
A Randomized Quasi-Monte Carlo Simulation Method for Markov Chains

Pierre L’Ecuyer
GERAD and Département d’Informatique et de Recherche Opérationnelle

Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal (Québec), H3C 3J7, Canada
lecuyer@iro.umontreal.ca

Christian Lécot
Laboratoire de Mathématiques, Université de Savoie, 73376 Le Bourget-du-Lac Cedex, France,

Christian.Lecot@univ-savoie.fr

Bruno Tuffin
IRISA-INRIA, Campus Universitaire de Beaulieu, 35042 Rennes Cedex, France

Bruno.Tuffin@irisa.fr

This version: August 23, 2006

Abstract. We introduce and study a randomized quasi-Monte Carlo method for estimating the state

distribution at each step of a Markov chain. The number of steps in the chain can be random and

unbounded. The method simulates n copies of the chain in parallel, using a (d + 1)-dimensional

highly-uniform point set of cardinality n, randomized independently at each step, where d is the

number of uniform random numbers required at each transition of the Markov chain. This technique

is effective in particular to obtain a low-variance unbiased estimator of the expected total cost up to

some random stopping time, when state-dependent costs are paid at each step. It is generally more

effective when the state space has a natural order related to the cost function.

We provide numerical illustrations where the variance reduction with respect to standard Monte

Carlo is substantial. The variance can be reduced by factors of several thousands in some cases. We

prove bounds on the convergence rate of the worst-case error and variance for special situations. In

line with what is typically observed in randomized quasi-Monte Carlo contexts, our empirical results

indicate much better convergence than what these bounds guarantee.

Subject classifications: Simulation: efficiency. Probability: Markov processes.

Area of review: simulation.

Keywords: Variance reduction, randomized quasi-Monte Carlo, Markov chain, random walk, re-

generative process, digital nets, lattice rules.

1

1 Introduction

A wide variety of real-life systems can be modeled as Markov chains with a large state space. In most

interesting situations, analytic formulas are not available for these Markov chains and matrix-based

numerical methods require too much time, so Monte Carlo simulation becomes the standard way of

estimating performance measures for these systems.

In this paper, we propose a randomized quasi-Monte Carlo (RQMC) algorithm, based on deter-

ministic methods introduced by Lécot and Tuffin (2004) and Lécot and Ogawa (2002), to improve

simulation efficiency for discrete-time Markov chains. The algorithm simulates n copies of the chain

in parallel and induces negative dependence between the corresponding sample paths by using some

form of generalized antithetic variates (Wilson, 1983; Ben-Ameur et al., 2004). Our aim is that the

empirical distribution of the states of these n chains, at any given step j, is a better approximation

of the corresponding theoretical distribution than if the n chains were simulated independently. As

a result, performance measure estimators obtained by taking an average across the n copies of the

chain will typically have much smaller variance.

Markov Chain Setting. We consider a Markov chain {Xj , j ≥ 0} with state space X , that

evolves according to the stochastic recurrence:

X0 = x0, Xj = ϕj(Xj−1,Uj), j ≥ 1, (1)

where the Uj are independent random vectors uniformly distributed over the d-dimensional unit

cube [0, 1)d (henceforth denoted Uj ∼ U[0, 1)d). Each Uj represents the d uniform random numbers

required to simulate step j of the chain. Every discrete-time Markov chain that can be simulated

on a computer fits this framework. It is also always possible to take d = 1 by defining the chain

so that each newly generated uniform random number in the simulation corresponds to one step of

the chain, although this representation is not always natural. Here, for more flexibility, we simply

assume that d is a finite constant.

We want to estimate the expected total cost µ = E[Y] where

Y =
τ∑

j=0

cj(Xj), (2)

each cj : X → R is a cost function, τ is a stopping time with respect to the filtration {Fj , j ≥ 0}

generated by {(j,Xj), j ≥ 0}, E[τ] < ∞, and we assume that the functions ϕj and cj are easy to

2

evaluate at any given point, for each j. We also assume (implicitly) that X , the ϕj ’s, and the cj ’s

satisfy the appropriate measure-theoretic requirements so that all objects of interest in this paper

are well-defined.

Estimation by Monte Carlo. The standard Monte Carlo (MC) method simulates the random

variable Y as follows. For j = 1, . . . , τ , generate Uj ∼ U[0, 1)d, compute Xj = ϕj(Xj−1,Uj), and

add the realization of cj(Xj) to an accumulator, which at the end will contain the realization of Y .

This can be replicated n times independently, and the sample mean and variance of the n realizations

of Y can be taken as unbiased estimators of the exact mean and variance of Y . From this, one can

compute a confidence interval on µ, e.g., via the central-limit theorem.

Let s = supω τd, where the supremum is taken over all possible sample paths ω, so s = ∞ if

τ is unbounded. In this setting, the random variable Y can be written as a function of a sequence

of s independent U(0, 1) random variables, say Y = f(U1, . . . , Us), for some complicated function

f , where Uj = (U(j−1)d+1, . . . , Ujd) for each j. The MC method generates n independent random

points Vi = (Ui,1, . . . , Ui,s), i = 1, . . . , n, uniformly distributed in the s-dimensional unit cube [0, 1)s,

evaluates the function f at each of these points, and takes the average Ȳn of these n evaluations as

an estimator of µ.

Quasi-Monte Carlo (QMC). The classical QMC method replaces the n independent random

points Vj by a deterministic set of distinct points Pn = {v1, . . . ,vn} that cover the unit cube [0, 1)s

more uniformly than typical random points. There are many ways of measuring the uniformity of

Pn. One of them is the star discrepancy, defined as

D∗
n(Pn) = sup

x∈[0,1)s

|card(Pn ∩ [0,x))/n− vol([0,x))|

where card(P) means the cardinality of the set P , [0,x) is the s-dimensional rectangular box with

opposite corners 0 and x, and vol denotes its volume. A classical worst-case error bound for numerical

integration by QMC is given by the Koksma-Hlawka inequality

‖Ȳn − µ‖ ≤ V (f)D∗
n(Pn), (3)

where Ȳn represents the average value of f over the n points, µ is its theoretical average over the

unit cube, and V (f) is the Hardy-Krause total variation of the integrand f (see Niederreiter, 1992,

3

for the details). For a one-dimensional function f : [0, 1]→ R, we have

V (f) = sup
L≥1, 0=x0<···<xL=1

L∑
j=1

|f(xj)− f(xj−1)| =
∫ 1

0
|df(x)|. (4)

For s > 1, it is much more complicated; we just point out that V (f) is infinite whenever f has a

discontinuity not aligned with one of the axes (Owen, 2005). This happens frequently. Moreover,

in most practical situations, the bound (3) is useless because it is extremely loose and also much

too difficult to compute. Hlawka (1971) derives another error bound in which V (f) is replaced by a

different notion of variation, called the mean oscillation of f . In fact, a large family of bounds can

be derived by adopting different definitions of discrepancy together with corresponding definitions

of function variation (Hickernell, 1998; L’Ecuyer and Lemieux, 2002). These bounds can be used to

get asymptotic convergence rates but are rarely convenient for practical error assessment.

Randomized Quasi-Monte Carlo (RQMC). The usual RQMC method (we call it classical

RQMC, to distinguish it from our new algorithm) turns QMC into a variance reduction method by

carefully randomizing Pn. This can be seen as an application of the generalized antithetic variates

(GAV) principle (Wilson, 1983), as explained in Ben-Ameur et al. (2004). The idea is to induce

“negative dependence” between the points Vi (for example, recalling that each Cov(Vi,Vj) is a

diagonal matrix, we may ask for all diagonal elements of the diagonal matrix
∑

(i,j):i6=j Cov(Vi,Vj)

to be negative) by generating them in a way that

(a) each point Vi has the uniform distribution over [0, 1)s, and

(b) the point set {V1, . . . ,Vn} covers [0, 1)s more uniformly (in some sense) than a set of indepen-

dent random points.

We call a point set that satisfies these two conditions an RQMC point set. This definition is

incomplete: we still need to select a specific measure of uniformity so that “more uniformly” has a

well-defined meaning. We leave this choice open for now, because we want to keep the generality.

Specific measures and conditions are always adopted when proving bounds on the convergence speed

of the error and variance for particular RQMC methods, and we will do the same when we prove such

results for our method, but the RQMC method in general and the algorithm proposed in this paper

are defined independently of any measure of uniformity. Examples of RQMC point sets include

randomly shifted lattice rules, scrambled digital nets, digital nets with a random digital shift, a

4

Latin hypercube sample or a stratified sample followed by a random permutation of the points, and

so forth (Owen, 1998; L’Ecuyer and Lemieux, 2002; Glasserman, 2004). For the stratified sample, we

partition the unit cube into n boxes of equal volume and generate one point randomly and uniformly

in each box. Then we permute the n points randomly, so that for each fixed i, Vi has probability

1/n of being in any given box. The same permutation trick applies to Latin hypercube sampling as

well.

The estimator Ȳn is computed by averaging the values of f over the n points in the same way as

for MC. These n values are not independent, but we can estimate the variance of Ȳn by replicating

this scheme m times, with independent randomizations of the same point set. Under the above

conditions on the randomization, the sample mean and sample variance of these m averages are

unbiased estimators of the exact mean and variance of Ȳn. Further details on this classical RQMC

approach (and variants of it for high-dimensional contexts) can be found in Owen (1998); L’Ecuyer

and Lemieux (2000, 2002) and other references given there. This approach is typically more efficient

than MC when s is small (e.g., less than 20 or so) or if the function f has low effective dimension in

some sense, as explained in Owen (1998) and L’Ecuyer and Lemieux (2002).

Introductory overviews of QMC and RQMC methods can be found in Kollig and Keller (2002);

Owen (2003a); Glasserman (2004); L’Ecuyer (2004a), and the user’s guide of the package hups in

SSJ (L’Ecuyer, 2004b), for example. For more advanced material, see Niederreiter (1992); Owen

(1998); L’Ecuyer and Lemieux (2002) and the proceedings of the biennial MCQMC Conference.

Array-RQMC. The RQMC method proposed in this paper, called array-RQMC , operates dif-

ferently. We simulate n copies of the chain in parallel. To simulate step j for all copies, we use a

randomized (d + 1)-dimensional highly-uniform (or “low-discrepancy”) point set P ′
n,j of cardinality

n, as explained in the next section, where d � s typically. These point sets are randomized inde-

pendently at the different steps, in a way that the sample path of any given copy of the chain obeys

the correct probability law (the same as with the MC method). As a result, we have an unbiased

estimator Ȳn for the average cost µ. The aim of the proposed method is to induce dependence

across the n copies so that the empirical distribution of the n realizations of Xj (at step j) gives a

much better approximation of the distribution Fj of the random variable Xj than if the chains were

simulated independently.

The original deterministic method of Lécot and Tuffin (2004) was designed to approximate

5

transient measures over a fixed number of steps, for discrete-time and discrete-state Markov chains

with a totally ordered state space. That method uses a (0, 2)-sequence in base 2 (Niederreiter, 1992).

At step j of the chain, it reorders the n copies according to their current states and “simulates” the

transitions (next states) for the n copies by employing the elements nj to nj + n − 1 of the (0, 2)-

sequence in place of uniform random numbers to drive the simulation. It assumes that simulating

each transition of the chain requires a single uniform random variable, i.e., d = 1 in equation (1).

