

n the mind of the average
computer user, the problem
of generating uniform
variates by computer has been
solved long ago. After all,
every computer :system offers

one or more function(s) to do so.
Many software products, like com-
pilers, spreadsheets, statistical or
numerical packages, etc. also offer
their own. These functions suppos-
edly return numbers that could be
used, for all practical purposes, as if
they were the values taken by inde-
pendent random variables, with a
uniform distribution between 0 and
1. Many people use them with faith
and feel happy with the results. So,
why bother?

Other (less naive:) people do not
feel happy with the results and with
good reasons. Despite renewed cru-
sades, blatantly bad generators still
abound, especially on microcom-
puters [55, 69, 85, !aO, 1001. Other
generators widely used on me-
dium-sized computers are perhaps
not so spectacularly bad, but still
fail some theoretical and/or empiri-
cal statistical tests, a.nd/or generate
easily detectable regular patterns
[56, 651.

Fortunately, many applications
appear quite robust to these de-
fects. But with the rapid increase in
desktop computing power, increas-
ingly sophisticated simulation stud-
ies are being performed that re-
quire more and more “random”
numbers and whose results are
more sensitive to thle quality of the
underlying generator [28, 40, 65,
901. Sometimes, using a not-so-
good generator can Igive totally mis-
leading results. Perhaps this hap-
pens rarely, but can be disastrous in
some cases. For that reason, re-
searchers are still actively investi-
gating ways of building generators.
The main goal is to design more
robust generators without having
to pay too much in te:rms of port-
ability, flexibility, and efficiency. In
the following sections, we give a
quick overview of the ongoing re-
search. We focus rnainly on effi-
cient and recently proposed tech-
niques for generating uniform

pseudorandom numbers. Stochastic
simulations typically transform
such numbers to generate variates
according to more complex distri-
butions [I 3, 251. Here, “uniform
pseudorandom” means that the
numbers behave from the outside
as if they were the values of i.i.d.
random variables, uniformly dis-
tributed over some finite set of
symbols. This set of symbols is often
a set of integers of the form (0, . . . ,
m - l} and the symbols are usually
transformed by some function into
values between 0 and 1, to approxi-
mate the U(O,l) distribution. Other
tutorial-like references on uniform
variate generation include [13, 23,
52, 54, 65, 84, 891.

Views ofi Rondomnerr

Glesslcel Deunltlons

In the classical (Kolmogorov) sense,
a string of bits is ran,dom if it cannot
be described by a shorter string
than itself. A generalization is that
it cannot be produced efficiently
(e.g., in polynomial time), by a pro-
gram smaller than itself. For refer-
ences and other definitions, see [43,
521. These definitions do not tell us
how to generate such bits on com-
puters.

In the early days, physical devices
(like noise diodes, Geiger counters,
etc.) have been attached to comput-
ers with the aim of producing such
“true” random bits (see the refer-
ences in [181). These methods were
abandoned for many reasons, in-
cluding the following: using such
specialized hardware is not conve-
nient; a sequence of numbers can-
not be repeated without storing it;
and the numbers produced are not
necessarily uniformly distributed
[12, 181. Work is still being done on
ways to extract “random-looking”
bits from imperfect physical
sources of randomness [18], but at
the present time, these techniques
are not practical enough for stan-
dard simulation applications.

a mamework iar PRlyGI

The so-called “random number
generators” that are used in prac-
tice are in fact deterministic func-

tions that produce a periodic se-
quence of numbers. When their
initial state (called the seed) is truly
random, they can be viewed as ex-
tensors of randomness, whose pur-
pose is to save “coin tosses.” They
stretch a short truly random seed
into a long sequence of values that
is supposed to appear and behave
like a true random sequence. For
this reason, they are often called
pseudorandom. We now sketch a
framework for studying such gen-
erators. In [60] a pseudorandom num-
ber generator (PRNG) is defined as a
family {G,, n 2 1) of structures, in-
creasing in size. This will be dis-
cussed a little further in the next
subsection, but for the remainder
of the paper, we adopt a simplified
definition, in which we fix the size
(as is always the case in practice).
We simply use the term generator.

DEFINITION 1. A generator is a
structure G = (S,/+f,U,g), where S is
a finite set of states, /.L is a probability
distribution on S, called the initial
distribution, f : S * S is the transition
function, U is a finite set of output
symbols, and g : S + U is the output
function.

A generator operates as follows:
(1) Select the initial state SO E S

according to CL; let uo := g(s0);
(2) for i := 1,2, . . . , let Si :=

f(si- t) and ui : = g(si).
The sequence of observations (uo,

Ul, up, . . .) is the output of the gen-
erator. The initial state SO is called
the seed. We assume that efficient
procedures are available to com-
pute f and g and to generate the
seed so according to /.L. Sometimes,
in practice, the seed is a fixed con-
stant, which means that real ran-
domness is completely eliminated.
In other cases, some people would
determine the seed by reading for
example the computer’s clock; this
is not necessarily a good idea be-
cause it makes replication and de-
bugging hard. Of course, the aim of
a generator will be to output a
much longer sequence than its
input seed so. The output sequence
should also look to some extent
(when the seed is random) as if the
u;s were the values of i.i.d. random

88 October 19901Vo1.33, No.lO/COYYUNI~TIONSOFT”tliCY

variables, uniformly distributed
over CJ. In practice, this should be
supported by a sound theoretical
basis and assessed empirically by
powerful statistical tests. Since S is
finite, the sequence of states is ulti-
mately periodic. The period is the
smallest positive integer p such that
for some integer n 2 0 and for all
n 2 T, spin = s,. The smallest zr that
satisfies this is called the transient.
When zr = 0, the sequence is said to
be purely periodic.

PT-peHect genemters
In an idealized generator, nobody
using reasonable computing re-
sources and reasonable time, could
distinguish between the generator’s
output and a sequence of truly i.i.d.
uniform variates over U better than
by flipping a fair coin to guess
which is which. Note that this is
reminiscent of Turing’s test for in-
telligence.

L’Ecuyer and Proulx [60] (and
other references given there) give a
more precise definition, based on
computational complexity. This
definition applies to a family {G,,
n 2 1) of generators. Informally,
the family is called PT-perfect if G,
“runs” in polynomial-time (in n)
and if no polynomial-time (in n) sta-
tistical test can distinguish the out-
put of the generator from a truly
random sequence (or equivalently,
no polynomial-time algorithm can
predict ui+i from (uo, . , ui)) sig-
nificantly better than by picking a
value uniformly from Ii. Also see
[6, 9, 43, 871.

The generators used most often
in simulation-linear congruential,
multiple recursive, GFSR, . . .-
are not PT-perfect. “Efficient” algo-
rithms have been designed to infer
their sequence by looking at the
first few numbers [lo, 911. But in
practice, they remain the most use-
ful generators for simulation. They
are efficient and show good statisti-
cal behavior with respect to most
reasonable empirical tests. Binary
(or m-ary) expansions of algebraic
numbers (roots of polynomials with
integral coefficients) or of some
transcendental numbers (including

VT) do not define either PT-perfect
generators. Kannan et al. [51] give
efficient algorithms to compute
further digits given a long enough
initial segment of the expansion.

PT-perfect generators were in-
troduced by researchers in cryptol-
ogy. These people proposed vari-
ous generators that are conjectured
to be PT-perfect. Typically, those
generators (at least those currently
proposed) are much too slow for
simulation use. Also, the very exis-
tence of any PT-perfect generator
has not been proven.

