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We propose a fast algorithm for computing the inverse symmetrical beta distribution. Four series
(two around x = 0 and two around x = 1/2) are used to approximate the distribution function and

its inverse is found via Newton’s method. This algorithm can be used to generate beta random

variates by inversion and is much faster than currently available general inversion methods for the
beta distribution. It turns out to be very useful for generating gamma processes efficiently via

bridge sampling.
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1. INTRODUCTION

Conceptually, the simplest method for generating a random variate X from distri-
bution function F is by inversion: generate U ∼ U(0, 1), i.e., from the uniform
distribution over the interval (0, 1), and return X = F−1(U). This method is also
generally preferred to other methods that transform U into X in a non-monotone
way, because of its compatibility with variance reduction techniques such as com-
mon random numbers, antithetic variates, stratification, randomized quasi-Monte
Carlo, etc. [Law and Kelton 2000; L’Ecuyer 2004]. However, F−1 is difficult
to compute for certain distributions, such as the beta and gamma distributions,
whose shapes depend on the parameters in a significant way. Currently available
general approximation algorithms that work for all parameters of the distribution,
e.g. [Moshier 2000; DiDonato and Morris 1992], are quite slow. For fixed parame-
ters, one may construct a good approximation of F−1 for the specific parameters
and write the corresponding algorithm, e.g., via Hermite interpolation, as in the
automatic methods of Hörmann et al. [2004]. But this approach is definitely not
convenient when the distribution parameters change for successive calls to the gen-
erator, which is often the case.
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In this paper we develop precise approximation methods for F and F−1 for the
case of a symmetrical beta distribution with parameter α, over the unit interval
[0, 1]. This distribution has density

f(x) =
(x(1− x))α−1

B(α, α)
for 0 ≤ x ≤ 1, (1)

where B is the beta function defined as B(α, ν) = Γ(α)Γ(ν)/Γ(α + ν), and Γ is the
well-known gamma function. A random variable with this distribution can easily
be rescaled and shifted to a symmetrical beta over an arbitrary interval [a, b]: just
multiply by (b − a) and add a. Other methods for generating symmetrical beta
variates are described by Devroye [1986, pages 433–437], among which a rejection-
based polar method proposed by Ulrich [1984] is the fastest and is quicker than our
method when α is large. However, none of these methods is inversion. Moreover,
Ulrich’s method is valid only for α ≥ 1/2 and the other ones are also aimed at large
values of α. Here we are interested as well in small values of α, because for the
application that motivated this paper α is often much smaller than 1, and we rule
out anything that is not inversion.

The symmetrical beta is important for a number of practical applications. Con-
sider for example a stationary gamma process {G(t), t ≥ 0} with parameters (µ, ν).
We have G(0) = 0 and the increments of G are independent over disjoint intervals
and have the gamma distribution with mean µt and variance νt over any inter-
val of length t. For a given t, let X1 = G(t/2) and X2 = G(t) − G(t/2), so
X1 + X2 = G(t). Since X1 and X2 are independent gamma random variables with
the same parameters, we know that conditional on X1 + X2, X1/(X1 + X2) is a
symmetrical beta random variable with parameter α = (µ2/ν)t/2; see, e.g., Hogg
and Craig [1995]. This argument can be used recursively: given G(0), G(t/2), and
G(t), we have that G(t/4)/G(t/2) and G(3t/4)/(G(t) − G(t/2)) are independent
symmetrical beta random variables, and so on. This provides a method for gener-
ating a gamma process by successive refinements of the trajectory over some time
interval [0, T ]: generate first G(T ) from the appropriate gamma distribution, then
G(T/2), G(T/4), G(3T/4), G(T/8), etc., by generating symmetrical beta random
variables with parameters α = (µ2/ν)t/2, (µ2/ν)t/4, (µ2/ν)t/8, etc. In Avramidis
and L’Ecuyer [2006], this is called bridge sampling of the gamma process.