Convergence to the correct value was proved by Lécot and Tuffin (2004) under a condition on the

structure of the transition probability matrix of the Markov chain. In contrast, our method is a

randomized algorithm that provides an unbiased estimator. It also applies to Markov chains with

a more general state space, with a random and unbounded number of steps, and the number d of

uniform random variates that are required to generate the next state in one step of the Markov chain

can be larger than 1. It thus covers a much broader range of applications.

We have theoretical results on the convergence rate of the variance of the mean estimator (as

n → ∞) only for simplified special cases of the algorithm. For the case where X ⊆ (−∞,∞] and

d = 1, if each P ′
n,j is constructed by stratified sampling in the unit square, and under mild additional

assumptions, we prove that the variance converges as O(n−3/2). For a less restrictive assumption

than stratified sampling (see Assumption 1), still with X ⊆ (−∞,∞] and d = 1, we show that

the worst-case error converges as O(n−1/2). We conduct empirical experiments with other types

of RQMC point sets as well, with a variety of examples. The results indicate that the variance

goes down much faster (as a function of n) with the proposed method than for standard MC and

faster than classical RQMC in many situations. In our experiments, popular RQMC point sets such

as randomized lattice rules and Sobol’ nets also perform much better than the stratification. This

gap between theoretical and empirical results (we often get much better variance improvements in

practice than what we can prove) is common with QMC and RQMC methods (Tuffin, 1996; Tezuka,

2002), where the theoretical bounds have limited applicability in general and the surprisingly good

empirical results are often only heuristically justified. The theoretical results are nevertheless a first

step toward a better understanding of the proposed algorithm.

6

2 The Array-RQMC Algorithm

For the remainder of the paper, we assume that X ⊆ R` ∪ {∞} and that there is a function h : X →

R∪ {∞} that assigns a real number to each state of the chain, with h(∞) =∞. This h is called the

sorting function and will be used to order the states: we say that state x1 is smaller than state x2

if h(x1) < h(x2) and that the two states are h-equivalent if h(x1) = h(x2). When sorting the states,

h-equivalent states can be placed in arbitrary order. A similar type of function h is used in the

splitting methodology for rare-event simulation, where it is called the importance function (Garvels

et al., 2002; Glasserman et al., 1999). We use a different name, to avoid possible confusion in case the

two methods are combined. Just like for splitting, a good choice of h is crucial for the performance

of the algorithm especially when X has more than one dimension. The state ∞ is an absorbing state

used to indicate that we have already reached the stopping time τ at the previous step or earlier;

i.e., Xj = ∞ for j > τ . We also have cj(∞) = 0 although the cost at the stopping time τ can be

nonzero.

The array-RQMC algorithm works by simulating n copies of the chain in parallel as follows. In

step 1, we take an RQMC point set Pn,1 = {u0,1, . . . ,un−1,1} in [0, 1)d, define

Xi,1 = ϕ1(x0,ui,1) for i = 0, . . . , n− 1,

and estimate the distribution F1 of X1 by the empirical distribution F̂1 of X0,1, . . . , Xn−1,1. This

gives

F1(x) = P [X1 ≤ x]

=
∫

[0,1)d

I(ϕ1(x0,u) ≤ x) du (5)

≈ 1
n

n−1∑
i=0

I(ϕ1(x0,ui,1) ≤ x) (6)

=
1
n

n−1∑
i=0

I(Xi,1 ≤ x) def= F̂1(x),

where I denotes the indicator function. The approximation in (6) amounts to estimating the integral

(5) by RQMC. If the function ϕ1 is not too badly behaved, this should give better accuracy than

using standard MC.

In step j, we start with the empirical distribution F̂j−1 of X0,j−1, . . . , Xn−1,j−1 as an approxi-

mation of the distribution Fj−1 of Xj−1, and want to compute a good approximation F̂j of Fj . We

7

can write

Fj(x) = P [Xj ≤ x] = E[I(ϕj(Xj−1,Uj) ≤ x)]

=
∫
X

∫
[0,1)d

I(ϕj(y,u) ≤ x) du dFj−1(y) (7)

≈
∫
X

∫
[0,1)d

I(ϕj(y,u) ≤ x) du dF̂j−1(y) (8)

=
1
n

n−1∑
i=0

E[I(ϕj(Xi,j−1,Ui,j) ≤ x)], (9)

where the approximation in (8) is obtained by replacing Fj−1 in (7) with its approximation F̂j−1.

When the n copies of the Markov chain are simulated independently via standard MC, (9) is estimated

by its realization (the expectation is removed), where the Ui,j ’s are independent and uniformly

distributed over [0, 1)d. Our aim here is to estimate the (d + 1)-dimensional integral (8) by RQMC

instead.

To do that, we introduce a (d + 1)-dimensional modified RQMC point set P ′
n,j defined as P ′

n,j =

{u′i,j = ((i+0.5)/n,ui,j), 0 ≤ i < n} where Pn,j = {u0,j , . . . ,un−1,j} is an RQMC point set in [0, 1)d,

and with the following two properties:

(a) ui,j is a random vector uniformly distributed over [0, 1)d for each i and

(b) P ′
n,j is “highly uniform” in [0, 1)d+1, in a sense that we leave open for now (as in our definition

of RQMC point set).

This P ′
n,j is not quite an RQMC point set, because the first coordinate is not a random variable with

the uniform distribution over [0, 1). A typical way of defining P ′
n,j is to take a (d + 1)-dimensional

RQMC point set, sort the points by order of their first coordinate, and then replace the first coordi-

nate of the ith point by (i+0.5)/n for each i. Item (b) is not needed for the proofs of Propositions 1

and 2 later in this section, but is crucial to obtain a variance reduction in the array-RQMC algorithm.

To explain how the integral (8) is approximated by RQMC with the point set P ′
n,j , we first

consider the special case where ` = 1 (so X ⊆ (−∞,∞]) and h(x) = x. Let X(0),j−1, . . . , X(n−1),j−1

be the states at step j−1 sorted by increasing order. Define the inverse of F̂j−1 by F̂−1
j−1(v) = inf{x ∈

8

X : F̂j−1(x) ≥ v} for all v ∈ [0, 1]. We approximate (8) as follows:∫
X

∫
[0,1)d

I(ϕj(y,u) ≤ x) du dF̂j−1(y) =
∫

[0,1)d+1

I(ϕj(F̂−1
j−1(v),u) ≤ x) du dv (10)

≈ 1
n

n−1∑
i=0

I(ϕj(F̂−1
j−1((i + 0.5)/n),ui,j) ≤ x) (11)

=
1
n

n−1∑
i=0

I(ϕj(X(i),j−1,ui,j) ≤ x) (12)

=
1
n

n−1∑
i=0

I(Xi,j ≤ x) def= F̂j(x).

In (11), we approximate the integral in (10) by RQMC over [0, 1)d+1 with the point set P ′
n,j . The

sorting at step j − 1 is needed for (12) to be true; i.e., the ith point of P ′
n,j must be assigned to

the chain whose state is X(i),j−1. Observe that this point set gives a perfect stratification of the

distribution F̂j−1, with exactly one observation per stratum (the strata are the jumps of F̂j−1). On

the other hand, these observations are generally not independent across the strata. The distribution

Fj is estimated by the empirical distribution F̂j of the realizations Xi,j = ϕj(X(i),j−1,ui,j), i =

0, . . . , n−1. This RQMC approximation in (11) is expected to be more accurate than using standard

MC. The approximation error in (8) depends on how well Fj−1 is approximated by F̂j−1, i.e., on an

accumulation of integration errors in (11) over the previous stages. The rationale of the array-RQMC

method is to reduce this integration error by using RQMC at each stage.

In the case where ` > 1, the inverse function F̂−1
j−1 is not well-defined, so (10) no longer stands.

But suppose that the function h is selected so that whenever two states X1,j and X2,j are h-equivalent,

the distribution of the future costs cj′(Xj′) for j′ > j conditional on Xi,j is the same for i = 1 and

i = 2. In this idealistic setting, knowing the value of Zj = h(Xj) at step j provides as much relevant

information as knowing the state Xj , so it suffices to approximate the (univariate) distribution

function Gj of Zj instead of approximating Fj . Assuming that Zj = ϕ̃j(Zj−1,Uj) for some functions

ϕ̃j , denoting Zi,j−1 = h(Xi,j−1), and denoting Ĝj the empirical distribution of the sorted values

9

Z(0),j ≤ · · · ≤ Z(n−1),j , we can use the same argument as above with G instead of F :

Gj(z) = P [Zj ≤ z]

=
∫ ∞

−∞

∫
[0,1)d

I(ϕ̃j(y,u) ≤ z) du dGj−1(y)

≈
∫ ∞

−∞

∫
[0,1)d

I(ϕ̃j(y,u) ≤ z) du dĜj−1(y)

=
∫

[0,1)d+1

I(ϕ̃j(Ĝ−1
j−1(v),u) ≤ z) du dv

≈ 1
n

n−1∑
i=0

I(ϕ̃j(Ĝ−1
j−1((i + 0.5)/n),ui,j) ≤ z)

=
1
n

n−1∑
i=0

I(ϕ̃j(Z(i),j−1,ui,j) ≤ z)

=
1
n

n−1∑
i=0

I(Zi,j ≤ z) = Ĝj(z).

In practice, it is usually not possible (or too difficult) to select h so that h-equivalent states X

are exactly equivalent in the sense that they give the same distributions for the future costs. But a

good choice of h should try to approximate this. The performance of the method depends on this

choice. With a bad choice of h, the variance may not be reduced at all or may even increase, but

reasonable heuristic choices may suffice to reduce the variance, as our examples will illustrate. The

following algorithm and the Propositions 1 and 2 that follow are valid regardless of h.

The array-RQMC algorithm can be summarized as follows. We first select a d-dimensional QMC

point set P̃n = (ũ0, . . . , ũn−1) and a randomization method for P̃n such that if Pn = (u0, . . . ,un−1)

denotes a realization of the randomization, then P ′
n = {((i + 0.5)/n, ui), 0 ≤ i < n} is a modified

RQMC point set. Then we simulate in parallel n copies of the chain, numbered 0, . . . , n − 1, as

follows (the braces delimit the scope of the “while” loops):

Array-RQMC algorithm:

Let X0,0 ← x0, . . . , Xn−1,0 ← x0, and j ← 1;

While X0,j−1 <∞ do {

Randomize P̃n afresh into Pn,j = {u0,j , . . . ,un−1,j};

Let i← 0;

While (i < n and Xi,j−1 <∞) do {

Xi,j ← ϕj(Xi,j−1,ui,j); i← i + 1;

10

}

Sort the states X0,j , . . . , Xn−1,j by increasing order of their values of h(Xi,j),

and renumber them in this order, i.e., so that h(X0,j) ≤ · · · ≤ h(Xn−1,j);

j ← j + 1;

}

Return the average Ȳn of the n realizations of Y as an estimator of µ.

Let Ȳn,j denote the average cost at step j, across the n copies. We have Ȳn =
∑∞

j=1 Ȳn,j . The

randomness of τ may of course affect the performance of the algorithm, because the number of

copies of the chain that remain alive decreases with the number of steps, so it could happen that

there remains just a few copies for several steps near the end, in which case only a few points from Pn

are used in these steps. Two of our numerical examples, in Sections 4.3 and 4.6, have a random τ .

Proposition 1 The averages Ȳn,j and Ȳn are unbiased estimators of E[cj(Xj)] and µ, respectively.