Matrix Linear
Congruentlal Recurrencer
Most generators used in practice
are based on linear recursions with
modular arithmetic. Typically, they
are special cases or variants of the
following matrix formulation. For
some positive integers m and k, let F
be the set of integers (0, 1, . . , m -
1) and S the set of k-dimensional
vectors with components in F, i.e.,
S={X=(x,, .) Q)’ 1 x, integer
and 0 5 xi < m for 1 pi % k}. Let
A = (as) be a k X k matrix with ele-
ments in F and C E S a constant
vector. Define a linear transforma-
tion f:S -+ S by f(X) = (AX + C)
mod m (where the modulo opera-
tion is taken elementwise). Let p be
an initial distribution on S. Choos-
ing /.L, U and g:S -+ U defines a
generator in the sense of Definition
1 (we will examine ways of defining
U and g later). Here, the genera-
tor’s state evolves as

X n := (AX,-, + C) mod m, (1)

where the initial state X0 is the seed.
Equation (1) defines a linear con-
gruential generator (LCG) in matrix
form. In the simulation literature,
the term LCG usually refers to the
case k = 1, but here, we adopt the
more general definition. When C =
0 (the most popular case), the gen-
erator is called multiplicative
(MLCG) and (1) becomes

X ,, := AX,-, mod m. (2)

Here, obviously, the vector X, = 0

must be avoided. MLCGs in matrix
form have been studied, for exam-
ple, in [3,44,45,58,76,83]. In fact,
any LCG of order k can be ex-
pressed as a MLCG of order k + 1
as follows: add to A a (k + I)-th col-
umn that contains C, then a (k +
1)-th line that contains a 1 in posi-
tion (k + 1) and zeros elsewhere;
add a 1 as the (k + I)-th component
of x,,.

Suppose m is prime and C = 0.
(When m is prime, taking C # 0 has
no significant interest.) In that case,
F and S can be identified respec-
tively with GF(m) and GF(mk), where
for any e > 0, GF(m’) denotes the
Galois field with me elements [63,
761. GF(mk) can also be viewed as a
field of polynomials of degree
smaller than k, with coefficients in
GF(m). Let S* be the set obtained by
removing the vector 0 from S. The
maximal possible period for the
X,‘s is the cardinality of S*, i.e., p =
mk - 1. It is attained if and only if
all powers of A in arithmetic mod m,
plus the matrix 0, form a vector
space with mk elements, isomorphic
to GF(mk). An equivalent condition
is that the characteristic polynomial
of A.

f(x) = 1x1 - Al mod m

= (2 - $ajxkei) mod m,(3)

with coefficients a2 in GF(m), is a
primitive polynomial modulo m,
which means that all powers of x
modulo f(x) and modulo m consti-
tute S*.

Let r = (mk - l)l(m - 1). The fol-
lowing conditions are necessary and
sufficient for f(x) to be primitive
modulo m [52]:

COYYUYICITIONSOFTI(EliCY/October 199O/Vo1.33, No.10 87

(a) ((- l)k+‘uk)(‘n-‘)‘9 mod m # 1 for
each prime factor q of m - 1;

(b) ((x’ mod f(x)) mod m) =
((- 1)k” uk) mod m;

(c) ((~“9 mod f(x)) mod m) has de-
gree >0 for each prime factor q
of r, 1 < y < r. II

For large values of mk, factorizing
r is often very difftc:ult. It becomes
the bottleneck in checking the
above conditions [57, 581. It is a
good idea then to seek couples
(m, k) such that r is prime, since
checking primality is much easier
than factoring [71]. Given m, k and
the factorizations of m - 1 and r, it
is relatively easy to find primitive
polynomials simplv by random
search for proper ai’s. For prime m,
there are exactly

N(m, k) = (mk - I){1 - l/q,)
(1 - l/qz)’ . .(1 - llqh)lk

choices of (al, . , a.3 that satisfy
the above sufficient conditions,
where q,, . . , qh are the distinct
prime factors of mk - 1 [52]. In the
case k = 1, a primitive polynomial
x - ai means that al is a primitive
element modulo m, and whenever
one such al has been found, all oth-
ers can be found easily, since they
are exactly all the integers of the
form u$ mod m where j is relatively
primetom- 1.

For the maximal period to be at-
tained, A must be nonsingular in
arithmetic modulo m, since other-
wise AX mod m = 0 for some vector
X f 0. Then, if A-’ denotes the in-
verse of A, we have X,-, = A-’ X,
mod m, so that the s,equence can be
generated in reverse order. The
matrix A-’ = AP-’ mod m can be
computed using “divide-to-con-
quer” as we will see later.

composite Modulws

When m is not prime and C = 0, the
maximal period is typically much
smaller than mk. For m = p”, p prime
and e 2 1, the maximal possible
period is (pk - l&“-i, except for
p = 2 and k = 1, where it is 2’-’ [33,
521. Sufficient conditions under
which this period is attained and a
simple method for constructing

matrices A giving maximal period
generators are given in [33]. The
exception p - 1 = k = 1 is treated
in [52]. The case where p = 2 has
some interest in terms of imple-
mentation, but the cost in terms of
period length, for a given approxi-
mate size of m, is important. For
example, for p = 2 and k = 1, the
maximal period is m/4, while it is
m - 1 for prime m. Form = 2”’ and
k = 5, the longest possible period is
(25 _ 1)231-l = 235 - 230, while
mk - 1 = 2155 - 1 is about 2120
times longer! This is one reason
why it is often recommended that
only prime values of m be used.
There are also other important rea-
sons. A major one is that for small
p, the low order bits do not look
random at all. For /) = 2 and k = 1,
the i-th least significant bit of X, has
period equal to max(1,2’-2) [13,
241. If the period of such a genera-
tor is split into 2d equal segments,
then all segments are identical ex-
cept for their d most significant bits
[24, 281. For i = 2r-d-2 > 0, all
points (x,,x,+;) lie on at most
max(2,2d-‘) parallel lines [24]. For
k > 1 (still with p = 2), the maximal
period for the d-th least significant
bit is (2k - 1)2d-‘.

With C # 0, for k = 1, it is possi-
ble to obtain a period length of m.
Conditions are given in Knuth [52].
For p = 2 and k = 1, the period of
the i-th least significant bit of X, is
at most 2’ and the pairs (x,,x,+~), for
i = 2’-d, lie in at most max(2, 2d-1)
parallel lines [24]. For k > 1, since
any k-th order LCG is equivalent to
some (k + I)-th order MLCG, a
general upper bound on the period
length is (pk” - 1)/r-‘. Again, for
large e and k, this is much smaller
than mk.

JemDlng AheOU, Spllttlng, and
l&CtOlW~lOll

Jumping ahead in the sequence of a
MLCG can be done efficiently
using

X,+j = (A’X,) mod ‘m
= (Almod m)X, mod m.

The matrix (A-’ mod m) can be pre-

computed using the divide-to-
conquer algorithm [1 11:

AJ mod m =
A ifj= 1;
A XAJ-’ mod m
Ajp2 X Aj’ mod m

if j > 2, j odd;
ifj > 1, j even,

Such “jumping ahead” facilities are
required for splittilzg the sequence
into long disjoint subsequences.
This is useful for many simulation
applications [13, 28, 591.

On parallel computers, vectoriza-
tion techniques can be used to gen-
erate many subsequences simulta-
neously [16, 24, 531. Given J
processors, one can precompute AJ
mod m and use it as a multiplier on
all the processors, starting with seed
Xj-i on processor j. This way, each
processor generates values that are
J positions apart in the basic se-
quence. A second approach is to
use multiplier Ai mod m on proces-
sor j, with a common seed on all the
processors, and use the “new state”
of processorJ as a seed for the next
step. This way, the successive seeds
are J values apart in the basic se-
quence and the processors generate
exactly the same values as in the
first approach. One drawback is
that all processors must have access
to the state of processor J. A third
approach which we recommend,
called splitting, is to keep multiplier
A on each processor, but to start
with different seeds that are far
apart in the basic sequence. This is
more appealing in practice, since it
does not change the multiplier A
whose choice, typically, is dictated
by ease of implementation criteria.
The first approach is in fact equiva-
lent to splitting, but combined with
a change of multiplier. To generate
the (far apart) seeds, we use multi-
plier A” mod m for some huge value
of v, often a power of two (but be-
ware if m is itself a power of two; see
following). New seeds could be
computed only as needed. Imple-
mentation with this “jumping” mul-
tiplier could be more complicated
and much slower than for A, but it
is used only to produce the seeds.
(Also see [59].)

