

[4] Bertsekas, D. P. Dynamic Programming: Deterministic and Stochastic Models . Prentice

Hall, 1987.

[5] Bertsekas, D. P. and Castañon, D. A. “Adaptive Aggregation for Infinite Horizon Dy-

namic Programming”, IEEE Transactions on Automatic Control, 34, 6 (1989), 589–598.

[6] Breton, M. and L’Ecuyer, P. “Noncooperative Stochastic Games Under a N-stage Local

Contraction Assumption”, Stochastics , 26 (1989), 227–245.

[7] Briggs, W. L. A Multigrid Tutorial , SIAM, Philadelphia, 1987.

[8] Daniel, J. W. “Splines and Efficiency in Dynamic Programming”, J. Math. Anal. Appl.,

54 (1976), 402–407.

[9] Denardo, E. V. “Contraction Mappings in the Theory Underlying Dynamic Program-

ming”, SIAM Review , 9 (1967), 165–177.

27

[10] Federgruen, A. and Spreen, D. “A New Specification of the Multichain Policy Iteration

Algorithm in Undiscounted Markov Renewal Programs”, Management Science, 26, 12

(1980), 1211–1217.

[11] Fox, B. L. “Discretizing Dynamic Programs”, J. Optim. Theory and Appl., II (1973),

228–234.

[12] Haurie, A. and L’Ecuyer, P. “A Stochastic Control Approach to Group Preventive

Replacement in a Multicomponent System”, IEEE Trans. on Automatic Control , AC-

27, 2 (1982), 387–393.

[13] Haurie, A. and L’Ecuyer, P. “Approximation and Bounds in Discrete Event Dynamic

Programming”, IEEE Transactions on Automatic Control , AC-31, 3 (1986), 227–235.

[14] Hugues, T. J. R., The Finite Element Method: Linear Static and Dynamic Finite Ele-

ment Analysis , Prentice-Hall, Englewood, New Jersey, 1987.

[15] L’Ecuyer, P. and Haurie, A. “Discrete Event Dynamic Programming in Borel Spaces

with State Dependent Discounting”, Report no. DIUL-RR-8309, Département d’Infor-

matique, Univ. Laval, 1983.

[16] L’Ecuyer, P. and Haurie, A. “The Repair vs Replacement Problem: A Stochastic Control

Approach”, Optimal Control Applications and Methods , 8 (1987), 219–230.

[17] L’Ecuyer, P. and Haurie, A. “Discrete Event Dynamic Programming with Simultaneous

Events”, Math. of Oper. Research, 13, 1 (1988), 152–163.

[18] L’Ecuyer, P. and Malenfant, J. “Computing Optimal Checkpointing Strategies for Roll-

back and Recovery Systems”, IEEE Trans. on Computers , C-37, 4 (1988), 491–496.

[19] L’Ecuyer, P., Mayrand, M. and Dror, M. “Dynamic Scheduling of a Robot Servicing

Machines on a One-Dimensional Line”, submitted for publication, 1988.

[20] Morton, T. E., “Undiscounted Markov Renewal Programming Via Modified Successive

Approximation”, Oper. Res., 19 (1971), 1081–1089.

[21] Morton, T. E. and Wecker, W. E., “Discounting, Ergodicity and Convergence for Markov

Decision Processes”, Managament Science, 23, 8 (1977), 890–900.

[22] Morin, T. L. “Computational Advances in Dynamic Programming”, in Dynamic Pro-

gramming and its Applications , M. L. Puterman Ed., Academic Press, New-York (1978),

53–90.

28

[23] Platzman, L. “Improved Conditions for Convergence in Undiscounted Markov Renewal

Programming”, Operations research, 25 (1977), 529–533.

[24] Porteus, E. L. “Bounds and Transformations for Finite Markov Decision Chains”, Op-

erations Research, 23 (1975), 761–784.

[25] Porteus, E. L. “Computing the Discounted Return in Markov and Semi-Markov Chains”,

Nav. Res. Log. Quart., 28, 4 (1981), 567–578.

[26] Puterman, M. L. and Shin, M. C. “Modified Policy Iteration Algorithms for Discounted

Markov Decision Problems”, Management Science, 24, 11 (1978), 1127–1137.

[27] Puterman, M. L. and Brumelle, S. L. “On the Convergence of Policy Iteration in Sta-

tionary Dynamic Programming”, Math. of Oper. Research, 4 (1979), 60–69.

[28] Rishel, R. “Group Preventive Maintenance: An Example of Controlled Jump Pro-

cesses”, Proc. 20th IEEE Conf. on Decision and Control , San Diego, CA, Dec. (1981),

786–791.

[29] Ross, S. M. Applied Probability Models with Optimization Applications , Holden Day,

1970.

[30] Ross, S. M. “Average Cost Semi-Markov Decision Processes”, J. Applied Probability , 7

(1970), 649–656.

[31] Saad, M. and Turgeon, A., “Application of Principal Component Analysis to Long-Term

Reservoir Management”, Water Resources Research, 24, 7 (1988), 907–912.

[32] Schweitzer, P. J. “Iterative Solution of the Functional Equations of Undiscounted

Markov Renewal Programming”, J. Math. Anal. Appl., 34 (1971), 495–501.

[33] Schweitzer, P. J. “On the Existence of Relative Values for Undiscounted Markovian

Decision Processes with a Scalar Gain Rate”, J. Math. Anal. Appl., 104 (1984), 67–78.

[34] Schweitzer, P. J. and Seidmann, A. “Generalized Polynomial Approximations in Marko-

vian Decision Processes”, J. Math. Anal. Appl., 110 (1985), 568–582.

[35] Whitt, W. “Approximations of Dynamic Programs I and II”, Math. of Oper. Research,

3 (1978), 231–243, and 4 (1979), 179–185.

29