Proof. The successive steps of the chain use independent randomizations. Therefore, for each

chain, from the assumption made in Item (a) of the definition of a modified RQMC point set, the

vectors that take place of the Uj ’s in the recurrence (1) to generate the successive steps j of the

chain are independent random variables uniformly distributed over [0, 1)d. Thus, any given copy of

the chain obeys the correct probabilistic model defined by (1) and (2), so cj(Xj) and Y have the

correct expectations, E[cj(Xj)] and µ, and their averages over the n copies as well. �

To estimate the variance of Ȳn and compute a confidence interval on µ, we can replicate this

entire procedure independently m times. That is, across the m replications, all randomizations are

independent. With this, we have:

Proposition 2 The empirical variance of the m copies of Ȳn is an unbiased estimator of Var[Ȳn].

Proof. This follows from the fact that the m copies of Ȳn are i.i.d. unbiased estimators of µ.

These m copies are independent because randomized points from different copies at any given step

are independent. �

This proposition implies that the variance of the overall average converges as O(1/m) when

m→∞. In the next section, we examine the convergence rate as a function of n when n→∞, for

simplified cases.

11

3 Convergence

We want theoretical results on how fast Ȳn,j and Ȳn converge to their expectations. A first idea would

be to bound the integration error represented by the approximation signs in (6), (8), and (11), via the

Koksma-Hlawka inequality (3). This inequality is ineffective since the integrand I(ϕj(F̂−1
j−1(v),u) ≤

x) in (10) may have infinite Hardy-Krause variation: It is equal to 1 in part of the unit cube, 0

elsewhere, and the shape and complexity of the boundary between these two regions depends on

ϕ1, . . . , ϕj . This boundary (on which f is discontinuous) is often not aligned with one of the axes.

In what follows, we prove bounds on the convergence rate directly from first principles, for

special cases for which ` = d = 1 (so X ⊆ R∪{∞} and the distribution function Fj is defined over

R) and P ′
n,j has special properties. We will end up bounding |Ȳn,j − E[cj(Xj)]| by the product of

the Kolmogorov distance between F̂j and Fj , defined as

∆j = sup
x∈X
|F̂j(x)− Fj(x)| = sup

x∈R
|F̂j(x)− Fj(x)|,

and the total variation of the cost function cj . This is Proposition 8. To bound this product, we will

obtain bounds on ∆j by using notions of histogram and integral discrepancies whose properties are

examined in the next subsection.

Related results have been obtained by Lécot (1996) for general real-valued functions defined

over the unit cube and having bounded variation, in a deterministic setting, under the stronger

assumption that Pn is a (t, m, s)-net, and with different methods of proof.

3.1 Histogram and Integral Discrepancies

A histogram with L intervals over the unit square is defined as the surface under a step function over

the interval [0, 1]: Partition the unit interval [0, 1) at the bottom of the square into L subintervals,

say of lengths q1, . . . , qL where q1 + · · ·+ qL = 1. Over the ith interval, put a rectangle of height hi,

where 0 ≤ hi ≤ 1, and with the same width as the interval. The histogram H is the union of these

rectangles. We say that the histogram is monotone (increasing or decreasing) if h1 ≤ · · · ≤ hL or

h1 ≥ · · · ≥ hL.

Let H(L) be the family of all histograms with L intervals over the unit square, and H+(L) the

subfamily of all monotone histograms. The L-histogram discrepancy of a point set Pn in the unit

12

square is defined as

Dh(L,Pn) = sup
H∈H(L)

|card(Pn ∩H)/n− area(H)|

where area(H) =
∑L

i=1 qihi denotes the area of H. If H(L) is replaced by H+(L), we get the

L-staircase discrepancy of Pn, denoted D+
h (L,Pn). The following lemma is rather straightforward:

Lemma 3 Let Pn denote the first n points of a two-dimensional low-discrepancy sequence whose

star discrepancy satisfies D∗
n(Pn) = O(n−1 log n). Then there is a constant K such that for all L,

D+
h (L,Pn) ≤ Dh(L,Pn) ≤ LKn−1 log n.

Proof. In every histogram H, each rectangle can be written as a difference of two rectangular

boxes anchored at the origin. Thus, H can be written as a sum and difference of 2L such boxes. But

we know that the star discrepancy of Pn is in O(n−1 log n) and the last inequality follows. The first

inequality is obvious. �

Several two-dimensional sequences that satisfy this requirement are readily available (Niederre-

iter, 1992); for instance, one can take the two-dimensional Sobol’ sequence. However, the bound in

Lemma 3 is linear in L so it is not very useful for Markov chains with large state spaces (assuming

that each state of the chain is associated with one of the L subintervals and vice-versa). The next

lemma provides a bound that does not depend on L. It is based on the forthcoming Assumption 1

and a notion of integral discrepancy obtained when L→∞.

Let F(v) denote the set of functions f : [0, 1] → [0, 1] such that V (f) ≤ v, where V (f) is the

variation of f , defined in (4). It is well known that a function of bounded variation over a given

interval is Riemann-integrable over that interval. For f : [0, 1]→ [0, 1], let H(f) = {(x, y) ∈ [0, 1]2 :

0 ≤ y ≤ f(x)} be the surface under f . For a point set Pn, we define the integral discrepancy at

variation v by

Di(Pn, v) = sup
f∈F(v)

|card(Pn ∩H(f))/n− area(H(f))| . (13)

(An equivalent quantity is defined in Niederreiter (1992), page 17.) If f has bounded variation,

H(f) can be approximated arbitrarily closely by an histogram H having L rectangles of heights

h1 = f(x1), . . . , hL = f(xL) where 0 < x1 < · · · < xL = 1 for some large L. If V (f) ≤ v, the step

function fH that corresponds to this H has total variation

V (fH) =
L∑

i=2

|hi − hi−1| ≤ V (f)≤ v.

13

Hence, we have that

Di(Pn, v) = sup
L≥1, H∈H(L), V (fH)≤v

|card(Pn ∩H)/n− area(H)| .

Assumption 1 Suppose that n is a square number, so
√

n is an integer, and that if we partition the

unit square into n subsquares of size n−1/2 × n−1/2, each of those subsquares contains exactly one

point from Pn.

Several well-known RQMC point sets satisfy this assumption, for example a digitally shifted

version of the two-dimensional Hammersley point set (or Sobol’ net, or Faure net) in prime base b,

or an affine matrix scramble of it, when n is a power of b (Matoušek, 1999; Owen, 2003b), or even a

stratified sample of n points in the n subsquares (we will return to this one in Section 3.4).

Lemma 4 Under Assumption 1, for any v ≥ 0, we have Di(Pn, v) ≤ (v + 1)n−1/2.

Proof. Consider a function f : [0, 1] → [0, 1] with V (f) ≤ v. We define the extended graph

of f , denoted G(f), as the boundary between H(f) and [0, 1]2 \ H(f). This is the graph of f ,

{(x, f(x)) : 0 ≤ x ≤ 1}, to which we add vertical lines that link the graph pieces where f is

discontinuous. The idea of the proof is to bound the number of subsquares that intersect G(f)

and then bound the error in terms of this number. The n squares are partitioned into
√

n columns

that correspond to
√

n intervals on the horizontal axis. Suppose that G(f) goes into `j different

subsquares in column j. Clearly, these `j subsquares must form a connected rectangle (see Figure 1).

For any of these subsquares S, we have an overestimation of area(H(f)∩ S) if the point of Pn lying

in subsquare S is in H(f) and underestimation otherwise. The total error in any given column is the

total amount of overestimation minus the total amount of underestimation. Let St,j and Sb,j denote

the top and bottom subsquares from this rectangle, respectively. They may be the same subsquare,

if `j = 1.

Suppose that we are overestimating in St,j (as in Figure 1). If we are underestimating in Sb,j ,

or if the top and bottom subsquares are the same, the combined error in the top and bottom

subsquares cannot exceed 1/n, so the error in column j is at most (`j − 1)/n. Otherwise, i.e.,

if we are also overestimating in Sb,j and `j ≥ 2 (as in Figure 1), then the error in the bottom

subsquare is the surface of this subsquare which is above G(f). This surface cannot exceed Vb,jn
−1/2

where Vb,j is the variation of f in this subsquare. Then in this second case, the error in column

14

a

c

b

↑|
Vb,j

|↓

←− n−1/2 −→

↑
|

n−1/2

|
↓

↑
|

n−1/2

|
↓

↑
|

n−1/2

|
↓

..

··
··
·
··
··
··
··
·
··
··
··
··
·
··
··
··
··
·
··
··
··
··
·
··
··
··
··
·
··
··
··
··
·
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··

··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
··
··
··
··
··
··
··

··
··
··
··
··
··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
··
··
··
··
··
··

··
··
··
··
··
··
··
··
··
··
··
··
··

··
··
··
··
··
··
··
··
··
··
··
··

··
··
··
··
··
··
··
··
··
··
··
··

··
··
··
··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
··
··
··
··

··
··
··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
··
··
··
·

•

•

•

Figure 1: Illustration of the proof of Lemma 4. The shaded surface is H(f) for a given column j.

Here, `j = 3, we overestimate in each of those three subsquares, and Vj = (b− a) + (b− c).

j is at most (`j − 1)/n + Vb,jn
−1/2. But in both cases, the total variation Vj in column j satisfies

Vj ≥ (`j − 2)n−1/2 + Vb,j , so the error in column j cannot exceed Vjn
−1/2 + n−1. This same error

bound can be obtained by a symmetrical argument in the case where we are underestimating in St,j .

By adding these inequalities over all columns, we obtain that the total error cannot exceed

V (f)n−1/2 + n1/2n−1 = (V (f) + 1)n−1/2 ≤ (v + 1)n−1/2. By taking the sup over f as in (13), the

result follows. �

Let F+ be the set of monotone functions f : [0, 1]→ [0, 1] and define

D+
i (Pn) = sup

f∈F+

|card(Pn ∩H(f))/n− area(H(f))| .

For f ∈ F+, V (f) cannot exceed 1. This gives:

Corollary 5 Under Assumption 1, we have D+
i (Pn) ≤ 2n−1/2.

To see that this discrepancy bound is tight, consider the constant function f(x) = n−1/2(1 + ε)

for a small ε > 0 and suppose that each column has two points in H(f). Then V (f) = 0 and the error

is (1−ε)n−1/2, which can be arbitrarily close to the bound n−1/2. Theorem 1 of Hlawka (1971) yields

an alternative bound for this situation: if we apply it with s = 2 and a two-dimensional function

that equals 1 in the histogram and 0 elsewhere, we get the looser bound D+
i (Pn) ≤ 18n−1/2.

Instead of asking only for the points of Pn to be evenly distributed among the n subsquares, we

could have the stronger requirement that they form a (0, k, 2)-net in base 2, assuming that n = 2k for

15

some integer k. This means that for every partition of the unit square into n rectangles of width 2−q

and height 2−k+q for some q = 0, 1, . . . , k, every rectangle contains exactly one point. Consider the

function f(x) = x. Proposition 5 of Lécot (1996) shows that for this example, there is a (0, k, 2)-net

(namely the Hammersley point set in base 2) for which the error is n−1/2/2. In other words, the rate

of the bound of Lemma 4 is tight even under this stronger assumption.

3.2 Error Bounds on the State Distribution

Define ∆j(z) = F̂j(z)− Fj(z) and

∆j = sup
z∈R
|∆j(z)|,

the distance between F̂j and Fj , with the convention that ∆0 = 0. Here we derive bounds on ∆j ,

under the following assumption, which implies that each ϕj is nondecreasing with respect to its

second argument.

Assumption 2 The Markov chain has a one-dimensional state space X ⊆ R, so ` = 1, and at each

step j, we use inversion from a single uniform random variable to generate the next state Xj from

its conditional distribution given Xj−1.