88 October 199OlVo1.33, No lOICOYYUNICITIONSQFT”E~~.CY

One concern with splitting is that
long-range correlations become
important. Vectors formed by out-

put values from different
substreams should be well distrib-
uted in the unit hypercube. For in-
stance, if seeds are spaced v values
apart, we might have special inter-
est for lag v correlation. As men-
tioned, if m and v are powers of
two, the substreams are identical
except for their (few) most signifi-
cant bits. Further, for c such that 2”
is smaller than the number of
substreams, each substream has 2’
companion substreams that differ
only in their c most significant bits.
Clearly, in this case, v should not be
equal to (or near) a power of two.
Durst [28] suggests choosing seeds
randomly, after comparing that to
regular spacing with v = 1,000,OOl
for m = 24”. For prime m, k = 1,
and full period, all pairs of the
form (x,,x,,+(,- t),p) lie on a line with
slope -1 [24].

Another approach, suggested for
instance in [49, 861, is to use differ-
ent additive constants C (and the
same A and m) for the different
substreams. But in fact, as men-
tioned by Durst [28], changing the
constant does not really change the
generator. As we will see below, the
multidimensional lattice structure
of a LCG is independant of C (ex-
cept for some shifting). Also, con-
sider the LCG (1) and let

Y, = (X, - D) mod m (4)

for some constant vector D. Then,
one has

Y ,,+, = (AY,, + C + (A - I)D) mod m

(5)

where I is the identity matrix. That
is, all generators with additive con-
stant of the form C + (A - I)D for
D E S produce the same sequence
as (l), except for a shift of -D,
modulo m. For maximal period
generators with k = 1 for which a
mod 8 = 5, there are only two such
sequences (one for c = 1 and one
for c = 3) and they are in fact anti-
thetical.

Of course, one can use com-
pletely different generators on the
different processors (or for the dif-
ferent substreams), or simply dif-
ferent multipliers. This appears
more troublesome in terms of man-
agement. However, finding mil-
lions of good generators is not
really a problem [28].

ImplementcatIons
Implementing (1) in a portable way,
in high-level language, is tricky in
general, because m is typically near
the largest integer representable on
the machine and the products in-
volved in computing (1) will over-
flow. We now discuss ways of com-
puting ax mod m for integers a
and x.

If m = 2’ where e is the number
of bits on the computer word, and
if one can use unsigned integers
without overflow checking, the
products modulo m are easy to
compute: just discard the overflow.
This is quick and simple. For that
reason, MLCGs with moduli of this
form are used abundantly in prac-
tice, despite their serious draw-
backs. Some nuclear physicists, for
instance, perform simulations that
use billions of random numbers on
supercomputers and are quite re-
luctant to give up using them [28,
491. Usually, they also generate
many substreams in parallel. In
view of the above remarks, all this
appears dangerous. Perhaps some
people like playing with fire.

For more general m, represent-
able as an integer on the target
computer, [13, 56, 851 give an effi-
cient and easily implementable way
to compute ax mod m, for 0 < x <
m, when

a(m mod a) < m. (6)

If we decompose m = aq + r where
r < a, that condition becomes r < q,
in which case a = (m - r)/q = I-m/q].
It is then easy to see that all multi-
pliers a satisfying r < q are of the
form a = i or a = I_mliJ for i < V&.
Note that in view of this condition,
it might be worthwhile considering
negative multipliers a. Using a < 0

.~~..~........~.~-.~.....

On
parallel

vectorization
techniques
can be
used to

many
subsequences
simultaneously.

89

is equivalent to using a + m, but
condition (6) might hold for -u and
not for a + m. In the following
Pascal-like code to perform x := ax
mod m, if r < 9, all values during
the computations will remain be-
tween -m and m.

k:=xDlVq;
x := a * (x - k :* q) - k * r;
IFx<OTHENx:=x+m

For small a, another approach
is to perform the computations
in double-precision floating-point
[56]. This could be faster on some
computers with floating-point co-
processors. Carta [151 describes a
different low-level implementation
technique for m = 2b-’ - 1 on b-bit
machines. The smaller is a, the
faster it goes (in average). He also
introduces a faster “alternative al-
gorithm” which ac:tually changes
the generator. We believe that this
is dangerous and should be
avoided. Techniques for computing
ax mod m in a high-level language
for the more general case are stud-
ied in [59], which also gives porta-
ble codes.

MultIpIe Recurrive Generators

For a given prime m, whether a
MLCG has full period or not de-
pends only on the characteristic
polynomial of its matrix. Any poly-
nomial of the form (13) has a com-
panion matrix

0 1 ‘.. 0

0 0 ‘.. 1 (7)
a&1 “’ a,

whose&) is the characteristic poly-
nomial. When the matrix A has this
special structure, the first k - 1
components of X, are obtained by
shifting the last k -. 1 components
of X,-t, and the last component of
X, is a linear combination of the
components of X,- t. This can be
viewed as producing a sequence of
integers, each one defined as a lin-
ear combination module m of the k
previous ones. This kind of genera-

tor is called multiple recursive (MRG)
[46, 521. With a matrix of this form,
and denoting

Lattlee Structure and
Spectral met

Consider a maximal period MRG,
of the form (9), and let

x, = (% . . , x,+k-l)‘, (8)

Tt = {(x,,, > x,+t-I), n 2 0) u WI
equation (2) is equivalent to the re-
cursion

Jcn := (a,~,,-t +...i- up,-k) modm.

(9)
Restricting our search to genera-

tors of this class is certainly sup-
ported by their ease of implementa-
tion. It is further reinforced by the
following property [45, 58, 761: for
any generator defined by (2), with
the characteristic polynomial of A
defined by (3), the sequence of
states obeys the recursion

Xn:=(a,X,-, + . . . f C&&-k) mod m.

(10)

In other words, each component of
X,, evolves according to the same
recursion (9), which means that we
just have k copies of the same MRG
evolving in parallel (hopefully, with
different and “far apart” seeds).
This gives a good argument sup-
porting the direct use of (9).

Another interesting special case
in terms of implementation is when
the characteristic polynomial f(x) is
only a trinomial, of the form&) =
xk - uixk-’ - &, for 1 5 j < k. Prim-
itive trinomials of this form are easy
to find [57, 581. The corresponding
recursion becomes:

x, : = (u+, + uk&-k) mod m.

(11)

The generator can be implemented
directly in this form, with its state
redefined as the vector (x,-t, . . ,
x,-k). The “vectorized” recursion
(10) becomes

X n : = (u$,-~ + akXn-A) mod m.

(12)

The state then becomes the matrix
s, = (Xn-*, . . . , X,-,). It can have
interest for parallel computers
(Also see section on GFSR and
Lagged-Fibonacci generators)

be the set of all overlapping t-tuples
of successive values, plus the zero
vector. It is well known [26, 45, 46,
52, 57, 58, 641 that the periodic
continuation of T, with period m,

L, = Tt + mZ’,

forms a lattice with unit cell volume
of max(1, mfek). Recall that a t-
dimensional lattice is a set of the
form

i z,Vi, each zi integer
1=1 I

wherev,,. . ., V, is a set of linearly
independent vectors called a basis.
A set of vectors Wt, . . , W1 such
that the scalar products obey
Vi . Wj = 6q form a basis of the dual
lattice. Bases for Lt and its dual can
be constructed easily as explained
in [45, 481.