An important advantage of this sampling method is that it concentrates most
of the variance on the first few random variates that are generated, because these
variates already sketch a good approximation of the trajectory. This opens the way
to effective variance reduction by stratifying or applying randomized quasi-Monte
Carlo methods for the uniforms used to generate these first few random variates.
But for this to work effectively, the random variates must be generated by inver-
sion. This was the original motivation for developing the methodology presented
here. The idea of using bridge sampling to improve the effectiveness of quasi-Monte
Carlo methods by reducing the effective dimension of the simulation problem was
proposed by Caflisch and Moskowitz [1995] and Moskowitz and Caflisch [1996] for
generating the path of a Brownian motion at a finite number of points. The method
applies (at least in principle) to other types of Lévy processes as well [Fox 1999;
Avramidis and L’Ecuyer 2006].
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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In the next section, we write the distribution function F as infinite series, using a
different expansion in different subintervals of [0, 1], separating the cases for α ≤ 1
and α > 1. In Section 3, we explain how we compute F−1 by finding a root of this
expansion. In Section 4, we compare the speed of the new method with that of
previously available general methods.

2. APPROXIMATING THE DISTRIBUTION FUNCTION

The symmetrical beta distribution function F over [0, 1] satisfies F (1 − x) = 1 −
F (x), so it suffices to approximate it over the interval [0, 1/2] and use symmetry to
compute F over (1/2, 1]. In the remainder of the paper, we denote v = 1/2−u and
y = 1/2−x, where u = F (x). All series used to approximate F at a given point are
computed with relative tolerance ε = 10−15, which means that we neglect all terms
smaller than ε times the current sum. We will examine the effect of this neglect
on the error we make on F . Choosing a larger ε increases the speed, but not by
much. For example, replacing ε = 10−15 by ε = 10−6 makes the computation 40%
to 50% faster on the average (roughly) for α between 10−1 and 105, and less than
2% faster for α < 10−3.

2.1 0 < α ≤ 1

For 0 < α ≤ 1 and 0 ≤ x ≤ 1/2, if we replace (1− t)α−1 by its binomial series and
integrate term by term, we obtain

F (x) =
1

B(α, α)

∫ x

0

[t(1− t)]α−1
dt (2)

=
1

B(α, α)

∫ x

0

tα−1
∞∑

j=0

(1− α)jt
j

j!
dt

=
1

B(α, α)

∞∑
j=0

(1− α)j

j!
xj+α

(j + α)
, (3)

where (b)j is Pochhammer’s symbol defined as (b)j = Γ(b + j)/Γ(b) when b is not
0 or a negative integer [Abramowitz and Stegun 1970]. This series has radius of
convergence 1 and converges rapidly for x near 0, but more slowly for larger x. For
x ≈ 1/2, each term is approximately half the preceding one. To improve on this,
we will use a different expansion when x is close to 1/2.

Using the variable y = 1/2− x in Equation (1), we obtain

g(y) =

(
1/4− y2

)α−1

B(α, α)

for |y| ≤ 1/2 for the density as a function of y. We approximate F (x) via the
following series for H(y) = 1/2− F (x) = 1/2− F (1/2− y):

H(y) =
1

B(α, α)

∫ y

0

(
1/4− τ2

)α−1
dτ,

=
y

4α−1B(α, α)

∞∑
j=0

(1− α)j

j!
(4y2)j

(2j + 1)
. (4)
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This second series has convergence radius 1/2 and it converges rapidly when y
is close to 0, i.e., for x close to 1/2. These two series are very similar and both
converge fast. To compute F (x) for a given x, we shall use series (3) for 0 ≤ x ≤ xm

and series (4) for xm < x ≤ 1/2. The value of xm is chosen such that when the first
is evaluated at x and the second at y = 1/2− x, both converge at the same speed
and require approximately the same number of terms to obtain a given accuracy.
We find that xm is often close to 1/4.