At step j of the Markov chain, for x ∈ X and z ∈ R, let

Fj(z) = P [Xj ≤ z],

Fj(z | x) = P [Xj ≤ z | Xj−1 = x],

Λj(z) = V (Fj(z | ·))
def=

∫ ∞

−∞
|dFj(z | x)|, and

Λj = sup
z∈R

Λj(z),

where the differential dFj(z | x) in the definition of Λj(z) is with respect to x. Thus, Λj(z) is the

total variation of the function Fj(z | ·). If the Markov chain is stochastically monotone, which means

that Fj(z | y) = P [Xj ≥ x | Xj−1 = y] is monotone in y for each j, then Λj cannot exceed 1.

Let F̂j be the empirical distribution of the states of the n copies of the chain at step j and

F̃j(z) =
∫ ∞

−∞
Fj(z | x)dF̂j−1(x) =

1
n

n−1∑
i=0

Fj(z | X(i),j−1),

so F̃j is the conditional distribution function of Xj when Xj−1 is generated from F̂j−1. The value

of F̃j(z) is equal to the area of the histogram Hj,z whose height over the interval [i/n, (i + 1)/n) is

16

i = 1 i = 2 i = 3 i = 4
··
··
··
··
··
·

··
··
··
··
··
·

··
··
··
··
··
·

··
··
··
··
··
·

··
··
··
··
··
·

··
··
··
··
··
·

··
··
··
··
··
·

··
··
··
··
··
·

··
··
··
··
··
·

··
··
··
··
··
·

··
··
··
··
··
·

··
··
··
··
··
·

··
··
··
··
··
·

··
··
··
··
··
·

··
··
··
··
··
·

··
··
··
··
··
·

··
··
··
··
··
·

··
··
··
··
··
·

··
··
··
··
··
··
··
·

··
··
··
··
··
··
··

··
··
··
··
··
··
··
·

··
··
··
··
··
··
··

··
··
··
··
··
··
··
·

··
··
··
··
··
··
··

··
··
··
··
··
··
··
·

··
··
··
··
··
··
··

··
··
··
··
··
··
··
·

··
··
··
··
··
··
··

··
··
··
··
··
··
··
·

··
··
··
··
··
··
··

··
··
··
··
··
··
··
·

··
··
··
··
··
··
··

··
··
··
··
··
··
··
·

··
··
··
··
··
··
··

··
··
··
··
··
··
··
·

··
··
··
··
··
··
··

··
··
··
··
··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
··
··

··
··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
··
··

··
··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
··
··

··
··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
··
··

··
··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
··
··

··
··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
··
··

··
··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
··
··

··
··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
··
··

··
··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
··
··

•

•

•

•

Figure 2: An example of an histogram Hj,z for n = 4. The histogram is the shaded area, with height

Fj(z | X(i),j−1), and F̂j(z) is the fraction of P ′
n,j that falls in Hj,z.

Fj(z | X(i),j−1), for i = 0, . . . , n−1. This histogram Hj,z is inside the unit square [0, 1)2 (see Figure 2

for an illustration). We also have that

V [fHj,z] =
n−1∑
i=1

∣∣Fj(z | X(i−1),j−1)− Fj(z | X(i),j−1)
∣∣ ≤ Λj(z) ≤ Λj , (14)

where we have exploited the fact that the states are sorted by increasing order.

The following proposition provides bounds on ∆j .

Proposition 6 Let assumption 2 hold.

(a) Suppose that the Markov chain has a finite state space X = {1, . . . , L} and that the star

discrepancy of each P ′
n,j satisfies D∗

n(P ′
n,j) = O(n−1 log n) w.p.1 (this can easily be achieved for

example by constructing P ′
n,j as follows: take the first n points of a (0, 2)-sequence in some base b,

either randomized or deterministic, sort them by their first coordinate, and replace the first coordinate

of point i by (i + 0.5)/n for each i). Then

|F̂j(z)− F̃j(z)| ≤ LKn−1 log n

for some constant K. If this holds for all j ≥ 1 and z ∈ R, then

∆j ≤ LKn−1 log n

j∑
k=1

j∏
i=k+1

Λi. (15)

for all j.

(b) If P ′
n,j satisfies Assumption 1, then for all j ≥ 1 and z ∈ R,

|F̂j(z)− F̃j(z)| ≤ (Λj(z) + 1)n−1/2

17

and

∆j ≤ n−1/2
j∑

k=1

(Λk + 1)
j∏

i=k+1

Λi. (16)

Proof. At step j, we have

|∆j(z)| = |F̂j(z)− Fj(z)| ≤ |F̂j(z)− F̃j(z)|+ |F̃j(z)− Fj(z)|. (17)

To bound ∆j we will bound the two quantities on the right of (17). We have

F̃j(z)− Fj(z) =
∫ ∞

−∞
Fj(z | x)dF̂j−1(x)−

∫ ∞

−∞
Fj(z | x)dFj−1(x)

=
∫ ∞

−∞
(Fj−1(x)− F̂j−1(x))dFj(z | x) (18)

where the second equality is obtained via integration by parts. Therefore,

|F̃j(z)− Fj(z)| ≤
∫ ∞

−∞
|F̂j−1(x)− Fj−1(x)||dFj(z | x)| ≤ Λj(z)∆j−1 ≤ Λj∆j−1. (19)

From (19) and (17), we have

∆j = sup
z∈R
|F̂j(z)− Fj(z)| ≤ Λj∆j−1 + sup

z∈R
|F̂j(z)− F̃j(z)|.

Together with the fact that ∆0 = 0, this gives

∆j ≤
j∑

k=1

sup
z∈R
|F̂k(z)− F̃k(z)|

j∏
i=k+1

Λi, (20)

where an empty product is assumed to be 1.

We recall that F̃j(z) is the area of the histogram Hj,z and observe that F̂j(z) is the fraction of

the points of P ′
n,j that fall in Hj,z (Figure 2). Therefore,

F̂j(z)− F̃j(z) = card(P ′
n,j ∩Hj,z)/n− area(Hj,z), (21)

which implies, using (13), that

|F̂j(z)− F̃j(z)| ≤ Di(P ′
n,j , V (Hj,z)) ≤ Di(P ′

n,j ,Λj(z)). (22)

This, together with Lemmas 3 and 4, proves the proposition. �

Corollary 7 If the Markov chain is also stochastically increasing, i.e., P [Xj ≥ x | Xj−1 = y] is

non-decreasing in y for each j, the bound (16) becomes

∆j ≤ 2jn−1/2.

Proof. Recall that in that case, Fj(z | y) is non-decreasing in y, so Λj ≤ 1 for each j. �

18

3.3 Worst-Case Error Bounds on the Expected Average Cost

The next step is to bound the error on the expected cost at step j. Let

V (cj) =
∫ ∞

−∞
|dcj(x)|,

the total variation of the cost function cj . Our bounds on ∆j proved in the preceding section readily

provide bounds on the error
∣∣Ȳn,j − E[cj(Xj)]

∣∣ as follows, in the case where cj has bounded variation.

Proposition 8 We have

∣∣Ȳn,j − E[cj(Xj)]
∣∣ ≤ ∆jV (cj).

Proof. Using integration by parts for the third equality, we get

∣∣Ȳn,j − E[cj(Xj)]
∣∣ =

∣∣∣∣∣ 1n
n−1∑
i=0

cj(Xi,j)− E[cj(Xj)]

∣∣∣∣∣
=

∣∣∣∣∫ ∞

−∞
cj(z)dF̂j(z)−

∫ ∞

−∞
cj(z)dFj(z)

∣∣∣∣
=

∣∣∣∣∫ ∞

−∞
(F̂j(z)− Fj(z))dcj(z)

∣∣∣∣
≤

∫ ∞

−∞
|∆j(z)||dcj(z)|

≤ ∆jV (cj).

�

This proposition tells us that the square error of Ȳn,j converges at worst at the same rate as ∆2
j

when n→∞. If τ is bounded, this implies that |Ȳn−µ|2 converges as O(
∑τ

j=1 ∆2
j) = O(1/n) in the

worst case.

3.4 Variance Bounds for array-RQMC

Proposition 6(b) gives a worst-case deterministic bound of O(1/n) for the square error of Ȳn,j , in

contrast with an expected square error of O(1/n) for ordinary Monte Carlo. In what follows, we

obtain a better bound on the convergence rate of the variance by exploiting randomization. The

proof is given in a setting where the following holds:

Assumption 3 Let Assumption 1 hold and let the random variables vi = ui mod n−1/2 be pairwise

independent and uniformly distributed over [0, n−1/2) (the ui’s are one-dimensional in this case).

19

The second part of this assumption simply means that the second coordinate of each point of

P ′
n,j is uniformly distributed over the (vertical) interval determined by the box that contains this

point, independently of the position of any other point. With this independence assumption, it is

much easier to bound the variance of the array-RQMC estimator. A point set that satisfies this

assumption is easily obtained by stratified sampling over the unit square: Generate one point in

each subsquare of the partition, uniformly over the subsquare and independently across the different

subsquares, sort these points by the first coordinate, and then replace the first coordinate of the ith

point by (i + 0.5)/n. Any point set that satisfies Assumption 3 is also equivalent to this stratified

sampling construction in the array-RQMC algorithm.

Proving the result without the independence assumption is more difficult and we leave it for

future work. Intuitively, with RQMC point sets that have more uniformity and negative dependence

than a stratified sample (e.g., good lattice rules and nets), we would expect an even better variance

reduction. This is indeed what we have observed in all our numerical experiments (see Section 4).

Define

Γj =
1

4n3/2

j∑
k=1

(Λk + 1)
j∏

i=k+1

Λ2
i . (23)

Proposition 9 Under Assumptions 1, 2, and 3, for each j and z, we have

Var[F̂j(z)− F̃j(z)] ≤ (Λj + 1)n−3/2/4, (24)

Var[F̂j(z)− Fj(z)] ≤ Γj , (25)

and

E
[(

Ȳn,j − E[cj(Xj)]
)2

]
≤ ΓjV (cj)2. (26)

Proof. To prove (24), we first recall that F̃j(z) is the area of the histogram Hj,z whereas F̂j(z) is

the fraction of P ′
n,j that falls in this histogram. We enumerate the n subsquares with i = 0, . . . , n−1.

Let Si be the ith subsquare and δj(z, i) = card(P ′
n,j ∩Hj,z ∩ Si)− n area(Hj,z ∩ Si). We have

F̂j(z)− F̃j(z) = card(P ′
n,j ∩Hj,z)/n− area(Hj,z) =

n−1∑
i=0

δj(z, i)/n.

For any given j and each i, δj(z, i) is a Bernoulli random variable minus its mean, so E[δj(z, i)] = 0

and Var[δj(z, i)] ≤ 1/4. These Bernoulli random variables have nonzero variance only for the

subsquares that intersect the histogram boundary (that separates Hj,z from [0, 1]2 \Hj,z), because

for the other subsquares they are constant.

20

Here we consider a fixed j and drop the subscript j for a moment. Let Sb,c and St,c denote

the lowest and highest subsquares that intersect the histogram boundary in column c, and let Vb,c

and Vt,c be n1/2 times the variation of the histogram in these two subsquares. Let pc be n times

the area of St,c contained in the histogram and qc be n times the area of Sb,c not contained in the

histogram. We suppose, until indicated otherwise, that Sb,c and St,c are not the same subsquare.