For t 5 k, the lattice L, contains
all possible integer vectors and the
unit cell volume is one. For t = k,
each vector except the zero vector
occurs once and only once over the
period. For t > k, the unit cell vol-
ume can be huge compared to 1,
which is the value that one would
expect from truly random integer
vectors. This can be viewed as a
strong limitation of simple LCGs
(with k = 1) and suggests using
large values of k. A unit cell of the
lattice is determined by the vectors
of a Minkowski-reduced lattice base
(MRLB) [2, 3,451. It is traditionally
accepted that “better” generators
are obtained when the unit cells of
the lattice are more “cubic-like” (i.e.
when the vectors of the MRLB have
about the same size). The ratio 9t of
the sizes of the shortest and longest
vectors of a MRLB is called the
Beyer-quotient. It can be used to as-
sess the quality of the lattice. Values
near one are said to be more desir-

October 199O/Vol.33, No.10ICOYYUNICITlONSOFTYSliCY

able. Note however that reducing
the unit cell volume (by increasing
m, or k, or both) can be much more
effective in improving the quality
than getting a larger Beyer-
quotient with fixed m and k. Affler-
bath and Grothe [2, 451 give effi-
cient algorithms to compute a
MRLB and the Beyer-quotient for a
given lattice. A figure of merit can
be Qr = mink,,,r yI for some large
enough T.

The lattice structure also means
that all points of TI lie in a family of
equidistant parallel hyperplanes.
Among all such families of hy-
perplanes that cover all the points,
choose the one for which the suc-
cessive hyperplanes are farthest
apart, and let DI be the distance be-
tween them. The smaller that dis-
tance, the better, since this implies
thinner empty “slices” in the lattice.
Dieter [26] (see also [52]) gives an
algorithm to compute DI, which is
in fact equal to one over the length
of the shortest vector in the dual lat-
tice to L,. This shortest vector can
also be computed using the algo-
rithms of [2, 451, which are faster
for large t. For given m and k, the
number of hyperplanes in the cho-
sen family cannot exceed (t!(mk -
1))“f and there is also a theoretical
lower bound 0:: on D, [36, 52, 561.
One can define the figures of merit
S, = DjVD, and MT = minkslsT S,,
which lie between 0 and 1. For k =
1 and using M6 as a criterion, com-
puter searchs to find good genera-
tors have been done by Fishman
and Moore [36] (for m = 231 - 1),
by Fishman [35] (for m = 232 and
m = 248), by L’Ecuyer [56] (for dif-
ferent values of m near 231 and af <
m), and by Park and Miller [85] (for
m = 231 - 1 and at (m mod at) <
m). L’Ecuyer and Blouin have per-
formed more extensive searchs, for
1 % k 5 7 and different values of m
up to near 263, first using MB as a
criterion [57], then using a,, [58].

The results of [58] show that for
k > 2, generators of the special
form (11) have Beyer quotients
much smaller than 1. But these
generators are faster than those of
the general form. In fact, for a

given generator of the general
form (9) with k > 2, one can usually
find a generator of order k’ > k, of
the special form (1 1), that will be
faster and will have smaller DI for
all t > k. Its Beyer quotients might
be smaller, but this is compensated
for by much smaller unit cell vol-
umes. In that case, D, appears to be
a better “absolute” criterion for
comparing generators with differ-
ent values of k and m.

Table I gives a few values. For
the first 3 columns, all multipliers ai
satisfy condition (6): a, (m mod a,) <
m. (The last column will be dis-
cussed later.) For m = 2”’ - 1 and
k = 1, the multiplier given is the
one with the largest 420 among all
those that satisfy this condition.
Those in columns 2 and 3 (for k >
1) were obtained by extensive ran-
dom search and are believed to be
close to the best ones with respect to
f&r. For comparison, for m = 2”’ -

1 and k = 1, the multiplier a =
742938285 recommended Fishman
and Moore [36] has Q. = .5808,
while for a = 16807, a = 4827 1 and
a = 69621, which are mentioned in
Park and Miller [85] and satisfy (6),
the respective values are .13 15,
.4563 and .5373.

A similar lattice structure ap-
pears when all components of X,
are used at each iteration [3, 44,
451. It can be analyzed in a similar
way. When the generator is not
multiplicative (C # 0), the lattice is
shifted by a constant vector, yield-

CCYY”~,CIT,C”CCFTHCliCYfOctober 199O/Vo1.33, No.10

ing what is called a @d. The corre-
sponding lattice can b,e analyzed in
the same way, since its structure
does not depend on C. When T(is
replaced by the set OF non-overlap-
ping t-tuples, L, does not form a lat-
tice in general [l].

muswartRe, GFSKr, Lagged-
Flbanaccl

When a, =]ak] = 1, the recursion
(12) is a special case of the so-called
lagged-Fibonacci generator (LFG)
[65, 661. A LFG is defined by

X” : = (X,-j 0 X,.-k) mod m (13)

where 0 is any componentwise bi-
nary operation (sum, product, sub-
traction, etc.) and X, is a vector of
any size, with components in (0, . . . ,
m - I}. These generators are ana-
lyzed in [65,66], for different oper-
ators 0, and m = 2”. For such values
of m, their maximal period lengths
are typically much smaller than
mk- 1.

Increasing the period of a LCG
can be done by taking a larger m or
a larger k. Typical MLCGs use m
near 2s’ and small k. An opposite
extreme is to take m = 2, with large
k. In this case, X, is a vector of k bits.
For b 5 k, one can interpret, say,
the last b bits of X, as a b-bit integer.
The generator thus obtained is
called Generalized Feedback Shift Reg-
ister (GFSR) [37, 38, 39, 40, 41, 42,
62,66,93,94,95,96]. For the “effi-
cient” special case (12), with aj =
ak = 1, it becomes a special kind of
lagged-Fibonacci generator, with
operator 0 = @ (the bitwise exclu-
sive or). Since the first k - b bits (if
any) are unused, X, can be viewed
as a b-bit vector. The generator’s
state s, is a b x k mat.rix of bits. Rec-
ommended values are for example
b = 31 and k = 521 or 607 [37].

For b = 1, one gets a MRG which
produces a sequence of bits (also
called a M-sequence, for maximal
period generators). Tausworthe
[92] suggested regrouping blocks of
successive bits to form integers or
reals. These Tausworthe (or simple
shift register) generators are rather
slow and are almost not used any-

more in practice. But see also [96].
GFSR generators are faster but use
more memory. Since a GFSR gen-
erator corresponds in fact to b cop-
ies of the same M-sequence evolv-
ing in parallel, one should use
“jumping ahead” techniques to
compute an initial matrix of bits so
that these b bit-generators have
their seeds far enough apart. (This
also applies to LFGs in general.)
Initialization procedures have been
proposed (e.g., in [8, 21, 421). But
Fushimi [39] gives a much simpler
and faster procedure, which guar-
antees equidistributivity in all di-
mensions t 5 Lk/bJ and good auto-
correlation properties for lags up to
L(2k - 1 - b)lb]. The basic idea is to
find a Tausworthe generator that is
equivalent to the target GFSR and
use the former to compute an initial
matrix of bits.

Marsaglia [65, 661 argues against
the use of GFSR generators. He
describes a statistical test, based on
the ranks of random binary matri-
ces, that some GFSR generators
fail. But in fact, such specific tests to
“catch-up” generators of a given
class can be built for most classes of
generators currently in use. Recent
studies [7, 38, 41, 77, 93, 94, 951
indicate that GFSRs with large
order and properly chosen param-
eters have excellent statistical prop-
erties in general. One problem,
though, is that they use a large
amount of memory. This is particu-
larly true when many generators
have to be run in parallel. A better
idea could be to stay away from the
two extreme cases k = 1 and m = 2.
Pick a large but practical m and in-
crease k as needed.

Other Wmlants

while the matrix A has identical ele-

The ACORN generator proposed
recently in [1011 is in fact equiva-
lent to a MLCG with matrix A such
that a~ = 1 for i 2 j, aq = 0 other-
wise. Generators based on cellular
automata are discussed in [22, 981
and other references given there.
The generators proposed by Tindo
[98] are equivalent to LCGs where
the constant C is a vector of ones,

ments a0 on its diagonal, identical
elements at on its subdiagonal, and
zeros elsewhere. The maximal pos-
sible period is mk - m and finding
generators that reach it is relatively
easy. The elements of the vectors
X, are combined to produce the
output.