To examine this more closely, let Tj and Sj denote the jth term of series (3) and
(4), respectively, and let j0 be the index of the first neglected term. From (3) and
(4), we see that 0 < Tj < Tj−1 and 0 < Sj < Sj−1. We have for x = y = 1/4

Tj

F (1/4)
<

Tj

T0
=

(1− α)j

j!
αxj

(j + α)
<

α

4j(j + α)
<

1
4j(j + 1)

and

Sj

H(1/4)
<

Sj

S0
=

(1− α)j

j!
(4y2)j

(2j + 1)
<

1
4j(2j + 1)

.

If j1 is the smallest j such that α/(4j(j + α)) < ε, then Tj/T0 < ε for all j ≥ j1
and thus j0 ≤ j1. For ε = 10−15, we have j0 ≤ j1 = 23. Similarly, for Sj/S0 < ε,
we find j0 ≤ j1 = 23. If we use series (3) for x close to 1/2, the same argument
gives j1 = 45 while series (4) requires only a few terms. So the use of (4) instead
of (3) for x close to 1/2 makes an important difference in terms of speed.

The relative error E1 on F (x) when we neglect all terms Tj for j ≥ j0 in (3)
satisfies

E1 =

∑∞
j=j0

Tj

F (x)
=

1
F (x)

∞∑
j=j0

(1− α)j

B(α, α)j!
xj+α

(j + α)
<

1
F (x)

∞∑
j=j0

(1− α)j0

B(α, α)j0!
xj+α

(j0 + α)

=
Tj0

F (x)

∞∑
j=0

xj <
ε

1− x
≤ 2ε (5)

for all x ≤ 1/2. Similarly, for series (4), the relative error E2 on H(y) when we
neglect all terms with index j ≥ j0 satisfies E2 =

∑∞
j=j2

Sj/H(y) < ε/(1− 4y2) ≤
4ε/3 whenever |y| ≤ 1/4. The relative error is thus bounded by 2ε in all cases,
uniformly in α, for α ≤ 1.

2.2 1 < α < 100000

The above two series are not suitable for α > 1 because successive terms alternate in
sign and they increase very fast in absolute value when α is large. As a consequence
of numerical cancellation, both series very quickly lose precision for even moderately
large α. The two series (3) and (4) can be written in terms of Gauss hypergeometric
series 2F1(a, b; c; z), defined as [Abramowitz and Stegun 1970]

2F1(a, b; c; z) =
∞∑

j=0

(a)j(b)jz
j

(c)jj!
(6)
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so that the functions (3) and (4) are given by

F (x) =
xα

αB(α, α) 2F1(α, 1− α; 1 + α;x) (7)

and

H(y) =
y

4α−1B(α, α) 2F1(1− α, 1/2; 3/2; 4y2). (8)

The hypergeometric series can be transformed into many mathematically equiv-
alent forms using linear or quadratic transformations. Two forms that we have
found useful are

F (x) =
xα(1− x)α−1

αB(α, α) 2F1

(
1, 1− α; 1 + α;

−x

1− x

)
(9)

and

H(y) =
y(1− 4y2)α

4α−1B(α, α) 2F1

(
1/2 + α, 1; 3/2; 4y2

)
. (10)

Equations (9) and (10) are obtained from (7) and (8), respectively, by making use
of the following identities for hypergeometric series

2F1(a, b; c; z) = (1− z)−b
2F1

(
c− a, b; c;

−z

1− z

)
, for |z| < 1 and

∣∣∣∣ z

1− z

∣∣∣∣ < 1,

2F1(a, b; c; z) = (1− z)c−a−b
2F1(c− a, c− b; c; z), for |z| < 1.