Then the Bernoulli variables δj(z, i) that correspond to these two subsquares are independent and

have variances bounded by pc(1−pc) and qc(1− qc) (which cannot exceed 1/4), respectively. We will

now prove the following bound on the sum of their variances:

pc(1− pc) + qc(1− qc) ≤
Vb,c + Vt,c + 1

4
. (27)

Denote v = Vb,c + Vt,c. If v ≥ 1, (27) holds trivially, so let us assume that v ≤ 1. At any given

point on the horizontal axis, the histogram boundary cannot be in Sb,c and St,c at the same time.

Let ρ be the fraction of the horizontal interval in column c where the histogram is in St,c. Then we

have pc ≤ ρVt,c and qc ≤ (1 − ρ)Vb,c. We now observe that either ρVt,c ≤ v/4 or (1 − ρ)Vb,c ≤ v/4.

To see this, consider a rectangle of width 1 and height v, with bottom left corner at point (0, 0),

divided into four subrectangles by a vertical line at ρ and an horizontal line at Vt,c. The quantities

ρVt,c and (1−ρ)Vb,c are the surfaces of two opposite subrectangles of this rectangle, so their surfaces

cannot be both larger than a quarter of the rectangle’s surface v. Indeed, suppose that ρVt,c > v/4.

Then, Vt,c > v/(4ρ) and therefore (1−ρ)(v−Vt,c) > v/4 would imply that (1−ρ)(v−v/(4ρ)) > v/4,

i.e., 0 < (1 − ρ)(4ρ − 1) − ρ = −(2ρ − 1)2, which is a contradiction. Therefore, we have either

pc(1 − pc) ≤ v/4 or qc(1 − qc) ≤ v/4, and since these two quantities never exceed 1/4, the bound

(27) follows. If Sb,c and St,c are the same subsquare, the variance of δj(z, i) in this subsquare cannot

exceed 1/4.

If other subsquares intersect the histogram in column c, between Sb,c and St,c, then in each

of these subsquares the histogram variation is at least n−1/2 and the variance of the corresponding

δj(z, i) is at most 1/4. By adding the above inequalities over all the columns, we obtain that the

sum (over i) of variances of all Bernoulli variables δj(z, i) is bounded by (Λj + 1)n1/2/4.

Since these δj(z, i)’s are pairwise independent across the different values of i, we obtain

Var
[
F̂j(z)− F̃j(z)

]
=

n−1∑
i=0

Var[δj(z, i)/n] ≤ n1/2(Λj + 1)/(4n2) = (Λj + 1)n−3/2/4,

which proves (24).

21

We now prove (25) by induction on j. It obviously holds for j = 0, because F̂0 = F0. Suppose it

holds for j−1, for all z. Observe that from the proof of Proposition 1, E[F̂j(x)] = P [Xj ≤ x] = Fj(x),

so E[∆j(x)] = 0. Then,

E[∆j−1(x)∆j−1(y)] = Cov[∆j−1(x), ∆j−1(y)] ≤ sup
z∈R

Var[∆j−1(z)] ≤ Γj−1

for all states x, y. Therefore, using (18) for the first equality and assuming that we can interchange

the expectation and integral in the third equality,

E[(F̃j(z)− Fj(z))2]

= E

[(∫ ∞

−∞
(F̂j−1(x)− Fj−1(x))dFj(z | x)

)2
]

= E

[∫ ∞

−∞

∫ ∞

−∞
(∆j−1(x)∆j−1(y))dFj(z | x)dFj(z | y)

]
=

∫ ∞

−∞

∫ ∞

−∞
E[∆j−1(x)∆j−1(y)]dFj(z | x)dFj(z | y)

≤
∫ ∞

−∞

∫ ∞

−∞
Γj−1dFj(z | x)dFj(z | y)

≤ Λ2
j (z)Γj−1.

Combining this with (24) and (17), and observing that F̂j(z)− F̃j(z) has mean 0 and is uncorrelated

with F̃j(z)− Fj(z), we obtain that

E[(F̂j(z)− Fj(z))2] = Var[(F̂j(z)− Fj(z))2]

= Var[(F̂j(z)− F̃j(z))2] + Var[(F̃j(z)− Fj(z))2]

= E[(F̂j(z)− F̃j(z))2] + E[(F̃j(z)− Fj(z))2]

≤ Λ2
j (z)Γj−1 + (Λj + 1)n−3/2/4

≤ Γj

22

and this completes the induction. To prove the last part, we have

E

∣∣∣∣∣ 1n
n−1∑
i=0

cj(Xi,j)− E[cj(Xj)]

∣∣∣∣∣
2


= E

[∣∣∣∣∫ ∞

−∞
cj(z)dF̂j(z)−

∫ ∞

−∞
cj(z)dFj(z)

∣∣∣∣2
]

= E

[∣∣∣∣∫ ∞

−∞
(F̂j(z)− Fj(z))dcj(z)

∣∣∣∣2
]

≤
∫ ∞

−∞

∫ ∞

−∞
E(∆j(x)∆j(y))|dcj(x)||dcj(y)|

≤
∫ ∞

−∞

∫ ∞

−∞
Γj |dcj(x)||dcj(y)|

≤ (V (cj))2Γj .

�

From (23) and (26), we thus have an O(n−3/2) convergence rate for the variance of the cost at

step j if ` = d = 1, the Λj ’s are bounded, and the cost function has bounded variation. When

the chain is stochastically increasing, we have Λj ≤ 1 for all j and the variance bound becomes

(n−3/2/2)j(V (cj))2.

This could be generalized in principle to higher-dimensional settings, although we are quickly hit

by the curse of dimensionality when ` or d increases. A potential extension would need a counterpart

of Lemma 4. To illustrate the idea, we sketch how this can be done for d = 2 and ` = 1 (the state

space is still one-dimensional but we need two uniforms per step), for a stochastically increasing

Markov chain, so that we have a two-dimensional increasing histogram in the unit cube. Partition

the cube into n subcubes by partitioning each axis into n1/3 equal parts (assuming that n1/3 is an

integer). The histogram boundary is now a surface. If we fix one of the two horizontal coordinates

to a multiple of n−1/3, this determines a vertical plane and the intersection of this plane with the

histogram boundary can be covered by at most 2n1/3 subcubes in a similar manner as in the proof

of Lemma 4. We can do this for each multiple of n−1/3, and repeat in each direction. We find that

the histogram boundary can be covered by at most Kn2/3 subcubes for some constant K. Press

et al. (1992), page 314, sketch a similar argument in a setting where the integral of an indicator

function over the three-dimensional unit cube is approximated by averaging over the (deterministic)

points of a Sobol’ point set. However, their argument is highly heuristic; it would only stand if the

locations of the points in the n subcubes where independent uniform random variables instead of

being deterministic.

23

In general, for a d + 1-dimensional cube, we conjecture that the histogram boundary can be

covered by Kn−d/(d+1) subcubes for some constant K that may depend on d but not on n. This can

be turned into a variance bound of O(n2−d/(d+1)) = O(n1+1/(d+1)).

The result could also be generalized to the case where cj has infinite variation (e.g., unbounded

state spaces and cost functions) if we assume that large-variation areas have low probability.

In our numerical experiments of Section 4, instead of generating the points independently in the

different squares as in the assumptions of Proposition 9, we will generate them according to RQMC

schemes that provide more uniformity, with the aim of inducing a larger amount of negative depen-

dence (i.e., more variance reduction) than with straightforward stratification. Some of these RQMC

schemes (e.g., the two-dimensional Sobol’ nets) have one point per subsquare as in Proposition 9,

but none of them really satisfies the assumptions of Proposition 9 because the locations of the points

in two different squares are not independent. These RQMC schemes turn out to work better in

practice, but so far we have no counterpart of Proposition 9 for them.

4 Numerical Illustrations

We compare MC, classical RQMC, and array-RQMC on a set of examples. We first describe the

different RQMC point sets used in our examples, then we explain our experimental setting.

For the RQMC methods, we use Korobov lattice rules and Sobol’ point sets. A Korobov rule is

defined by two parameters 0 < a < n and the corresponding s-dimensional point set is

Pn = {vi = (i/n, (ia mod n)/n, . . . , (ias−1 mod n)/n), i = 0, . . . , n− 1}

(Niederreiter, 1992; Sloan and Joe, 1994; L’Ecuyer and Lemieux, 2000). Given n and a, there is

no limit on s, so Pn can be viewed as an infinite-dimensional point set (L’Ecuyer and Lemieux,

2000). This Pn is randomized by applying a random shift modulo 1 to all the points, simultaneously.

We also consider applying the baker’s transformation, which transforms each coordinate u to 2u if

u < 1/2 and to 2(1 − u) if u ≥ 1/2, after the random shift. This transformation has a “locally

antithetic” effect and provably improves the convergence rate when integrating a smooth function

with a randomly shifted lattice rule (Hickernell, 2002). For the parameters, we take n equal to the

largest prime number smaller than 2k for k = 10, 12, . . . , 20, a equal to the odd integer nearest to

n/1.61803399 when s = 2 (so a/n is near the golden ratio; the rule always performs well in the

24

two-dimensional spectral test with this choice), and a from Table 1 of L’Ecuyer and Lemieux (2000)

for point sets in dimensions s > 2 (which is always the case for classical RQMC).

Our second type of point set is a Sobol’ net with n = 2k points for k = 10, 12, . . . , 20 (Bratley

and Fox, 1988), randomized by a left (upper triangular) matrix scrambling followed by a random

digital shift (Matoušek, 1999; L’Ecuyer and Lemieux, 2002; Owen, 2003b; Glasserman, 2004), as

implemented in the SSJ software (L’Ecuyer, 2004b). Available implementations of Sobol’ nets have

an upper bound on the dimension s of the point set, so we cannot use these point sets when the

dimension is large or unbounded.

With classical RQMC, we consider the following point sets (in each case, the name in parentheses

will refer to the corresponding combination): a randomly-shifted Korobov rule (Classical-Korobov);

a randomly-shifted Korobov rule with the baker’s transformation (Classical-Korobov-Baker); and a

randomized Sobol’ point set (Classical-Sobol) when the dimension s was small.

For array-RQMC, the randomization is not applied to the first coordinate, but only to the

subsequent coordinates, as explained when we gave our conditions on P ′
n,j . The first coordinate is

skipped and is only used to enumerate the points. The Korobov points are always enumerated by

order of their (skipped) first coordinate, which takes the values 0, 1/n, . . . , (n−1)/n in succession (in

the implicit definition of P ′
n, we add 0.5/n to these values). For instance, if d = 1, the ith point of

Pn before the shift is (ia mod n)/n. The points of a Sobol’ net are usually enumerated by order of

their Gray code, because this is a bit faster than enumerating them in their natural order (see, e.g.,

Antonov and Saleev, 1979; Bratley and Fox, 1988; L’Ecuyer, 2004b). Enumerating the points of Pn

by their Gray code is equivalent to applying a permutation to the second and further coordinates of

the points of P ′
n, i.e., it performs an additional scrambling for these coordinates. It is also possible

to enumerate the points by order of their first coordinate. We tried both. (Note that for classical

RQMC, the order of enumeration is irrelevant.)

In summary, for array-RQMC, we have the following types of d-dimensional RQMC point sets

for Pn: a (d+1)-dimensional Korobov lattice rule with its first coordinate skipped, randomly shifted

(Array-Korobov); the same Korobov rule with the random shift followed by a baker’s transformation

(Array-Korobov-Baker); the first n points of a randomized Sobol’ sequence where the points are

enumerated by order of their Gray code (Array-Sobol); the same randomized Sobol’ point set but

with the points enumerated in their natural order (Array-Sobol-NoGray); and for d = 1, in the first

example, we also tried a stratified sample that satisfies Assumption 3 (Array-Stratification).