Non-Linear Generators
LCGs can be generalized to quad-
ratic generators of the form

X n : = (X;-,AX,-l + BX,ml + C)
mod m,

where A and B are k x k matrices,
or more generally to

X, : = P(X,-1) mod m

where P is some multivariate poly-
nomial. See [74]. For k = 1, quad-
ratic generators are analyzed in [52,
301. The latter authors show that
for maximal period generators (p =
m), the non-overlapping t-tuples de-
termine a union of grids (shifted
lattices).

A class of generators based on
Tchebychev mixing are known to
have bad statistical properties [50].
Classes of LCGs with randomly
varying multipliers and/or additive
constants are discussed in [17, 191.
They have interesting theoretical
properties, but they require truly
random bits at each step.

A Class # Generatan by
Invenlan

is equivalent to jumping ahead p-l

Eichenauer et al. [29, 311 intro-
duced a class of “non-linear” gener-
ators using a sequence {x,, 12 2 0)
that obeys (9) for prime m. Let %i be
the i-th non-zero value x, in that
sequence. Define z, = &+$;l)
mod m, where ii’ denotes the in-
verse element of f, in GF(m). The
Z,‘S are then used to produce the
u,‘s. A version of Euclid’s algo-
rithm, whose average running time
is approximately 12(1n2)(1nm)la
[52], can be used to compute the
inverse %; ‘. Divide-to-conquer can
also be used as mentioned previ-
ously, since jumping back one value

92 October 1990/Vo1.33.No.lO,COYW"",CITIOWIOCTRE~~Y

values. Computing this inverse in
software on a standard computer is
slow, which makes these generators
somewhat inefficient. However, if
implemented in hardware, the in-
version procedure can be practi-
cally as fast as an ordinary floating-
point division [29, and persona1
communication from D. E. Knuth
to J. Lehn].

For prime m, the maximal possi-
ble period length for the z,‘s is mk- ‘.
Sufficient conditions for it to be at-
tained are given in [31]. Maxima1
period generators are easy to find.
For k = 2 or 3, one can write a re-
cursion directly for the 2,‘s. For k =
2, it is

72,=
1

(ai + a&ji)modmif z,-~ # 0;
al if .2,-I = 0.

The main motivation behind these
generators is that the sequence they
produce does not share the lattice
property of the usual LCGs. Their
structure is highly non-linear: any
t-dimensional hyperplane contains
at most t overlapping t-tuples of
successive values [34, 78, 79, 841.
Niederreiter [82] shows that they
behave very much like truly ran-
dom generators with respect to dis-
crepancy. Therefore, their theoret-
ical properties look quite good.

These non-linear generators can
also be viewed as a way of imple-
menting g : S+= U for a LCG, (i.e.
as a supplementary step when
transforming the state of the LCG
into a value between 0 and 1).
Other ways of defining g will be dis-
cussed later.

Combined Genemtorm
To increase the period and try to
get rid of the regular patterns dis-
played by LCGs, it has often been
suggested that different generators
be combined to produce a “hybrid”
one [20, 47, 48, 52, 56, 65, 67, 73,
99, 1001. Such combination is often
viewed as completely heuristic and
is sometimes discouraged. Ripley
[go], for instance, views it as “better
the unknown than the devil we
know” attitude. But besides being
strongly supported by empirical

investigations, combination has
some theoretical support. First, in
most cases, the period of the hybrid
is much longer than that of each of
its components, and can be com-
puted. Second, there are theoretical
results suggesting that some forms
of combined generators generally
have better statistical behavior. For
instance, suppose two random se-
quences {x,, n 2 0) and cm, n 2 0)
are combined elementwise to form
a third sequence {z,, n 2 0}, where
Gl = xn 0 yn and 0 denotes some
binary operator. Assume the three
sequences are defined over the
same finite set. Then, under fairly
reasonable conditions, the t-tuples
of successive values are “more” (or
at least as much) uniformly distrib-
uted in some sense for the third
sequence than for any of its two
constituents. See [14, 651. Recall,
however, that the generators used
in practice produce completely de-
terministic sequences. In that con-
text, the above results might raise
optimism, but give no guarantee of
quality. As pointed out in [13],
combination can conceivably
worsen things. Niederreiter (per-
sonal communication) points out
that if x, and yn have inverses with
respect to 0, which is often the case
in deterministic settings, then X, =
z,Oy;’ and y,, =x;’ 0 z,, and the
same argument as above suggests
that x, and yn have “better” statisti-
cal properties than z,!

Some combination approaches
are based on shuffling [13, 52, 54,
731. In one of the variants, two sim-
ple generators are used, one to fill
the cells of a buffer and the other to
select which cell the next output
value will be taken from. At each
step, the second generator selects a
cell, outputs its content, then the
first generator fills it back. Shuf-
fling is not so well understood and
has some practical drawbacks [131.
For instance, there is no obvious
efficient way to jump ahead in the
sequence.

L’Ecuyer [56] proposed a combi-
nation method for MLCGs of order
k = 1 with distinct prime moduli
ml,. . . , mJ. If xjn denotes the state

of generatorj at step n, define the
combination (slightly more genera1
than in [56]):

z, = (J$P, mod ml (14)

for some integers 8~ In [56], Sj =
(- lp-’ is suggested. This is related
to the following generalization of
the combination approach pro-
posed by Wichmann and Hill [99],
which is a bit slower because it re-
quires more divisions:

un = (J$+jn~mj) mod 1. (15)

If each individual MLCG has full
period mj - 1, then the period of
the latter is always equal to the least
common multiple of ml - 1, . . . ,
mJ - 1 [61].

It turns out [61, 971 that there
exists a MLCG with modulus m =
g=imj whose lattice structure ap-
proximates quite well the behavior
of (14) in higher dimensions, and
which is exactly equivalent to (15).
This MLCG does not depend on
the 6,‘s. The equivalence of the
Wichman and Hill generator to a
MLCG was already pointed out by
Zeisel [99]. Such structural proper-
ties are not so deceptive as it might
appear. In fact, it shows that these
combinations can be viewed as effi-
cient ways of implementing (some-
times with added noise) generators
with moduli much larger than the
largest integer representable on the
target computer. However, these
large moduli are not prime.

One generator suggested in [56]
had J = 2, ml = 2147483563, m2 =
2147483399, al = 40014, as =
40692, 6i = 1 and 82 = - 1. Its “ap-

COYMUWICITIONSOCTIlEAOMlOctober 199O/Vo1.33, No.10 93

proximating” MLCG has m =
4611685301167870637 and a =
1968402271571654650 (see Table
I) [61, 971. The approximation is
quite good in dimensions t z 3. Fig-
ures of merit for the lattice associ-
ated with this MLCG are given in
the last column of Table 1. They
show that for t z 3 (where the ap-
proximation is good), the combined
generator has a bsetter structure
than the best MLCG of order one
(and modulus m = Z3’ - l), and is
quite comparable to the best
MLCGs of order 2. In two dimen-
sions, the combined generator is
also more “noisy” than these
MLCGs. Before suggesting that
generator, the author had been
unable to detect graphically, with
reasonable computer time, any two-
dimensional structural property.
For the same size, o.ne can also find
better combined generators than
this one. See [61].

Tranriormlng lint0 u(O,W

uarlates

There are different ways of using
the state vector X, =: (:c,t, . . . , x,k)’
of a LCG to produce real values
between 0 and 1, that is of defining
g : S + U where U is some finite
subset of [O,l]. When m is large, a
component x,; can be simply di-
vided by m, yielding a result in [O,l).
But it is often nec,essary to make
sure that the result lies strictly be-
tween 0 and 1. This can be accom-
plished by dividing instead by
m + 1, replacing first x,i by m when
JC,, = 0. Other slightly more in-
volved techniques are proposed in
[68, 701.

Afflerbach and Grothe [3, 44,
451 use all the components of X, to
obtain k U(O,l) varia.tes at each iter-
ation. L’Ecuyer and Bl.ouin [57, 581
use only x,k (the last component),
which is equivalent to using a MRG.
As discussed previously, the former
is equivalent to splitting.