Series (9) converges for x < 0.5 and its terms are decreasing (in absolute value), so
it can be used to compute the distribution in [0, 0.5). However, for x approaching
0.5, its terms are close to 1 and its convergence becomes very slow, especially for
large α; thus we shall use series (10) for x close to 0.5. However, while series (10)
converges for all y < 0.5 and all its terms Tj are positive, they first grow very quickly
as a function of j for small j and start to decrease at j = jm for some jm. The larger
term Tjm may overflow the capacity of a floating-point number even for moderate
α and y. This largest term Tjm becomes larger as either y or α increases. So we
use the series (10) only for small y. Thus to compute the cumulative probability
for 1 < α ≤ 100000, we use (10) for x close to 1/2, and (9) for x close to 0. For
x very close to 1/2, the use of series (10) instead of (9) makes a huge difference in
terms of speed, since (9) may require more than a thousand terms to compute the
cumulative distribution to 15 decimal digits of precision, while (10) needs only a
few terms. Because the probability density is sharply peaked around x = 1/2 for
large α, series (10) will be used for most values of u in x = F−1(u).

The relative error E3 of series (9), when we neglect all terms Tj with |Tj/F (x)| < ε
for j ≥ j3 may be bounded by a similar argument as in (5) and we obtain E3 =∑∞

j=j3
|Tj/F (x)| < ε(1 − x)/(1 − 2x). As long as x < 0.44, we have E3 < 5ε.

However, for α ≈ 100000, we use this series for x < 0.4967 and the error bound
becomes E3 < 76ε. So for 10000 ≤ α ≤ 100000 and 0.44 < x < 0.4967, our series
may give only 14 decimals digits of precision. The relative error for series (10),
when we neglect all terms |Sj/H(y)| < ε for j ≥ j4, is bounded similarly as in
Subsection 2.1 above: E4 =

∑∞
j=j4

Sj/H(y) < ε/(1− 4y2) < 4ε/3 for all |y| ≤ 1/4.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Computing 4α−1B(α, α). Care must be taken in computing the expression
4α−1B(α, α) for α > 1 in Equation (10). A naive calculation of the two factors
separately (by taking logarithms for example) will give rise to catastrophic loss of
precision for large α due to the difference of two large nearly equal quantities. In-
stead, the expression must be calculated as a whole. From Legendre’s duplication
formula for the gamma function,

√
πΓ(2α) = 22α−1Γ(α)Γ(α + 1/2), we get

4α−1B(α, α) =
4α−1Γ(α)Γ(α)

Γ(2α)
=

√
π Γ(α)

2 Γ(α + 1/2)
.

For α ≥ 200, we make use of the asymptotic expansion, valid for large α [Spanier
and Oldham 1987, p. 416]

Γ(α + 1/2)√
α Γ(α)

= 1− λ +
λ2

2
+

5λ3

2
− 21λ4

8
− 399λ5

8
+ · · ·

where λ = 1/(8α). If we neglect the O(λ5) terms, the relative error is smaller than
5× 10−15 for α ≥ 200.

For 10 ≤ α < 200, we use Gauss’ hypergeometric series (6) for z = 1, which is
absolutely convergent when c is neither 0 nor a negative integer and c− a− b > 0:

2F1(a, b; c; 1) =
∞∑

j=0

(a)j(b)j

(c)jj!
=

Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

.

Setting a = b = −1/2 and c = α− 1/2 in the above equations, we obtain

Γ(α + 1/2)
Γ(α)

=

√(
α− 1

2

)
2F1

(
−1

2
,−1

2
, α− 1

2
, 1

)
.

The series converges faster as α increases.
For α ≤ 10, we use the naive calculation by calling the function lgamma from

the C standard mathematical library which returns the natural logarithm of the
Gamma function. Computing separately the logarithms of Γ(α + 1/2) and Γ(α),
we lose at most 1 decimal digit of precision for α close to 10.

2.3 α > 100000

For large α, the above series for the distribution functions F (x) and H(y) are
inefficient and we use instead the normal approximation proposed by Peizer and
Pratt [1968] for the beta distribution function u = F (x) ≈ Φ(z), where Φ is the
standard normal distribution function and

z = (2x− 1)
(

α− 1
3

+
1

40α

) √
1− ξg(2x)− xg(2ξ)

(2α− 5/6) xξ
(11)

g(x) =
1− x2 + 2x ln(x)