25

For each combination and each value of n considered, we estimate the variance reduction factor

(VRF) compared with standard MC, defined as Var[Y]/(n Var[Ȳn]) where Ȳn is the estimator with

the RQMC method considered. We estimate Var[Ȳn] by the sample variance of m = 100 independent

copies of Ȳn and Var[Y] by the empirical variance of a very large number of independent replicates

of Y (up to several millions). Thus, Var[Y] is very accurately estimated, but Var[Ȳn] is not. As

a result, the VRF estimates are noisy; as a crude assessment, they have about 10 to 20% relative

accuracy. They are all rounded to the nearest integer. The simulations were performed in Java,

using the SSJ simulation library (L’Ecuyer, 2004b).

If we measure the work by the number of simulated copies of the chain, then the VRF as we

have defined it also measures the efficiency improvement of the RQMC method compared with MC.

Another possibility would be to measure the work in terms of CPU time. In fact, the CPU times to

simulate the chains (excluding the sorting) are about the same for all the methods, with one exception:

there is an overhead of 10 to 40 percent for the baker’s transformation, presumably because we have

implemented it as an additional layer that applies to any point set and involves more method calls.

On the other hand, sorting the chains at each step of the array-RQMC algorithm brings significant

additional overhead. It requires an O(n log n) effort as n→∞, whereas the simulation itself requires

O(n) time. In our experiments, we just used the general-purpose sorting procedures available in

the standard Java libraries of JDK 1.5 from SUN. When the state space was one-dimensional (in

the examples of Sections 4.1, 4.2, 4.3, an 4.6), we stored the states of the chains in an array of

real numbers and just sorted that array at each step of array-RQMC. Then, the additional CPU

time for sorting the chains ranged approximately from 50% (for n = 210) to 90% (for n = 220),

so the overall CPU time was multiplied by a factor between 1.5 and 1.9 with array-RQMC. For

higher-dimensional state spaces (the examples of Sections 4.4 and 4.5), the chains were stored as an

array of Java objects, and in that case the sorting algorithm invokes a comparison method each time

it compares two objects. This is very general and flexible, but certainly not very efficient. In this

case, using array-RQMC multiplied the CPU time by a factor from 2 to 5 with n = 210 and from 8

to 14 with n = 220 (depending on the example). These factors could be reduced by implementing

specialized sorting procedures with much fewer method invocations, but we did not do that and

made no serious attempt at optimizing our programs for speed. Just as a quick test after completing

our experiments, we tried replacing the sorting procedure of JDK 1.5 by another general-purpose

procedure taken from the Colt library (Hoschek, 2004) (which also invokes a comparison method but

26

uses a different sorting algorithm). For array-RQMC with n = 220, on the same computer, the CPU

times were approximately halved. To obtain efficiency improvement factors in terms of CPU times,

the VRFs reported in the tables would have to be divided by the factors just mentioned. We did not

divide by these factors in the tables because they are highly dependent on the Java libraries and Java

virtual machine that are used, the choice of programming language, the size of cache memory on the

computer, etc., and they can probably be reduced. The VRFs given in the tables are independent

of programming implementations.

For array-RQMC with the stratification, the overhead is even more important because the ran-

domization is more expensive and we also have to sort the points explicitly at each step of the chain.

In our implementation (for the first example only), the stratified version takes about the same time

as the other array-RQMC versions for n = 210 and about twice the time for n = 220.

4.1 An M/M/1 Queue with d = 1

Consider a single-server queue with i.i.d. exponential interarrival times Aj with mean 1 and i.i.d.

exponential service times Sj with mean ρ < 1. This ρ is also the utilization factor of the server. We

want to estimate the expected average waiting time of the first t customers, denoted µ. We could

compute µ numerically without simulation; we just use this simple academic example to illustrate

our method.

Let Wj denote the waiting time of customer j in this system, where the first customer (who

arrives to the empty system) has number 0. These Wj ’s satisfy the Lindley recurrence: W0 = 0

and Wj = max(0, Wj−1 + Sj−1 − Aj) for j ≥ 1 (Kleinrock, 1975). We estimate µ by the sample

average Y = (W0 + · · ·+ Wt−1)/t. To compute Y , we need to generate the 2(t− 1) random variates

S0, A1, . . . , St−1, At. This estimator Y is unbounded (so the Koksma-Hlawka inequality gives an

infinite bound for it), but it has bounded variance.

We define a Markov chain that moves by one step each time one of these random variates is

generated. That is, X0 = W0, X1 = W0 + S0, X2 = W1, X3 = W1 + S1, and so on. In this case,

d = 1 and s = 2(t − 1). Later, we will consider the case where the chain moves by one step every

d/2 customers (where d is even), so Xj = Wjd/2 and s = 2(t− 1)/d. In all cases, this Markov chain

is stochastically increasing.

Our results are for t = 100, with ρ = 0.2, 0.5, and 0.8. The MC variance per run σ2 was estimated

27

by making 100×218 independent simulation runs and our best estimates of µ were obtained via array-

RQMC with n = 220. These estimates are (with an accuracy up to the given digits): µ = 0.04922

and σ2 = 0.0005393 for ρ = 0.2, µ = 0.48000 and σ2 = 0.06307 for ρ = 0.5, and µ = 2.48004 and

σ2 = 3.1544 for ρ = 0.8.

Table 1: Empirical VRFs of RQMC with respect to MC, for the average waiting time of 100 customers

in an M/M/1 queue with utilization factor ρ, with n ≈ 2k points.

ρ k = 10 k = 12 k = 14 k = 16 k = 18 k = 20
a for classical Korobov-Baker 306 1397 5693 944 118068 802275
a for array-Korobov 633 2531 10125 40503 162013 648055

0.2 Classical-Korobov-Baker 5 8 15 16 59 117
Classical-Sobol 1 1 3 1 13 28
Array-Korobov 18 55 49 292 850 2169
Array-Korobov-Baker 43 159 306 991 3168 10590
Array-Sobol 87 282 836 3705 10640 47850
Array-Sobol-NoGray 46 112 276 874 2914 7429
Array-Stratification 12 17 31 57 104 183

0.5 Classical-Korobov-Baker 10 7 13 6 14 14
Classical-Sobol 2 1 4 5 9 10
Array-Korobov 14 46 33 231 686 2034
Array-Korobov-Baker 44 200 241 1155 3540 15650
Array-Sobol 123 504 1083 5651 13830 55160
Array-Sobol-NoGray 55 130 302 1188 3507 11260
Array-Stratification 14 23 40 81 142 281

0.8 Classical-Korobov-Baker 11 2 15 17 21 26
Classical-Sobol 3 2 4 6 10 11
Array-Korobov 15 85 33 337 727 5119
Array-Korobov-Baker 70 463 287 2225 10080 75920
Array-Sobol 370 1281 3240 19730 57290 233100
Array-Sobol-NoGray 117 288 996 4580 13210 48660
Array-Stratification 21 40 77 153 246 535

Table 1 reports the empirical VRFs for this example. The array-RQMC methods clearly out-

perform both MC and classical RQMC, even though classical RQMC is already significantly more

efficient than MC (up to 100 times more efficient in one case). The improvement factor is larger

when the queue has more traffic (i.e., for larger ρ, which is also when the variance is larger) and

larger for the Sobol’ nets than for the Korobov rules. For the Korobov rules, adding the baker’s

transform really makes a difference for both the classical and array methods. This shows that the

transformation can be very effective even when the integrand is not smooth (as in the array-RQMC

case). We have seen that in all the examples we tried. For this reason, we do not report results for

28

Korobov rules without the baker’s transform in what follows (with one exception).

For the Sobol’ nets, the results are better when the points are enumerated in Gray code order.

The corresponding scrambling appears helpful, yet we do not have a clear explanation of why.

The stratification provides a significant improvement compared with MC and is even better

than classical RQMC, but not quite competitive with the other array-RQMC implementations. We

implemented it only for the present example. An interesting fact is that the VRF with Array-

Stratification is roughly multiplied by 2 when n is multiplied by 4 (i.e., from one column to the next),

so it seems to be proportional to
√

n. This means that the variance appears to be proportional to

n−2/3, which corresponds exactly to the upper bound proved in Proposition 9.

For classical RQMC, the improvement is much better for the Korobov rules with the baker’s

transform than for the Sobol’ nets. Without the baker’s transform (not show in the table) the

Korobov rules are just slightly better than the Sobol’ nets.

4.2 Increasing d

Suppose that at each step of the Markov chain, we generate d random variates to compute the waiting

times of d/2 customers (d = 1 represents the case examined in the previous subsection). Then the

integral (10) approximated by array-RQMC at each step is a (d + 1)-dimensional integral and we

anticipate that the integration error will increase with d. This is confirmed by the following results.

Table 2 shows the empirical VRFs for various values of d, with n ≈ 218. For classical RQMC,

the exact VRF does not depend on d and the variation observed in the table is only statistical noise;

it gives an idea of the accuracy of our VRF estimators. For Array-Sobol, the VRF decreases with d,

but not so fast. Moreover, the “NoGray” version becomes comparable to the regular one for d > 2.

The VRFs are still substantial even for d = 8, where the RQMC method approximates 9-dimensional

integrals at each step of the Markov chain.

4.3 Random dimension: a Regenerative System

So far in this example, s was fixed at 2(t− 1). We now modify the example so that s =∞ (variable

stopping time). Recall that the M/M/1 queue is a regenerative system that regenerates whenever

a customer arrives to an empty system. Each regenerative cycle contains a random and unbounded

number of customers. Suppose we want to estimate µ = E[Y], where we take the following two

29

Table 2: Estimated VRFs of classical RQMC and d-dimensional array-RQMC with respect to MC,

for the mean waiting time of 100 customers in an M/M/1 queue with utilization factor ρ, for selected

values of d and n ≈ 218.

ρ d = 1 d = 2 d = 4 d = 8
0.2 Classical-Korobov-Baker 59 70 73 78

Classical-Sobol 13 13 12 12
Array-Korobov-Baker 3168 571 283 137
Array-Sobol 10640 4329 2247 352
Array-Sobol-NoGray 2914 5294 2476 403

0.5 Classical-Korobov-Baker 14 22 16 18
Classical-Sobol 9 6 9 7
Array-Korobov-Baker 3540 918 152 150
Array-Sobol 13830 8067 5566 667
Array-Sobol-NoGray 3507 6206 5205 702

0.8 Classical-Korobov-Baker 21 22 20 28
Classical-Sobol 10 12 14 10
Array-Korobov-Baker 10080 2296 1074 597
Array-Sobol 57290 33360 22550 2515
Array-Sobol-NoGray 13210 23850 15570 2117

possibilities for Y : (i) the total waiting time of all customers in a regenerative cycle and (ii) the

number of customers in a cycle whose waiting time exceeds c, for some constant c > 0. Note that

changing the uniforms slightly may split or merge regenerative cycles, making Y highly discontinuous

in both cases. Moreover, in the second case, Y is integer-valued, so it is not as smooth as in the first

case. For our numerical illustration of case (ii), we take c = 1. The exact values of µ for case (i) are

0.0625, 1, and 16 for ρ = 0.2, 0.5 and 0.8 (computed via standard queueing formulas). For case (ii),

they are approximately 0.00458, 0.368, and 3.115 for ρ = 0.2, 0.5, and 0.8 (estimated by simulation).

Table 3: Estimated VRFs for the regenerative M/M/1 queue with utilization factor ρ, case (i).