When dividing x,~ by (m + l), the
mesh size (or “granularity”) of the
output is Il(m + 1). For some appli-
cations, a smaller mesh size might
be necessary (see, e.g., [29, 881).
One can then use a digital method, in

which a value u, E (0,l) is pro-
duced by

24, = (i*-%n+i- 1) mod (1 - p-r),
i=l

wherep 5 m + 1 and t 2 1 are inte-
gers (p could be for instance a
power of two), and {xi, i 2 0) is the
sequence of all used vectors compo-
nents (or a sequence produced by
(9)). Other variants are discussed in
[72, 76, 801. Tausworthe and GFSR
generators use a similar technique
with p = 2. In the MRG case, the
period of the U,‘S always divides
mk - 1. When mk - 1 and t are rela-
tively prime, it is almost always
mk - 1.

StatIstIcal mmtlnm

Knuth [52] describes a set of empir-
ical statistical tests, usually viewed
as the “standard” ones. Many of
them are included in the package of
Dudewicz and Ralley [27]. Mar-
saglia [65] describes others, suppos-
edly more powerful. Statistical tests
are rather easy to design: any func-
tion of a finite set of i.i.d. uniform
random variables can be used as a
statistic to define a test of hypothe-
sis, if its distribution is known. To
gain power, the test can be repeated
N times, and the empirical distribu-
tion of the values of the statistic can
be compared to its theoretical dis-
tribution, using, for instance, the
Kolmogorov-Smirnov test [27, 561.
Of course, the quality of a genera-
tor can never be proven by any sta-
tistical test.

DlsCCeDanCY

Besides empirical tests, some theo-
retical tests can give information
about the statistical behavior of cer-
tain generators, often over the full
period but sometimes also for just
part of the period. Examining the
lattice structure of LCGs yields such
tests. Other tests are based on the
notion of discrepan,cy. Informally,
the discrepancy 08 in t dimensions
is the absolute difference between
the expected number and actual
number of vectors (x,, . . . , x,+r- t),

0 5 n <N, falling into a hyper-
rectangular region with sides paral-
lel to the axes, maximized over all
such regions (or in some defini-
tions, over those regions with a cor-
ner at the origin). Intuitively, a dis-
crepancy that is “too high” should
be avoided. Also, a discrepancy that
is “too low” can indicate a sequence
that is “too regular”. Some “very
regular” (so-called quasirandom)
sequences, whose discrepancy has
an order of magnitude lower than
that of genuinely random se-
quences, are useful for some appli-
cations [12, 75, 841. For many dif-
ferent classes of generators, bounds
on 08 are available [72, 75, 76, 77,
80, 81, 82, 84, 94, 951. These
bounds can give some sort of “pro-
tection”. But only in rare cases,
exact values can be computed. For
instance, two-dimensional discrep-
ancy can be computed efficiently
for a class of LCGs [5]. As pointed
out in [4, 521, the discrepancy is
very sensitive to rotations of the
axis, in contrast to the Beyer-
quotient or spectral test. This sug-
gests that rating generators on the
basis of their discrepancy bounds is
not necessarily the best idea. On the
other hand, discrepancy is a useful
measure for getting error bounds
in numerical integration or for ran-
dom search procedures. Further,
bounds on some statistical quanti-
ties such as serial correlation can be
obtained in terms of bounds on the
discrepancy. Niederreiter’s survey
[84] puts more emphasis on dis-
crepancy and quasirandom se-
quences.

conclumlon

A lot has been written on uniform
variate generation, but certainly,
the last word has not been said. As
computing power gets progres-
sively cheaper, applications will
require increasingly robust genera-
tors. Classical LCGs of order 1 are
becoming unsatisfactory for some
applications. For example, my lap-
top computer needs less than 6
hours to loop around the whole
period of a MLCG with modulus
m = 232 (and period length 230).

94 October 1990/%1.33, No.~O/COYYUNIUT~ONS OF T”E AOCY

Supercomputers do the same in a
few seconds. Increasing the modu-
lus leads to implementation prob-
lems. At the other extreme, GFSR
generators, which use modulus 2,
can attain much longer periods and
good statistical properties by using
a large order k. However, they use
more space. But why stick to these
two extreme cases?

MRGs with a trinomial charac-
teristic function, large m and say
k 2 5, appear to be an excellent
choice in terms of efficiency and
statistical quality. The unit cell vol-
ume of the associated t-dimensional
lattice, for t > k, can be reduced by
increasing k. The mesh size can be
reduced without increasing m by
using a digital method to produce
the output. Note that the digital
method can be implemented using
different MRGs (evolving in paral-
lel) for different digits. Non-linear
transformations can also be used at
this stage, but at the expense of
reduced speed if no hardware im-
plementation is at hand. PT-perfect
generators offer a good stimulus
for further research.

Acknowledgments
This work was performed while the
author was with the Departement
d’informatique, Universite Laval,
Quebec. Comments and
suggestions by R. Couture, U.
Dieter, B. L. Fox, M. Fushimi, J.
Lehn, H. Niederreiter, G. Perron,
S. Tezuka, and the anonymous ref-
eree, led to significant improve-
ments. q

References
1. Afflerbach, L. The sub-lattice

structure of linear congruential
random number generators.
Manzcsc. Math. 55 (1986), 455-465.

2. Afflerbach, L. and Grothe, H. Cal-
culation of Minkowski-reduced
lattice bases. Computing 35 (1985),
269-276.

3. Afflerbach, L. and Grothe, H. The
lattice structure of pseudo-
random vectors generated by ma-
trix generators. J. of Comput. and
Applied Math. 23 (1988), 127- 13 1.

4. Afflerbach, L. and Weilbacher, R.
On Using Discrepancy for the As-
sessment of Pseudorandom Num-

ber Generators. Submitted for
publication, 1988.

Afflerbach, L. and Weilbacher, R.
The exact determination of rec-
tangle discrepancy for linear con-
gruential pseudorandom num-
bers. Math. of Comput. 53, 187 (July
1989) 343-354.
Alexi, W., Chor, B., Goldreich, 0.
and Schnorr, C. P. RSA and Rabin
Functions: Certain parts are as
hard as the whole. SIAM J. on Com-
put. 17, 2 (1988) 194-209.
Andre, D. L., Mullen, G. L., and
Niederreiter, H. Figures of merit
for digital multistep pseudoran-
dom numbers. Math. of Comput. To
be published, 1990.

8. Arvillias, A. C. and Maritsas, D. G.
Partitioning the period of a class of
m-sequences and application to
pseudorandom number genera-
tion. J. ACM 25,4 (1978) 675-686.

9. Blum, L., Blum, M. and Schub, M.
A simple unpredictable pseudo-
random number generator. SIAM
J. Cornput. 15, 2 (1986) 364-383.

10. Boyar, J. Inferring sequences pro-
duced by pseudo-random number
generators. J. ACM 36, 1 (1989)
129-141.

11.

12.

13.

14.

15.

16.

17.

18.

Carta, D. G. Two fast implementa-
tions of the “minimal standard”
random number generator. Com-
mm. ACM 33, 1 (Jan. 1990) 87-88.
Celmaster, W. and Moriarty,
K. J. M. A method for vectorized
random number generators. J.
Comput. Phy. 64 (1986) 271-275.
Chassaing, P. An optimal random
number generator on Z,. Stat. and
Prob. Lett. 7 (1989) 307-309.
Chor, B. and Goldreich, 0. Unbi-
ased bits from sources of weak
randomness and probabilistic
communication complexity. SZAM
J. Comput. 17, 2 (1988) 230-261.