(1− x)2

where ξ = 1 − x. The relative error estimated in Peizer and Pratt [1968] for
α = 100000 is smaller than 2.1 × 10−9 for all x > 0.4912 (u > 10−15) and smaller
than 10−6 for all x > 0.4587 (u > 10−300). The error becomes smaller (and the
approximation better) as α or x increases.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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3. INVERSION

Once we have an efficient way of approximating F (x) at any x, the next step is to
select a method that can find a root x of F (x) = u for any u in [0, 1]. General root
finding methods for that purpose are discussed and compared in Devroye [1986],
pages 31–35. The main ones are bisection (or binary search), the secant method, and
Newton’s method. The first two apply under more general conditions, but Newton’s
method is the most efficient when F is either concave or convex and the density
is easy to compute, because it converges at a quadratic rate while the secant and
bisection methods converge at a superlinear and linear rates, respectively. In our
case, the distribution function in the interval x ∈ (0, 0.5) is convex for α > 1 and
concave for α < 1, and computing the density takes only a small fraction of the
time required to compute the distribution function, so Newton’s method is clearly
the method of choice.

We thus compute x = F−1(u) at a given u using Newton’s iterates

xn+1 = xn −
F (xn)− u

f(xn)
(12)

with our best guess of x as a starting point x0 (and similarly for y = H−1(v)).
Since in the general case, Newton’s method converges only when x0 (or y0) is
close enough to the solution, a good starting point is essential for convergence and
efficiency. In our case, since the probability density never vanishes in the open
interval x ∈ (0, 0.5), when x0 is to the right [to the left] of the solution in (0, 0.5)
for α > 1 [for α < 1], Newton’s method is guaranteed to converge to the solution.

In our implementation, we set the maximum number of iterations for Newton’s
method at 11 and iterate until either the difference of two successive iterates is
small enough (|xn+1 − xn| < ε), or the maximum number of iterations has been
reached (and similarly for y). According to our empirical investigations in all areas
of the possible values of α and u, the method rarely needs more than 8 iterations
to converge with ε = 10−15. If convergence has not occurred after 11 iterations, we
simply call a bisection method. This method is much slower but is called extremely
rarely (we found a couple of cases in the area where u ≈ 10−3 and α ≈ 105.

3.1 0 < α ≤ 1

We would like to use series (3) for 0 ≤ x ≤ xm and series (4) for xm < x ≤ 1/2,
but we don’t know the value of x beforehand. As a first guess of y = 1/2− x, just
to determine which series to use, we will take

ỹ0 = v 4α−1B(α, α), (13)

obtained by considering only the first term in (4). This is a reasonable first guess
since for α ≤ 1 and y ≤ 1/4, the terms in (4) decrease monotonously and the ratio
of the first two terms is 4y2(1 − α)/3 ≤ (1 − α)/12. We will use series (4) when
ỹ0 ≤ 1/4, and (3) when ỹ0 > 1/4.

Taking the first two terms in (4), we obtain

4α−1B(α, α) v = y + 4(1− α)y3/3.

The second term on the right is very small compared to the first and the two-term
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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approximation

y0 =
ỹ0

1 + 4(1− α)ỹ2
0/3

will be even closer to y than ỹ0 in (13). We shall use it as the starting point for
Newton’s recursion

yn+1 = yn −
H(yn)− v

g(yn)

when ỹ0 ≤ 1/4.
Similarly, the terms of series (3) decrease monotonously. The ratio of the first

two terms is xα(1 − α)/(1 + α) ≤ α(1 − α)/4 ≤ 1/8 for x ≤ 1/4. Taking the first
two terms in (3), we get

αB(α, α) u = xα +
α(1− α)xα+1

(1 + α)
,

whose solution is

x0 =
x̃0

(1 + x̃0α(1− α)/(1 + α))1/α

where x̃0 = (u α B(α, α))1/α is the approximation obtained by taking a single term
in (3). This x0 is a very good estimate of x, especially when x is close to 0 or α
is close to 0 or 1. We use it as the starting point for Newton’s recurrence (12) to
solve for x using (3) when ỹ0 > 1/4.