ρ k = 10 k = 12 k = 14 k = 16 k = 18 k = 20
0.2 Classical-Korobov-Baker 3 5 6 5 14 24

Array-Korobov-Baker 13 28 49 116 289 1093
Array-Sobol 7 21 46 99 239 756

0.5 Classical-Korobov-Baker 2 3 3 1 6 5
Array-Korobov-Baker 11 16 37 79 159 438
Array-Sobol 6 11 24 72 228 469

0.8 Classical-Korobov-Baker 1 1 2 1 2 2
Array-Korobov-Baker 6 12 22 36 151 237
Array-Sobol 3 5 19 32 92 225

30

Table 4: Estimated VRFs for the regenerative M/M/1 queue with utilization factor ρ, case (ii).

ρ k = 10 k = 12 k = 14 k = 16 k = 18 k = 20
0.2 Classical-Korobov-Baker 1 1 2 2 3 2

Array-Korobov-Baker 3 5 15 22 72 113
Array-Sobol 2 5 9 23 46 108

0.5 Classical-Korobov-Baker 3 3 4 2 7 6
Array-Korobov-Baker 22 35 146 253 540 1655
Array-Sobol 13 33 85 245 645 1847

0.8 Classical-Korobov-Baker 2 1 3 2 3 3
Array-Korobov-Baker 16 40 100 76 442 997
Array-Sobol 10 27 81 198 629 1844

Tables 3 and 4 give the estimated VRFs of classical RQMC and array-RQMC compared with

standard MC, again with m = 100. The improvement factors are not as large as in the two previous

tables, but they are still significant, increase with n, and are much larger for the array versions

than for the classical ones. The smaller improvements observed here could be due in part to the

randomness of τ , as explained earlier: some chains reach τ much later than others and the advantage

of a good uniformity of the point set P ′
n,j decreases with the number of chains left, since we use a

smaller and smaller subset of the points. The gain decreases with ρ in case (i) and increases with

ρ in case (ii). Note that in case (ii), “Y > 0” is a rare event when ρ is very small so in that case

something else (such as importance sampling) would have to be done to reduce the variance. The

fact that the gain decreases with ρ in case (i) here while the opposite was true in Table 1, for the

same performance measure, might be an indication of a loss of efficiency due to a larger variance of

τ when ρ increases. For classical RQMC, we need infinite-dimensional RQMC point sets, because

the number of steps of the chain is unbounded; so we cannot use Sobol’ nets.

4.4 Markovian queues in series

For an example with a higher-dimensional state space, we consider a system of ` Markovian queues

in series. Customers arrive to the first queue according to a Poisson process with rate λ, go through

queue 1, then queue 2, etc., in FIFO order. Service rate at queue q is µq > λ, for q = 1, . . . , `. We

uniformize this continuous-time Markov chain (CTMC) model so that the global transition rate is

always ν = λ + µ1 + · · · + µ`. At each step, the next transition is an arrival with probability λ/ν

and a service completion at queue q with probability µq/ν. A service completion at an empty queue

is just a dummy event that does not change the state of the system. The embedded discrete-time

31

Markov chain is {Xj = (Nj,1, . . . , Nj,`), j ≥ 0} where Nj,q is the number of customers in queue q just

after the jth transition. So if we are in state Xj−1 at step j, with probability λ/ν the next state is

Xj = (Nj,1 + 1, . . . , Nj,`), and with probability µq/ν the next state is

Xj =


(Nj,1, . . . , Nj,`) (unchanged) if Nj,q = 0,

(Nj,1, . . . , Nj,q − 1, Nj,q+1 + 1, . . . , Nj,`) if q < ` and Nj,q > 0,

(Nj,1, . . . , Nj,` − 1) if q = ` and Nj,` > 0.

We assume that the system starts empty and evolves for t transitions, so X0 = (0, . . . , 0) and τ = t

in (2). The performance measure µ that we want to estimate is the expected average number of

customers in the system over the first t transition. The corresponding cost function at each step is

cj(Xj) = Nj,1 + · · ·+ Nj,`. Each transition is simulated from a single uniform Uj ∈ [0, 1) (so d = 1)

as follows: if Uj > 1 − λ/ν we have an arrival, otherwise we have a service completion at queue

q = min{i : Uj ≤ (µ1 + · · ·+ µi)/ν}.

The sorting function h is defined by

h(Nj,1, . . . , Nj,`) = Nj,`(1 + ε) + Nj,`−1(1 + ε2) + · · ·+ Nj,1(1 + ε`)

where ε is a very small constant (e.g., 10−6). This has the effect of sorting the states primarily

according to the total number of customers in the system, then (in case of equalities) according to

the number of customers in the last queue, then the number in the next-to-last queue, and so on.

This choice is only a heuristic to regroup “similar” states.

We tried two numerical examples. The first one has ` = 2 (a tandem queue), λ = 1, µ1 = 1.75,

µ2 = 1.25, and t = 200. The second one has ` = 3, λ = 6, µ1 = 10, µ2 = 9, µ3 = 7, and t = 200.

Table 5 reports the estimated VRFs of RQMC compared with standard MC. Array-RQMC clearly

outperforms classical RQMC for both examples and Array-Sobol does better than Array-Korobov-

Baker. We also observe a smaller variance reduction for the three-dimensional example than for the

two-dimensional one.

We then repeated the same experiment, but with µ defined as the fraction of the time where the

number of customers at the last queue exceeds some constant K; that is, with cj(Xj) = I[Nj,` > K].

We took K = 4 for the tandem queue example and K = 6 for the three-queue example. The results

are in Table 6. They are quite similar to those of Table 5.

32

Table 5: Estimated VRFs for the average number of customers in a network of ` queues in series,

with n = 2k points.

` k = 10 k = 12 k = 14 k = 16 k = 18 k = 20
2 Classical-Korobov-Baker 6 1 16 11 16 12

Classical-Sobol 3 3 5 8 11 9
Array-Korobov-Baker 34 82 316 476 1733 3233
Array-Sobol 40 143 480 1104 3785 14340

3 Classical-Korobov-Baker 8 2 15 13 20 15
Classical-Sobol 4 5 8 7 12 14
Array-Korobov-Baker 13 78 196 190 884 783
Array-Sobol 21 55 169 479 1884 4663

Table 6: Estimated VRFs for the fraction of the time where the number of customers at the last

queue exceeds K, for a network of ` queues in series, with n = 2k points.

` k = 10 k = 12 k = 14 k = 16 k = 18 k = 20
2 Classical-Korobov-Baker 4 4 9 10 11 7

Classical-Sobol 4 6 4 9 9 6
Array-Korobov-Baker 39 161 595 929 1477 6408
Array-Sobol 55 226 582 2438 8659 38030

3 Classical-Korobov-Baker 4 2 4 5 5 5
Classical-Sobol 4 3 3 4 7 5
Array-Korobov-Baker 11 46 134 358 610 607
Array-Sobol 16 50 132 450 2091 6082

4.5 Pricing an Asian option

We consider the pricing of an Asian option on a single asset whose value S(τ) at time τ obeys a

geometric Brownian motion: dS(τ) = rS(τ)dτ + σS(τ)dB(τ), where r is the risk-free interest rate,

σ is the (risk-neutral) volatility parameter, and B(·) is a standard Brownian motion. The option’s

value can be written as

µ = E[e−rT Ca(T) | S(0)]

where

Ca(T) = max

0,

1
s

s∑
j=1

S(τj)

−K


and 0 < τ1 < · · · < τs = T are the discrete observation times. See, e.g., Hull (2000) and Glasserman

(2004) for further details. We have

S(τj) = S(τj−1) exp[(r − σ2/2)(τj − τj−1) + σ(τj − τj−1)1/2Φ−1(Uj)] (28)

33

for j = 1, . . . , s, where the Uj ’s are independent U(0, 1) random variables and Φ is the standard

normal distribution function. To get an unbiased estimator of µ it suffices to generate S(τ1), . . . , S(τs)

via (28), with s i.i.d. U(0, 1) random variates, and compute the estimator X = e−rT Ca(T).

To apply the array-RQMC method, we define the state of the chain at step j as the two-

dimensional vector Xj = (S(τj), S̄j), where S̄j = (S(τ1) + · · · + S(τj))/j. We order these states

simply by increasing order of their value of S(τj), i.e., we define the sorting function by h(x1, x2) = x1

(there are other possibilities, probably better ones).

Table 7: Estimated VRFs for an Asian option with s observation times, with n = 2k points.

s k = 10 k = 12 k = 14 k = 16 k = 18 k = 20
10 Classical-Korobov 188 594 2601 5505 18050 11040

Classical-Korobov-Baker 2629 10600 5104 83450 27560 93620
Classical-Sobol 4844 11460 28740 46020 142900 222800
Array-Korobov-Baker 4783 13280 23960 45990 36670 39950
Array-Sobol 5080 13030 37460 38320 36360 32430

60 Classical-Korobov 81 17 352 406 552 497
Classical-Korobov-Baker 481 567 919 610 1362 1745
Classical-Sobol 282 488 907 787 1654 2413
Array-Korobov-Baker 1187 1742 1218 2231 1680 1998
Array-Sobol 1234 1742 2050 2203 2189 1866

120 Classical-Korobov 73 27 152 209 252 276
Classical-Korobov-Baker 244 380 452 407 581 498
Classical-Sobol 68 92 234 253 531 410
Array-Korobov-Baker 816 1263 1355 1736 1456 1635
Array-Sobol 1423 1485 1260 1390 1333 1477

240 Classical-Korobov 30 9 93 116 95 148
Classical-Korobov-Baker 76 167 233 303 375 319
Classical-Sobol 29 32 54 69 151 217
Array-Korobov-Baker 445 703 375 758 773 601
Array-Sobol 744 769 670 725 702 667

For a numerical illustration, let S(0) = 100, K = 90, T = 240/365 (in years), τj − τj−1 = 1/365

for all j, τ1 = T − (s − 1)/365, r = log 1.09, σ = 0.2, and s = 10, 60, 120, and 240. Table 7

gives the estimated VRFs of RQMC compared with standard MC. The classical RQMC methods

uses the straightforward simulation approach described above. Efficiency can be further improved

by combining RQMC with bridge sampling and other variance-reduction techniques such as control

variates and importance sampling (Caflisch and Moskowitz, 1995; Glasserman, 2004; L’Ecuyer and

Lemieux, 2000; L’Ecuyer, 2004a) but we do not go in that direction.

Here, classical RQMC is already very effective when s is small, and array-RQMC is not really

34

better. For larger s, however, array-RQMC eventually provides larger VRFs, especially when k is

small. For s = 240 and k = 10, for example, the variance is approximately seven times smaller for

Array-Sobol than for the best classical RQMC method. On the other hand, it is disappointing to

see that the VRFs eventually stabilize when we increase n. This suggests a O(1/n) asymptotic rate

of convergence of the variance for this particular implementation and choice of sorting function h.

Another important point to notice is that once again, the baker’s transformation applied on top of

the Korobov rules really helps. In previous experiments with this Asian option example, the lattice

rules were used only without the baker’s transformation (L’Ecuyer and Lemieux, 2000).

4.6 Estimating a small ruin probability with importance sampling and array-

RQMC

A (simplified) insurance company receives premiums at constant rate c > 0 and claims according

to a Poisson process {N(t), t ≥ 0} with rate λ > 0. The claim sizes Cj , j ≥ 1, are i.i.d. random

variables with density h. The reserve (amount of money in hand) at time t is

R(t) = R(0) + ct−
N(t)∑
j=1

Cj ,

where R(0) is the initial reserve. We want to estimate the ruin probability, i.e., the probability µ

that R(t) eventually becomes negative.