19. Chung, F. R. K., Diaconis, P., and

Brassard, G. and Bratley P. Al-
gorithmics, Theory and Practice.
Prentice-Hall, Englewood Cliffs,
N.J., 1988.
Bratley, P. and Fox, B. L. Algo-
rithm 659: Implementing Sobol’s
quasirandom sequence generator.
ACM Trans. on Math. Softw. 14, 1
(Mar. 1988) 88-100.
Bratley, P., Fox, B. L. and Schrage,
L. E. A Guide to Simulation. 2d ed.
Springer-Verlag, New York, 1987.
Brown, M. and Solomon, H. On
combining pseudorandom num-
ber generators. Ann. Stat. I (1979)
691-695.

t ___.~-__-.-

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Graham, R. L. Random walks aris-
ing in random number genera-
tion. Ann. Probab. 15, 3 (1987)
1148-1165.
Collings, B. J. Compound random
number generators. J. Am. Stat.
Assoc. 82, 398 (1987) 525-527.
Collings, B. J. and Hembree, G. B.
Initializing generalized feedback
shift register pseudorandom num-
ber generators. J. ACM 33 (1986)
706-7 11. A, also in J. ACM, 35, 4
(1988) 1001.
Compagner, A. and Hoogland, A.
Maximum length sequences, cellu-
lar automata, and random num-
bers. J. Comput. Phys. 71 (1987)
391-428.
Dagpunar, J. Principles of Random
Variate Generation. Oxford Univer-
sity Press, 1988.
De Matteis, A. and Pagnutti, S.
Parallelization of random number
generators and long-range corre-
lations. Numerische Mathematik 53
(1988) 595-608.
Devroye, L. Non-Uniform Random
Variate Generation. Springer-
Verlag, New York, 1986.
Dieter, U. How to calculate short-
est vectors in a lattice. Math. Com-
put., 29, 131 (1975) 827-833.
Dudewicz, E. J. and Ralley, T. G.
The Handbook of Random Number
Generation and Testing with
TESTRAND Computer Code. Amer-
ican Sciences Press, Columbus,
Ohio, 1981.
Durst, M. J. Using linear con-
gruential generators for parallel
random number generation. In
Proceedings of the I989 Winter Simu-
lation Conference. IEEE Press
(1989) pp. 462-466.
Eichenauer, J. and Lehn, J. A
Nonlinear congruential pseu-
dorandom number generator.
Statist&he Hefie, 27 (1986) 3 15-
326.
Eichenauer, J. and Lehn, J. On the
structure of quadratic congruen-
tial sequences. Manux. Math., 58
(1987) 129-140.

CCYY”IIICI1ICYCCFTWIAC,CY/Octabcr 199O/Vo1.33, No.10 95

31. Eichenauer. J., Grothe, H., Lehn.
J. and Topuzoglu, A. A multiple
recursive nonlinear congruential
pseudorandom number genera-
tor. Manw. Math. 59 (I 987) 33 I -
346.

32. Eichenauer, J., Lehn, J. and
Topuzoglu, A. .4 nonlinear con-
gruential pseudorandom number
generator with power of two mod-
ulus. Math. Comput. 51, 184 (1988)

757-759.

33. Eichenauer-Herrmann, J., Grothe,
H. and Lehn, J. On the period
length of pseudorandom vector
sequences generated by matrix
generators. Math. Comput. 52, 185
(1989) 145-148.

34. Eichenauer-Herrmann, J. ln-
versive congruential pseudoran-
dom numbers avoid the planes.
Math. Comput. (I 990). To be pub-
lished.

35. Fishman, G. S. Multiplicative con-
gruential random number genera-
tors with modulus 2P: an exhaus-
tive analysis for /3 = 32 and a
partial analysis for /3 = 48. Math.

Comput. 54, 189 (Jan 1990) 331-
344.

36. Fishman, G. S. and Moore Ill,
L. S. An exhaustive analysis of
multiplicative congruential ran-
dom number generators with
modulus 2s’ - 1. SIAM J. Sci. and

Stat. Comput. 7, 1 (1986) 24-45.
37. Fushimi, M. Increasing the orders

of equidistribution of the leading
bits of the Tausworthe sequence.
InJ hoc. Lett. 16 (1983) 189-192.

38. Fushimi, M. Designing a uniform
random number generator whose
subsequences are k-distributed.
SIAM J. Comput. I 7, 1 (1988) 89-
99.

39. Fushimi, M. An equivalence rela-
tion between Tausworthe and
GFSR sequences and applications.
Applied Math. Lett. :?, 2 (I 989) 135-
137.

40. Fushimi, M. Random number
generation on parallel processors.
In Proceedings of the 1989 Winter

Simulation Conference. IEEE Press
(1989) pp. 459~-461.

41. Fushimi, M. Random number
generation with the recursion X, =
X,-jp @ X,--3y. In Comput. and Ap-

plied Math. (1990). To be pub-
lished.

42. Fushimi, M. and Tezuka, S. The&
distribution of generalized feed-
back shift register pseudorandom
numbers. Commun. ACM 26, 7

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

(1983) 516-523.

Goldreich, O., Goldwasser, S. and
Micali, S. How to construct ran-
dom functions. J. ACM ?3, 4

(1986) 792-807.

Grothe, H. Matrix generators for
pseudo-random vectors genera-
tion. Stat. Hefte 28 (I 987) 233-238.
Grothe, H. Matrixgeneratoren zur
Erzeugung gleichverteilter Pseu-
dozufallsvektoren (in german).
Dissertation (thesis), Tech.
Hochschule Darmstadt, Germany,
1988.
Grube, A. Mehrfach rekursiv-
erzeugte Pseudo-Zufallszahlen (in
german). Zeitschrift fiir angewandte

Math. und Mechanik 53 (1973)
T223-T225.
Guinier, D. A fast uniform “Astro-
nomical” random number genera-
tor. ACM SIGSAC Rev. 7, I (Spring
1989), l-13.
Haas, A. The multiple prime ran-
dom number generator. ACM

Trans. Math. Softw. 13, 4 (1987)
368-381.
Halton, J. H. Pseudo-random
trees: Multiple independent se-
quence generators for parallel and
branching computations. J, Com-
put. Phys. 84 (1989) l-56.
Hosack, J. M. The use of cebysev
mixing to generate pseudo-
random numbers. J. Comput. Phys.

67 (1986) 482-486.
Kannan, R., Lenstra, A. K. and
Lov&sz, L. Polynomial factoriza-
tion and nonrandomness of bits of
algebraic and some transcendental
numbers. Math. Comput. 50, 181
(1988) 235-250.
Knuth, D. E. The Art of Computer

Programming Vol. 2 Seminumerical

Algorithms, 2d ed. Addison-Wesley,
1981.
Koniges, A. E. and Leith, C. E.
Parallel processing of random
number generation for Monte
Carlo turbulence simulation. J. oJ
Comput. Phys. 81 (1989) 230-235.
Law, A. M. and Kelton, W. D. Slm-
ulation Modeling and Analysis, 2d
ed., McGraw-Hill, 1991. To be
published.
L’Ecuyer, P. A portable random
number generat.or for 16.bit com-
puters. Modelzng and Simulation on

Microcomputers 1987. The Society
for Computer Simulation (1987),
pp. 45-49.
L’Ecuyer, P. Efficient and portable
combined random number gener-
ators. Commun. ACM 31, 6 (1988)

742-749 and 774. Also see the
correspondance in Commun. ACM

32, 8 (1989) 1019-1024.
57. L’Ecuyer, P. and Blouin, F. Linear

congruential generators of order
k > 1. In Proceedings of the 1988

Winter Simulation Conference, IEEE
Press, (1988), pp. 432-439.

58. L’Ecuyer, P. and Blouin, F. Multi-
ple Recursive and Matrix Linear
Congruential Generators. Submit-
ted for publication, 1990.

59. L’Ecuyer, P. and C&e, S. lmple-
menting a random number pack-
age with splitting facilities. ACM

Trans. on Math. Softw. 1990. To be
published.

60. L’Ecuyer, P. and Proulx, R. About
Polynomial-Time “Unpredictable”
Generators. In Proceedings of the

1989 Winter Simulation Conference,

IEEE Press, (1989). pp. 467-476.
61. L’Ecuyer, P. and Tezuka, S. Struc-

tural Properties for Two Classes of
Combined Generators. Submitted
for publication, 1990.