3.2 1 < α ≤ 100000

Again, we would like to use series (9) for x closer to 0 and series (10) for x closer
to 1/2. It turns out that the empirical curve um(α) = 1/(2.5 + 2.25

√
α) is a very

good separator for the regions where the two series are most useful for α > 1, since
for u > um(α), the maximum term in series (10) is never much larger than 1 and
there is no danger of overflow. Thus we use (9) for 0 ≤ u < um(α) and (10) for
um(α) ≤ u ≤ 0.5.

Consider the first term of series (10) in the form v 4α−1B(α, α) = y(1 − 4y2)α.
Since this series is used only for small y, y0 = v4α−1B(α, α) is a very good starting
point for Newton’s method.

Similarly, consider the first term of (9) in the form uαB(α, α) = xα(1 − x)α−1.
For small u, x0 = uαB(α, α) is a very good starting point, but not for large α and
u close to um, where Newton’s method may sometimes lead to an x outside the
interval [0, 0.5]. In that case, we take instead x0 = 0.5 − ε1 where ε1 > 0 is small
enough so that x0 is always to the right of the solution x = F−1(u). Since F (x) is
convex in x for α > 1 and x ∈ (0, 0.5), starting to the right of the solution x in (0,
0.5) guarantees convergence.

3.3 α > 100000

Given the value of z = Φ−1(u), where Φ−1 is the inverse of the standard normal
distribution function, we solve equation (11) for x by fixed-point iterations of the
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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form xn+1 = h(xn) with the function h defined by

h(x) = 0.5 +
z

(2α− 2/3 + 1/20α)

√
(2α− 5/6) xξ

1− ξg(2x)− xg(2ξ)
,

where ξ = 1 − x. Given an interval I = [a, b] such that h(x) ∈ I for all x ∈ I,
if there exists a nonnegative constant K < 1 such that |h′(x)| ≤ K for all x ∈ I,
then the fixed-point iterations converge to the unique solution x∗ ∈ I. In our case,
for x ∈ [0.1, 0.9], we have h′(x) ≤ 0.75|z|/

√
2α− 2/3. Since α > 100000, the slope

h′(x) is extremely small in all cases and convergence is very fast. The probability
density having a very narrow peak centered at 0.5, the point x0 = 0.5 is an excellent
starting value for this iteration method, on average. For α ≈ 100000, we estimate
that our program returns at least 9 decimal digits of precision for u > 10−15, and
at least 6.5 digits for u > 10−300. For larger α, the normal approximation is even
better.

4. SPEED COMPARISONS

4.1 Setting

Our symmetrical version is much faster than general inversion methods for two
reasons. Because of the symmetry, we can find a simple expansion of the distribution
function around x = 1/2 which converges faster than that around x = 0 when x
is close to 1/2. Furthermore, for α < 1, the terms of the two series (around x = 0
and around x = 1/2) decrease rapidly and an approximation by the first two terms
already gives an x that is very close to the solution. The starting point is in
the region of quadratic convergence of Newton’s method and a very few iterations
suffice to obtain a very precise solution. Choosing a bad starting point for Newton’s
method may slow down the program by an order of magnitude for α < 1 or else
it may make the method diverge. For α � 1, while a good starting point x0 is
hard to find unless u is small or close to 1/2, it is not so important. For example,
choosing x = 1/2 as a starting point slows down our program by a factor of 13.5%
for α = 2, 11% for α = 10, 5% for α = 100, and 40% for α = 100000. However,
the use of series (10) instead of (9) makes a huge difference in term of speed, since
(9) may require several thousand terms to compute the cumulative distribution to
double precision for x close to 1/2, while (10) needs only a few terms.

We have implemented our algorithm in both C and Java, and made experiments
to compare its speed with that of currently available inversion methods. The tests
were run on a computer with an AMD Athlon XP 2800+ processor with clock speed
of 2088 MHz running Red Hat Linux.