Note that ruin can occur only at the time of a claim. The reserve just after claim j is

Xj = Xj−1 + Ajc− Cj , j ≥ 1,

where X0 = R(0) and Aj is the time between claims j − 1 and j. The process {Xj , j ≥ 0} is a

random walk. This process cannot be simulated directly to estimate the ruin probability because:

(1) we cannot be 100% sure that ruin does not occur if we simulate only for a finite time and (2) in

practice ruin occurs very rarely. We can get around these difficulties by using importance sampling

(IS) with exponential twisting as follows (Asmussen, 1985). Assuming that h has a finite moment

generating function Mh around 0, we replace the density h(x) by

hθ(x) = h(x)eθx/Mh(θ)

and increase the rate λ of the Poisson process to λθ = λ + θc, where θ is the largest solution to the

Lundberg equation Mh(θ) = (λ + θc)/λ. Under this IS scheme, ruin occurs with probability 1 and

35

the (unbiased) estimator of µ is

eθ(Xτ−X0) (29)

where τ = inf{j : Xj < 0}, a random stopping time. Here, there is no need to store the intermediate

values of the likelihood ratio during the simulation, because its final value depends only on Xτ . Thus,

the state space is one-dimensional.

We are interested in seeing if a combination of IS with array-RQMC is more efficient than IS

alone. A priori, since the function f(u) = eθ(Xτ−X0) is sawtooth-like (not smooth at all) with respect

to each coordinate of u, we do not expect RQMC to perform well.

For a numerical experiment, we take λ = 1, exponential claim sizes with mean 1/β = 2, and

R(0) = 200. We use d = 1, i.e., one step of the chain each time a uniform random number is

generated. The number of steps before ruin occurs is random.

Table 8 gives the estimated VRFs compared with MC (with IS) for c = 3, 5, and 10. For

classical RQMC we need an infinite-dimensional point set; this rules out Classical-Sobol. The exact

ruin probability µ is approximately µ = 2.2 × 10−15 for c = 3, µ = 3.5 × 10−27 for c = 5, and

µ = 3.6× 10−36 for c = 10. The gains are not as spectacular as for the previous examples, but they

are nevertheless significant for large n.

Table 8: Estimated VRFs for the ruin probability example, with inflow rate c and n = 2k points.

c k = 10 k = 12 k = 14 k = 16 k = 18 k = 20
10 Classical-Korobov-Baker 1 1 1 1 1 1

Array-Korobov-Baker 3 3 7 3 15 27
Array-Sobol 2 2 6 10 19 45

5 Classical-Korobov-Baker 1 1 1 1 2 1
Array-Korobov-Baker 3 4 10 5 21 37
Array-Sobol 2 4 8 13 33 73

3 Classical-Korobov-Baker 1 1 1 1 1 1
Array-Korobov-Baker 2 4 8 7 24 38
Array-Sobol 2 5 7 17 30 49

5 Conclusion

We have proposed a new RQMC method for Markov chains, proved results on its convergence for

special cases, and tested it numerically on examples. The new method provides large efficiency

36

gains compared with standard MC in our examples. It performs better than classical RQMC in

the examples where the Markov chain has a one-dimensional state space and evolves over several

steps. Generally speaking, the performance of the array-RQMC method tends to degrade when the

integrand has higher variability, or when the dimension of the state space becomes larger than 1 and

there is no natural (or obvious) sorting function for the states. But even in these cases, there can be

significant variance reductions compared with standard MC, and sometimes compared with classical

RQMC as well. Our paper also provides novel empirical evidence of the effectiveness of applying the

baker’s transformation over a randomly shifted lattice rule, an idea that was studied theoretically

by Hickernell (2002).

Obtaining better convergence bounds for the variance is a goal that would certainly deserve

further work. From the practical viewpoint, an interesting challenge would be to find good ways

of defining the sorting function h for specific classes of problems where the Markov chain has a

multidimensional state space. Our on-going and future work also includes studying the application

of array-RQMC to other settings that fit a general Markov chain framework, such as Markov Chain

Monte Carlo methods and stochastic approximation algorithms, for example.

6 Acknowledgments

The work of the first author has been supported by NSERC-Canada grant No. ODGP0110050,

NATEQ-Québec grant No. 02ER3218, and a Canada Research Chair. The work of the third author

has been supported by EuroNGI Network of Excellence and the “SurePath ACI sécurité” project.

A (short) preliminary version of this paper appeared in the Proceedings of the MCQMC’2004 Con-

ference (L’Ecuyer et al., 2006). Richard Simard helped preparing the software for the numerical

experiments and Charles Sanvido implemented the stratification. We thank the Associate Editor

and two referees for their helpful comments.

References

Antonov, I. A. and Saleev, V. M. (1979). An economic method of computing LPτ -sequences. Zh.

Vychisl. Mat. i. Mat. Fiz., 19:243–245. In Russian.

Asmussen, S. (1985). Conjugate processes and the simulation of ruin problems. Stochastic Processes

and their Applications, 20:213–229.

37

Ben-Ameur, H., L’Ecuyer, P., and Lemieux, C. (2004). Combination of general antithetic transfor-

mations and control variables. Mathematics of Operations Research, 29(4):946–960.

Bratley, P. and Fox, B. L. (1988). Algorithm 659: Implementing Sobol’s quasirandom sequence

generator. ACM Transactions on Mathematical Software, 14(1):88–100.

Caflisch, R. E. and Moskowitz, B. (1995). Modified Monte Carlo methods using quasi-random

sequences. In Niederreiter, H. and Shiue, P. J.-S., editors, Monte Carlo and Quasi-Monte Carlo

Methods in Scientific Computing, number 106 in Lecture Notes in Statistics, pages 1–16, New

York. Springer-Verlag.

Garvels, M. J. J., Kroese, D. P., and Van Ommeren, J.-K. C. W. (2002). On the importance function

in splitting simulation. European Transactions on Telecommunications, 13(4):363–371.

Glasserman, P. (2004). Monte Carlo Methods in Financial Engineering. Springer-Verlag, New York.

Glasserman, P., Heidelberger, P., Shahabuddin, P., and Zajic, T. (1999). Multilevel splitting for

estimating rare event probabilities. Operations Research, 47(4):585–600.

Hickernell, F. J. (1998). A generalized discrepancy and quadrature error bound. Mathematics of

Computation, 67:299–322.

Hickernell, F. J. (2002). Obtaining o(n−2+ε) convergence for lattice quadrature rules. In Fang, K.-T.,

Hickernell, F. J., and Niederreiter, H., editors, Monte Carlo and Quasi-Monte Carlo Methods 2000,

pages 274–289, Berlin. Springer-Verlag.

Hlawka, E. (1971). Discrepancy and Riemann integration. In Mirsky, L., editor, Studies in Pure

Mathematics: papers in combinatorial theory, analysis geometry, algebra and the theory of numbers,

pages 121–129. Academic Press.

Hoschek, W. (2004). The Colt Distribution: Open Source Libraries for High Performance Scientific

and Technical Computing in Java. CERN, Geneva. Available at http://dsd.lbl.gov/∼hoschek/

colt/.

Hull, J. (2000). Options, Futures, and Other Derivative Securities. Prentice-Hall, Englewood-Cliff,

N.J., fourth edition.

Kleinrock, L. (1975). Queueing Systems, Vol. 1. Wiley, New York.

Kollig, T. and Keller, A. (2002). Efficient bidirectional path-tracing by randomized quasi-Monte

Carlo integration. In Fang, K.-T., Hickernell, F. J., and Niederreiter, H., editors, Monte Carlo

and Quasi-Monte Carlo Methods 2000, pages 290–305, Berlin. Springer-Verlag.

Lécot, C. (1996). Error bound for quasi-Monte Carlo integration with nets. Mathematics of Com-

putation, 65(213):179–187.

38

Lécot, C. and Ogawa, S. (2002). Quasirandom walk methods. In Fang, K.-T., Hickernell, F. J., and

Niederreiter, H., editors, Monte Carlo and Quasi-Monte Carlo Methods 2000, pages 63–85, Berlin.

Springer-Verlag.

Lécot, C. and Tuffin, B. (2004). Quasi-Monte Carlo methods for estimating transient measures of

discrete time Markov chains. In Niederreiter, H., editor, Monte Carlo and Quasi-Monte Carlo

Methods 2002, pages 329–343, Berlin. Springer-Verlag.

L’Ecuyer, P. (2004a). Quasi-Monte Carlo methods in finance. In Ingalls, R. G., Rossetti, M. D.,

Smith, J. S., and Peters, B. A., editors, Proceedings of the 2004 Winter Simulation Conference,

Piscataway, New Jersey. IEEE Press.

L’Ecuyer, P. (2004b). SSJ: A Java Library for Stochastic Simulation. Software user’s guide, Available

at http://www.iro.umontreal.ca/∼lecuyer.

L’Ecuyer, P., Lécot, C., and Tuffin, B. (2006). Randomized quasi-Monte Carlo simulation of Markov

chains with an ordered state space. In Niederreiter, H. and Talay, D., editors, Monte Carlo and

Quasi-Monte Carlo Methods 2004, pages 331–342.

L’Ecuyer, P. and Lemieux, C. (2000). Variance reduction via lattice rules. Management Science,

46(9):1214–1235.

L’Ecuyer, P. and Lemieux, C. (2002). Recent advances in randomized quasi-Monte Carlo methods.

In Dror, M., L’Ecuyer, P., and Szidarovszky, F., editors, Modeling Uncertainty: An Examination

of Stochastic Theory, Methods, and Applications, pages 419–474. Kluwer Academic, Boston.

Matoušek, J. (1999). Geometric Discrepancy: An Illustrated Guide. Springer-Verlag, Berlin.

Niederreiter, H. (1992). Random Number Generation and Quasi-Monte Carlo Methods, volume 63

of SIAM CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia.

Owen, A. B. (1998). Latin supercube sampling for very high-dimensional simulations. ACM Trans-

actions on Modeling and Computer Simulation, 8(1):71–102.

Owen, A. B. (2003a). Quasi-Monte Carlo sampling. In Jensen, H. W., editor, Monte Carlo Ray Trac-

ing: Siggraph 2003, Course 44. Available at http://www-stat.stanford.edu/∼owen/reports/

siggraph03.pdf.

Owen, A. B. (2003b). Variance with alternative scramblings of digital nets. ACM Transactions on

Modeling and Computer Simulation, 13(4):363–378.

Owen, A. B. (2005). Multidimensional variation for quasi-Monte Carlo. In Fan, J. and Li, G., edi-

tors, International Conference on Statistics in honour of Professor Kai-Tai Fang’s 65th birthday.

Available at http://www-stat.stanford.edu/∼owen/reports/.

39

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical Recipes in

C: The Art of Scientific Computing. Combridge University Press, New York, second edition.

Sloan, I. H. and Joe, S. (1994). Lattice Methods for Multiple Integration. Clarendon Press, Oxford.

Tezuka, S. (2002). Quasi-Monte Carlo—discrepancy between theory and practice. In Fang, K.-T.,

Hickernell, F. J., and Niederreiter, H., editors, Monte Carlo and Quasi-Monte Carlo Methods 2000,

pages 124–140, Berlin. Springer-Verlag.

Tuffin, B. (1996). On the use of low discrepancy sequences in Monte Carlo methods. Monte Carlo

Methods and Applications, 2(4):295–320.

Wilson, J. R. (1983). Antithetic sampling with multivariate inputs. American Journal of Mathemat-

ical and Management Sciences, 3:121–144.

40