62. Lewis, T. G. and Payne, W. H.
Generalized feedback shift regis-
ter pseudorandom number algo-
rithm. J. ACM 20, 3 (1973) 456-
468.

63. Lidl, R. and Niederreiter, H. Intro-

duction to Finite Fields and Their

Applications. Cambridge University
Press, Cambridge, 1986.

64. Marsaglia, G. Random numbers
fall mainly in the planes. In Pro-

ceedings of the National Academy of

Sciences of the United States of Amer-

ica 60 (1968) pp. 25-28.
65. Marsaglia, G. A Current View of

Random Number Generation.
Computer science and statistics. In
Proceedings of the Sixteenth Sympo-

sium on the Interface (Atlanta,
March 1984). Elsevier Science
Pub]., North-Holland, 1985, pp.
3-10.

66. Marsaglia, G. and Tsay, L.-H.
Matrices and the structure of ran-
dom number sequences. Linear
Algebra and its Appl. 67 (1985) 147-
156.

67. Marsaglia, G., Zaman, A., and
Tsang, W. W. Towards a universal
random number generator. Stat.

and Prob. Lett. 8 (1990) 35-39.
68. Marse, K. and Roberts, S. D. lm-

plementing a portable FORTRAN
uniform (0,l) generator. Simula-

tion 41, 4 (1983) 135-139.
69. Modianos, D. T., Scott, R. C. and

Cornwell, L. W. Testing intrinsic
random number generators. Bytn

October 199O/Vol.33, No.lOICOYYUWICITION5OFTRL AOCY

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

12, 1 (1987) 175-178.
Monahan, J. F. Accuracy in Ran-
dom Number Generation. Math. of
Corn& 45, 172 (1985) 559-568.
Morain, F. lmplementation of the
Atkin-Goldwasser-Kilian primality
testing algorithm. Rap. de recher-
the 9 11, INRIA, Rocquencourt,
France, 1988.
Mullen, G. L. and Niederreiter, H.
Optimal characteristic polynomials
for digital multistep pseudoran-
dom numbers. Computing ?9
(1987) 155-163.
Nance, R. E. and Overstreet, C.,
Jr. Some experimental observa-
tions on the behavior of composite
random number generators. Oper.
Res. 26, 5 (1978) 915-935.
Narkiewicz, W. CJninz~orm Distribution
of Sequences of Integers in Residue
Classes. Lecture Notes in Mathe-
matics, 1087, Springer-Verlag,
1984.
Niederreiter, H. Quasi-Monte
Carlo methods and pseudoran-
dom numbers. Bull. Am. Math. Sot.
84, 6 (1978) 957-1041.
Niederreiter, H. A pseudorandom
vector generator based on finite
field arithmetic. Math. Japonica 31,
5 (1986) 759-774.
Niederreiter, H. A statistical anal-
ysis of generalized feedback shift
register pseudorandom number
generators. SIAM J. Sci. Stat. Com-
put. 8, 6 (1987) 1035-1051.
Niederreiter, H. Remarks on non-
linear congruential pseudoran-
dom numbers. Metriha 35 (1988)
321-328.
Niederreiter, H. Statistical inde-
pendence of nonlinear congruen-
tial pseudorandom numbers.
Monatshefte fiir Mathematik 106
(1988) 149- 159.
Niederreiter, H. The Serial Test
for Digital k-Step Pseudorandom
Numbers. Math. J. Okayama Univ.
30 (1988) 93-l 19.
Niederreiter, H. The serial test for
congruential pseudorandom num-
bers generated by inversions.
Math. of Comput. 52, 185 (1989)
135-144.
Niederreiter, H. Lower bounds
for the discrepancy of inversive
congruential pseudorandom num-
bers. Math. Comput. 1990. To be
published.
Niederreiter, H. Statistical inde-
pendance properties of pseu-
dorandom vectors produced by
matrix generators. J. Cornput. Appl.

Math. 1990. To be published.
84. Niederreiter, H. Recent trends in

random number and random vec-
tor generation. Ann. Oper. Res.
1990. To be published.

85. Park, S. K. and Miller, K. W. Ran-
dom number generators: Good
ones are hard to find. Commun.
ACM 31, 10 (1988) 1192-1201.

86. Percus, D. E. and Kales, M. Ran-
dom number generators for
MIMD parallel processors. J. Par-
allel and Distributed Comput. 6
(1989) 477-497.

87. Reif, J. H. and Tygar, J. D. Effi-
cient parallel pseudorandom
number generation. SIAM J. Com-
put. 17, 2 (1988) 404-411.

88.

89.

91.

Ripley, B. D. The Lattice Structure
of Pseudo-random Number Gen-
erators. In Proceedings of the Royal
Society of London, 389 Ser. A, (1983)
pp. 197-204.
Ripley, B. D. Stochastic Simulation.
Wiley, New York, 1987.
Ripley, B. D. Uses and abuses of
statistical simulation. Math. Prog.,
42 (1988) 53-68.
Stern, J. Secret linear congruential
generators are not cryptographi-
cally secure. In Proceedings of the
28th IEEE Symposium on Founda-
tions of Computer Science (1987) pp.
42 l-426.

92.

93.

Tausworthe, R. C. Random num-
bers generated by linear recur-
rence modulo two. Math. of Com-
put., 19 (1965) 201-209.
Tezuka, S. Walsh-spectral test for
GFSR pseudorandom numbers.
Commun. ACM 30, 8 (Aug. 1987)
731-735.

94.

95.

96.

97.

Tezuka, S. On the discrepancy of
GFSR pseudorandom numbers. J.
ACM 34, 4 (Oct. 1987), 939-949.
Tezuka, S. On optimal GFSR
pseudorandom number genera-
tors. Math. of Computat. 50, 182
(Apr. 1988) 531-533.
Tezuka, S. Random number gen-
eration based on the polynomial
airthmetic module two. Rep. RT-
0017, IBM Research, Tokyo Re-
search Laboratory, Oct. 1989.
Tezuka, S. Analysis of L’Ecuyer’s
combined random number gener-
ator. RT-5014, IBM Research,
Tokyo Research Laboratory, Nov.
1989.

98. Tindo, G. Automates cellulaires;
apphcations B la modelisation de
certains systemes discrets et a la
conception d’une architecture
parallele pour la generation de

F !.I.F :I]E
suites pseudo-aleatoires. These de
doctorat en informatique, Univer-
site de Nantes, France, Jan. 1990.

99. Wichmann, B. A. and Hill, 1. D.
An Efficient and portable pseudo-
random number generator. Appl.
Stat. 31 (1982) 188-190. Also see
corrections and remarks in the
same journal by Wichmann and
Hill 33 123; (1984) McLeod 34
(1985) 198-200; Zeisel 35 (1986)
89.

100. Wichmann, B. A. and Hill, I. D.
Building a random number gener-
ator. Byte 12, 3 (1987) 127-128.

101. Wikramaratna, R. S. ACORN-A
new method for generating se-
quences of uniformly distributed
pseudo-random numbers. J. Com-
put. Phys. 83 (1989) 16-31.

CR Categories and Subject Descript-
ors: G.3 [Probability and Statistics]:
Random number generation

General Terms: Algorithms
Additional Key Words and Phrases:

Simulation, uniform variate generation,
pseudorandom numbers

About the Author:
PIERRE L’ECUYER is a professor at
the Universite de Montreal.

Author’s Present Address: Depar-
tement d’informatique et de recherche

, operattonnelle, Universite de Montreal,
C.P. 6 128, Succ. A, Montreal, Canada,
H3C 357.

This work has been supported by NSERC-
Canada Grant #A5463 and FCAR-Quebec
Grant #EQ283 1.

Permission to copy without fee all or part of this
material is granted provided that the copies are not
made or distributed for direct commercial advan-
tage, the ACM copyright notice and the title ofthe
publication and its date appear, and notice is given
that copying is by permission ofthe Association for
Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

0 1990 ACM OOOI-0782/90/1000-0085 $1.50

CCYY”lllCITlC”CCCT”EAC,CU/October 199O/Vo1.33, No.10 97