In C, the two best algorithms we know for inverting the general beta distribution
are the one implemented in the Cephes math library by Moshier [2000], and the
algorithm from DiDonato and Morris [1992] implemented in the DCDFLIB library
[Brown et al. 1994]. We use the double precision version of both Cephes and
DCDFLIB which returns 14–15 decimal digits of precision for the parameters α, β ≤
10000. We estimate that our program returns 14–15 decimal digits of precision for
0.05 ≤ α ≤ 100000, and slightly less elsewhere. In Java, we have implemented the
algorithm of Gautschi [1964a; 1964b] for α ≤ 1000, and the normal approximation
of Peizer and Pratt [1968] for α > 1000 to compute the general beta distribution
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Table I. CPU time (seconds) to generate one million beta random

variates with different methods and different values of α. LS (L’Ecuyer-
Simard) refers to the algorithm proposed here.

C Java

α Cephes DCDFLIB LS General LS

10−9 81.7 84.3 0.95 145.3 0.75

10−7 83.9 85.5 0.96 146.1 0.75
10−5 85.9 87.3 0.96 149.6 0.75

10−3 84.9 86.7 0.86 172.7 0.86

10−1 66.9 17.5 2.17 141.8 3.57
101 23.9 23.0 2.35 95.8 3.70

103 33.0 42.3 2.41 1071.2 3.64

105 196.1 45.7 2.55 4.08 4.16
107 851.9 49.2 0.58 3.78 0.83

109 1354.9 53.0 0.58 3.75 0.77

Table II. CPU time comparisons for simulating a gamma process at

m observation points using bridge sampling with the general and sym-
metrical beta variate generators.

Number of Time (sec) Time (sec) Speed ratio

observations m General beta Symmetrical beta

2 1.4 0.12 10.8

4 3.9 0.18 20.6
8 9.5 0.35 26.2

16 21.7 0.63 33.4

32 46.9 1.0 45.9
64 97.7 1.5 62.4

128 206.0 2.4 85.5

256 430.1 3.7 114.0
512 883.7 6.2 142.0

1024 1772.1 10.6 167.2

2048 3488.3 19.1 182.7

function, and the algorithm of Moshier [2000] to compute its inverse.

4.2 Comparisons

Table I gives the CPU time to generate 106 beta random variates for various value
of α and with different methods, in C and Java. In both languages, our implemen-
tation is much faster than the general methods.

4.3 Simulating a gamma process

Table II gives the CPU time it took to generate 104 independent copies of a gamma
process with parameters µ = ν = 1 by bridge sampling, in Java. In Avramidis and
L’Ecuyer [2006], a combination of this bridge sampling methodology with random-
ized quasi-Monte Carlo gave significant efficiency improvements when simulating
gamma processes involved in pricing certain financial derivatives. The value of the
process is generated at m = 2k equidistant observation times, for k = 1, 2, . . . , 11.
For each m, the value of α (the parameter of the symmetrical beta distribution)
varies from 1/2 and 1/2k. Thus, none of the methods described by Devroye [1986,
pages 433–437] applies in this setting, even if we are ready to give up on inversion.
Most of the CPU time here is spent generating the symmetrical beta variates. For
each value of m, the table gives the time to generate the paths with the inversion
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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method for the general beta distribution, the time with our specialized method for
the symmetrical beta, and the ratio of these two times (the improvement factor).
For m = 2048, our method is about 180 times faster. By looking at the CPU time
as a function of m, we see that its asymptotic increase appears linear. This is easy
to explain: Generating one trajectory of the process requires one call to a gamma
variate generator and m − 1 calls to the symmetrical beta variate generator. Half
of these calls are with α = 1/2k, one quarter with α = 1/2k−1, and so on. But
since the average time per call converges to a constant, say γ0, when α → 0, the
time for generating the entire process converges to m times γ0 for large m. A good
approximation of this constant γ0 is given in the first line of Table I.

A computer code implementing the new algorithm in C is available from the
author’s web pages.

Acknowledgements

This work has been supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC) Grant No. ODGP0110050, NATEQ-Québec grant No.
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